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ABSTRACT
We demonstrate the evolution of a more complex and more efficient
self-replicating computer program from a less complex and less ef-
ficient ancestor. Both programs, which employ a novel method of
self-replication based on compiling their own source code, are sig-
nificantly more complex than programs which reproduce by copy-
ing themselves, and which have only exhibited evolution of degen-
erate methods of self-replication.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming–Program
modification

General Terms
Experimentation

Keywords
Artificial life, genetic programming, quine, self-hosting compiler,
self-replicating program, tail-call optimization

1. INTRODUCTION
Among living organisms, which employ many and varied mecha-
nisms in the process of reproduction, examples of evolved mech-
anisms which are both more complex and more efficient than an-
cestral mechanisms, abound. Yet, nearly twenty years after Ray’s
groundbreaking work on the Tierra system[14], in which the evolu-
tion of many novel (but degenerate) methods of self-replication was
first demonstrated, there is still no example of a more complex and
more efficient self-replicating computer program evolving from a
less complex and less efficient ancestor.

This is not to say that there has been no progress in the field of
artificial life since Tierra. Nor are are we suggesting that increased
reproductive efficiency is the only evolutionary path to increased
complexity. The evolution of self-replicating programs of increased
complexity has been demonstrated many times[7, 9, 12, 15, 17],
and perhaps most convincingly in the Avida system[1, 2]. However,
more complex programs evolved in Avida only because complexity
was artificially equated with efficiency in the sense that programs
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which learned to solve problems unrelated to self-replication were
rewarded with larger rations of CPU time. No program in Avida
(or in any other system known to us) has ever evolved a method of
self-replication that is both more complex and more efficient than
the method employed by its ancestor.

Self-replicating programs have been written in both high-level lan-
guages and in machine language. We define a machine language
program to be interesting if it prints a string at least as long as itself
and halts when executed, and observe that the Kolmogorov com-
plexity of interesting programs is significantly lower than that of
random strings of equal length. Consequently, if we were to train
an adaptive compression algorithm, such as Lempel-Ziv[20], on a
large set of interesting programs, then the compressed programs
would not only be shorter, they would also look more random. Fur-
thermore, because there are fewer random strings of equal length,
the compressed programs are relatively more numerous. It follows
that compression, which decreases redundancy by replacing recur-
ring sequences of instructions with invented names, increases the
density of interesting programs.

Since both processes increase redundancy and output machine lan-
guage programs, it is natural to identify decompression with compi-
lation, which increases redundancy by repeatedly generating simi-
lar sequences of instructions while traversing a parse tree. Viewed
this way, programs written in (more expressive) high-level lan-
guages are compressed machine language programs, and compil-
ing is the process of decompressing source code strings into object
code strings which can be executed by a CPU.

If the density of interesting programs increases with the expres-
siveness of the language in which they are encoded (as the above
implies), then this argues for using the most expressive language
possible for any process, like genetic programming, which involves
searching the space of interesting programs. However, if the goal is
building artificial organisms, then high-level languages have a very
serious drawback when compared to machine language. Namely,
programs in high-level languages must be compiled into machine
language before they can be executed by a CPU or reified as a dis-
tributed virtual machine[19]. Given that we want our artificial or-
ganisms to be both (potentially) reifiable and to evolve into self-
replicating programs of greater complexity and efficiency, we must
ask: How can the advantages which derive from the use of a high-
level language for genetic programming be reconciled with the fact
that only machine language programs can be reified?

To address this question, we introduce a new and significantly more
complex kind of artificial organism–a machine language program
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Figure 1: Conventional self-replicating program (left) copies
itself by exploiting program-data equivalence of von Neumann
architecture. Compiling quine self-replicating program (right)
with source code genotype (green) and object code phenotype
(red). Because the shortest correct implementation of copy is
optimal, only the compiling quine is capable of non-degenerate
evolution.
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Figure 2: Dybvig’s[5] virtual machine for evaluating compiled
Scheme expressions showing its registers and associated heap-
allocated data structures.

which reproduces by compiling its own source-code. See Figure
1. Conventional self-replicating programs reproduce by copying
themselves. Optimum copiers accomplish this in time proportional
to their length, and it not very hard to write a copier which is op-
timum in this sense (or to evolve one). It follows that shorter im-
plementations are always more efficient, which leads to degenerate
evolution, absent other factors. The possible variation in the im-
plementation of a compiler is far larger. Even if the definition of
the object language is stipulated, there is still a huge space of al-
ternative implementations, including the syntax and semantics of
the source language, the ordering of the decision tree performing
syntactic analysis, and the presence (or absence) and effectiveness
of any object code optimizing procedures.

In this paper we describe a machine language program which repro-
duces by compiling its own source code and use genetic program-
ming to demonstrate its capacity for non-degenerate evolution. In
the process we address questions such as: How can a complex
lexically scoped computer program like a compiler evolve with-
out breaking? How can a more efficient self-replicating program
evolve when all mutations initially yield higher self-replication cost?

1.1 A Simple Programming Language

Because a self-hosting compiler compiles the same language it is
written in, it can compile itself. The language we used to construct
our self-hosting compiler is a pure functional subset of Scheme
which we call Skeme. Because it is purely functional, define, which
associates values with names in a global environment using muta-
tion, and letrec, which also uses mutation, have been excluded. The
global environment itself is eliminated by making primitive func-
tions constants. For simplicity, closures are restricted to one argu-
ment; user defined functions with more than one argument must be
written in a curried style. This simplifies the representation of the
lexical environment which is used at runtime by making all vari-
able references integer offsets into a flat environment stack. These
offsets are termed de Bruijn indices[3] and can be used instead of
symbols to represent bound variables. For example, in the follow-
ing expression, a closure which squares its argument is applied to
the number five:

> ((lambda (* %0 %0)) 5)

25

where %0 is a reference to the closure’s argument. One feature
peculiar to Skeme is the special-form, lambda+. When a closure
created by lambda+ is applied to a value, the address of the closure
is pushed onto the environment stack after the address of the value;
the de Bruijn index for this address can then be used for recursive
function calls. For example, the following expression computes ten
factorial:

> ((lambda+ (if (= %1 0) 1 (* %1 (%0 (- %1 1))))) 10)

3628800

where %0 is the closure and %1 is the closure’s argument.

1.2 Tail-Call Optimization
The very first self-hosting compiler was written in Lisp and so it is
not surprising that it is possible (by including primitive functions
which construct bytecode types) to write a very small self-hosting
compiler in Skeme. See Figures 2, 3 and 4.

The cost of compiling a given source code depends not only on
its size, but also on the complexity of the source language, the
efficiency of the compiler, and the cost of any object code opti-
mizations it performs. Common compiler optimizations include
constant folding, loop unrolling, function inlining, and dead code
elimination. Since a self-hosting compiler compiles itself, the effi-
ciency of the object code it generates also affects compilation cost;
it follows that minimizing the cost of self-compilation involves a
complex set of tradeoffs. The most important of these is that object
code optimizations have to pay for themselves by yielding an in-
crease in object code efficiency large enough to offset the additional
cost of compiling the source code implementing the optimization.

Most of the overhead associated with a function call involves the
saving and restoration of evaluation contexts. In Skeme, these op-
erations are performed by the frame and return bytecodes which
push and pop the frame stack. However, when one function calls
another function in a tail position, there is no need to save an eval-
uation context, because the restored context will just be discarded
when the first function returns. A compiler which performs tail-call
optimization recognizes when a function is called in a tail position
and does not generate the code which saves and restores evaluation
contexts. This not only saves time, it also saves space, since tail
recursive function calls will not increase the size of the frame stack
at runtime.



1.3 A Quine which Compiles Itself
A quine is a program which prints itself. It is possible to write a
quine in any programming language but Skeme’s list-based syntax
makes it possible to write especially short and simple quines. For
example, in the following Skeme quine, an expression (lambda (list
%0 (list quote %0))) which evaluates to a closure which appends a
value to the same value quoted is applied to the same expression
quoted:

((lambda (list %0 (list quote %0)))

(quote (lambda (list %0 (list quote %0)))))

It is possible to define an expression ϕ in Skeme which can com-
pile any Skeme expression. The expression ϕ evaluates to a curried
function which takes a compiled expression and an uncompiled ex-
pression as arguments. The compiled expression is a continuation;
the uncompiled expression is the source code to be compiled; ap-
plying the curried function to the halt bytecode yields a function
which can compile top-level expressions. Inserting a copy of (ϕ
(make-halt)) into the unquoted half of the quine so that it compiles
its result (and mirroring this change in the quoted half) yields

((lambda ((ϕ (make-halt))

(list %0 (list quote %0))))

(quote (lambda ((ϕ (make-halt))

(list %0 (list quote %0))))))

which, although not a quine itself, returns a quine when evalu-
ated. Significantly, this quine is not a source code fixed-point of the
Skeme interpreter but an object code fixed-point of Dybvig’s virtual
machine. In effect, it is a quine in a low-level language (phenotype)
which reproduces by compiling a compressed self-description writ-
ten in a high-level language (genotype).

In prior work on evolution of self-replicating programs there has
been no distinction between phenotype and genotype; mutations
are made on the same representation which is evaluated for fitness.
In contrast, in living organisms, small changes in genotype due to
mutation can be amplified by a development process and result in
large changes in phenotype; it is phenotype which is then eval-
uated for fitness. In a compiling quine, small changes in source
code (genotype) are amplified by compilation (development) yield-
ing much larger changes in object code (phenotype) and it is object
code which determines fitness, since it is the execution of object
code which consumes the physical resources of space and time.

2. RELATED WORK
Stephenson et al describe a genetic programming system which
learns priority functions for compiler optimizations including hy-
perblock selection, register allocation, and data prefetching[16].
D’Haeseleer described and experimentally evaluated a method for
context preserving crossover[4]. Kirshenbaum demonstrated a ge-
netic programming system where crossover was defined so that
it respected the meaning of statically defined local variables[8].
Weimer et al. describe a system for finding and fixing bugs in large
programs[18].

Several authors have explored the idea of staged or alternating fit-
ness functions. Koza et al. used a staged fitness function as a
method for multi-objective optimization[10]. Pujol describes a sys-
tem where the fitness function is switched after a correct solu-
tion is discovered to a function which minimizes solution size[13].
Zou[21] and Offman[11] used alternating fitness functions to pre-
serve diversity in genetic algorithm derived solutions to problems
in water quality model calibration and protein model selection.
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Figure 3: A flowchart illustrating the Skeme compilation pro-
cess. Not explicitly shown is the fact that the process calls itself
recursively at many points–once in each box with rounded cor-
ners (for bytecodes with one continuation) and twice in each
box with sharp corners (for bytecodes with two continuations).

3. GENETIC PROGRAMMING
Our approach to genetic programming is motivated by the fact that
gene duplication followed by specialization of one or both copies is
a common route to increased complexity in biological evolution[6].
We introduce two mutation operators called bloat and shrink which
play roles analogous to gene duplication and specialization and
employ these in a genetic programming system where fitness al-
ternates between object code based definitions of complexity and
self-replication efficiency. In teleological terms, the bloat operator
attempts to increase effective complexity by adding source code
while the shrink operator attempts to increase self-replication effi-
ciency by removing it.

3.1 Alternating Fitness Function
Time is divided into ten generation periods termed epochs which
alternate between two types, flush and lean. In flush epochs, fitness
is defined as effective complexity while in lean epochs it is defined
as self-replication efficiency.

A test bytecode is defined to be non-trivial if both of its contin-
uations are exercised in the course of self-replication. This will
only happen if the predicate expression in the if special-form from
which the test bytecode is compiled sometimes evaluates to #t and
sometimes to #f. The number of non-trivial test bytecodes in the
object code is a good measure of the source code’s effective com-
plexity. Consequently, in flush epochs the number of non-trivial
test bytecodes in the object code is maximized.

Because frame stack pushes and pops are the most expensive oper-
ation performed by the virtual machine, they are an excellent proxy
for overall self-replication cost. Consequently, in lean epochs, the
number of frame stack pops, which are implemented by the return
bytecode, is minimized.
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Figure 4: An expression ϕ for compiling Skeme into object code
able to compile itself. The X indicates a break in the figure; the
subtree labeled Y copies the Skeme source code and the subtree
labeled Z compiles function applications.

Mutations can be classified as beneficial, neutral, harmful, and lethal.
The purpose of the bloat operator is to introduce source code which
can be shaped by the shrink operator and by crossover. Signifi-
cantly, the code introduced by the bloat operator does not change
the value of any expression which contains it. Because (by their na-
ture) they increase the cost of self-replication without breaking the
compiler, bloat mutations are never lethal but are harmful during
lean epochs.

In contrast, shrink mutations are beneficial when they reverse bloat
mutations during lean epochs and harmful when they reverse bloat
mutations during flush epochs. However, shrink mutations have
two different and more pronounced effects. First, a shrink muta-
tion can remove code and break the compiler, in which case it is
lethal. Second, it can shape the result of a bloat mutation in a way
which decreases the cost of self-replication, in which case it will
be strongly beneficial during lean epochs and become fixed in the
population.

3.2 Bloat
The source code for the self-hosting compiler contains boolean-
valued expressions with six different syntactic forms. Excluding
primitive functions, the source code also contains six different ex-
pressions of constant value. A random syntactic form can be com-
bined with a random de Bruijin index and (if necessary), a random
constant-valued expression, to construct a random boolean-valued
expression, φ .

The bloat operator is defined by five rules. The first four rules
define a recursive procedure which applies the bloat operator in
selected contexts. The last rule replaces a function application
with an i f expression which returns the same value regardless of
whether a random boolean-valued expression, φ , evaluates to #t or
#f. Consequently, the value of the expression is the same before
and after the mutation. The fact that the bloat operator is value-
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code (left) is amplified by compilation, the effect on object code
(right), which is evaluated for fitness, can be pronounced. The
effect on fitness is complex; after a bloat mutation, more source
code must be analyzed by a more complex compiler, a change
which might (but more likely will not) pay for itself by an in-
crease in efficiency of the generated object code.

neutral with respect to evaluation is important because only viable
individuals (those which correctly self-replicate) are copied to the
next generation; and although a bloat mutation typically introduces
expressions which are not evaluated during self-replication (which
greatly reduces the fitness of affected individuals by increasing
their self-replication costs) affected individuals always remain vi-
able because bloat mutations cannot actually break the compiler
which contains them.

The five rules which define the bloat operator are

1. (lambda[+] e0)→ (lambda[+] e′0)

2. ((lambda[+] e0) e1)→ ((lambda[+] e′0) e′1)

3. (if e0 (id e1) e2)→ (if e0 (id e1) e2)

4. (if e0 e1 e2)→ (if e0 e′1 e′2)

5. ( f e0 . . .eN )→ ( f e0 . . .eN ) || (if φ (id ( f e0 . . .eN )) ( f e0 . . .eN ))

where f is a primitive function, φ is a random boolean-valued ex-
pression, id is the identity function, and primes mark expressions
which are recursively expanded. Alternative right hand sides are
separated by vertical bars; the alternative to the left of the || is
chosen with 95% probability; the remaining alternative is chosen
otherwise. The identity function serves as a value neutral tag in a
meta-syntax; the recursive procedure which applies the bloat op-
erator will not descend into i f subtrees marked with this tag; this
prevents the compounding of bloat mutations. Figure 5 shows an
example of a bloat mutation and its effects on both (source code)
genotype and (object code) phenotype.

3.3 Shrink
The rules defining the shrink operator serve two purposes. the first
purpose is to reverse mutations introduced by the bloat operator;
the fourth shrink rule removes the tagged i f expressions generated
by the bloat operator so that a bloat mutation followed by a shrink
mutation (of this type) has no net effect. The second purpose is to
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Figure 6: Evolved subtrees implementing the tail-call optimiza-
tions which characterize the B and C genotypes. The A genotype
performs neither optimization while the D genotype performs
both. Both optimizations check to see if the continuation is a
return bytecode, which performs a frame stack pop. If so, the
push-pop sequence is not generated, resulting in significant sav-
ings in time and space usage.

simplify function applications; the last shrink rule replaces expres-
sions where a function is applied to one or more values with just
one of those values. Because these rules also remove the identity
function tags inserted by the bloat operator, the expression which
results from a shrink mutation is again subject to bloating.

The five rules which define the shrink operator are

1. (lambda[+] e0)→ (lambda[+] e′0)

2. ((lambda[+] e0) e1)→ ((lambda[+] e′0) e′1)

3. (if e0 e1 e2)→ (if e0 e′1 e′2)

4. (if e0 (id e1) e2)→ (if e0 (id e′1) e′2) || e1 | e2

5. ( f e0 . . .eN )→ ( f e0 . . .eN ) || e0 | . . . | eN

where f is a primitive function, id is the identity function, and
primes mark expressions which are recursively expanded. Alterna-
tive right hand sides are separated by vertical bars; the alternative to
the left of the || is chosen with 95% probability; one of the remain-
ing alternatives is chosen otherwise (each with equal probability).
Unlike the bloat operator, which is value neutral, the shrink opera-
tor changes the object code generated by the compiler when it mod-
ifies an expression which is evaluated during self-replication. In
the case of the fourth shrink rule, this often reverses a harmful bloat
mutation, in which case the shrink mutation is beneficial. However,
in the case of the last shrink rule, the mutation most often breaks
the compiler. Very rarely, the shrink mutation does not break the
compiler but instead results in a decrease in self-replication cost.

The problem which plagues many genetic programming systems, in
which code trees grow larger with increasing time, does not occur
for two reasons. First, the use of the id function as a tag prevents
the bloat operator from being applied within i f expressions which
were themselves just created. Second, the shrink operator reverses
bloat mutations, and bloat mutations not yielding a decrease in self-
replication cost are strongly selected against during lean epochs.
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Figure 7: Contour plots of fitness landscapes during flush (left)
and lean (right) epochs. Colored arrows point in directions of
increased fitness. In lean epochs, the four genotypes A,B,C,
and D occupy islands separated by valleys of decreased fitness;
the bloat mutations necessary for A to evolve into any of the
other genotypes are harmful since they increase the cost of self-
replication. In contrast, the shrink mutations required for A to
evolve into any of the other genotypes are beneficial. In flush
epochs, the situation is reversed–the bloat mutations are bene-
ficial and the shrink mutations are harmful since they increase
and decrease effective complexity respectively. Alternating be-
tween the two fitness functions creates paths between the A and
D genotypes consisting solely of beneficial mutations.

3.4 Crossover
The self-hosting compiler is a relatively complex lexically scoped
program. Variables which are defined in one scope will not nec-
essarily be defined in other scopes. If we employed the standard
method of non-homologous crossover used in most work on genetic
programming, then subtrees could be inserted into scopes where
one or more variables might not be defined, and this would break
the compiler. We address this problem by employing the homolo-
gous crossover method described by D’Haeseleer[4]. D’Haeseleer’s
crossover operator descends into both parent trees in parallel. Points
where the two parent trees differ are subject to crossover, with the
child receiving the subtree of either parent with equal probability.
D’Haeseleer also notes that his method of crossover facilitates con-
vergence (fixation) since children resulting from the crossover of
identical parents will be identical to both parents.

4. GENOTYPES
Function applications involving one and two arguments are com-
piled at two different points in the ϕ expression and each of these
points is a potential target for a pair of bloat and shrink mutations
which would partially implement tail call optimization. We call
the genotype of programs which perform neither optimization A,
one (or the other) optimization B (or C), and both optimizations,
D. Both optimizations check to see if the continuation is a return
bytecode, which performs a frame stack pop. If so, the push-pop
sequence is not generated, resulting in significant savings in time
and space usage. See Figure 6. Lower bounds for the complexity
and self-replication cost of each of the four genotypes are shown
in Table 1. Finally, the relative fitnesses of the four genotypes are
shown graphically, in the context of the fitness landscapes for the
flush and lean epochs, in Figure 7.

Otherwise impassable valleys in a fitness landscape can sometimes
be traversed if multiple mutations occur in a single individual. Even
when one or more mutations would be harmful separately, the com-
bination can still be beneficial. This is termed stochastic tunneling.



Table 1: Complexities and self-replication costs.
A B C D

non-trivial tests 8 9 9 10
returns 551 333 432 183

Because bloat mutations introduce dead code which does nothing
but must still be compiled, and because they are easily reversed
by shrink mutations, stochastic tunneling is the only way in which
the B and C genotypes can evolve if fitness is based solely on self-
replication efficiency. Assuming that mutation is a Poisson process,
we can derive an expression for the expected number of trials re-
quired for an individual with the D genotype to evolve

〈tD〉 =
∫

∞

0

∫
∞

0
max(tB, tC)

pBqB

epBqBtB

pCqC

epCqCtC
dtBdtC

=
1

pBqB
+

1
pCqC

− 1
pBqB + pCqC

where pX and qX are the probabilities of the bloat and shrink mu-
tations which characterize genotype X and tX is the trial in which
genotype X first evolves. Because the combination of mutations is
(in both cases) strongly beneficial, we assume that once the B (or C)
genotype evolves, the population quickly converges to individuals
of that genotype.

The median number of trials required for the D genotype to evolve
is the value t̃D where the joint cumulative distribution function for
tB and tC equals one half:

1− e−pBqB t̃D − e−pCqC t̃D + e−(pBqB+pCqC)t̃D = 1/2.

The mean and median generation in which an individual with the
D genotype first appears can be computed by dividing 〈tD〉 and t̃D
by population size.

In order to estimate pBqB and pCqC, the bloat and shrink operators
were applied to 106 individuals with genotype A. Approximately
59% of the resulting mutants were viable. Of the viable mutants, 15
possessed the B genotype and 15 possessed the C genotype, so that
pBqB ≈ pCqC ≈ 15× 10−6. Using these values in the expressions
for mean and median trial and assuming a population size of 200
yields estimates of the expected (and median) number of genera-
tions for the D genotype to evolve by stochastic tunneling of 667
generations (expected) and 462 generations (median).

5. EXPERIMENTAL RESULTS
The initial population consisted of two hundred identical individu-
als of genotype A at the beginning of a flush epoch (in which fitness
is equated with effective complexity). In the first step of the genetic
algorithm, the bloat and shrink operators are applied to all individ-
uals in the population and the mutants which result are tested for
viability. To test for viability, the mutant is evaluated to produce a
daughter, and the daughter is evaluated to produce a granddaughter.
The mutant is classified as viable if the daughter and granddaugh-
ter contain the same number (greater than zero) of bytecodes (this
is done in lieu of a much more expensive test of actual structural
equivalence). Viable mutants replace their progenitors in the popu-
lation.

The population is then subjected to crossover using tournament se-
lection. In each tournament, four individuals are chosen at ran-
dom (with replacement). The winners of two tournaments are then
combined using crossover, and the resulting individual is tested for
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Figure 8: The median number (in a population of size 200)
of non-trivial test bytecodes averaged over 20 runs (error bars
show plus or minus one standard deviation).

viability. The crossover operation is repeated until it yields two
hundred viable individuals which comprise the population of the
next generation.

The above process is repeated for nine more generations, then the
epoch is switched to lean (in which fitness is equated with self-
replication efficiency). The genetic algorithm is run for a total of
100 generations (five flush epochs interrupted by five lean epochs).

In an initial experiment, the system was run twenty times. The
median number of interesting test bytecodes contained in the com-
piled ϕ expression and the median number of return bytecodes ex-
ecuted during self-replication were then plotted as a function of
generation; see Figures 8 and 9. As expected, both complexity and
self-replication cost increase in flush epochs and decrease in lean
epochs. We observe that after 40 generations (two flush-lean cy-
cles), the median complexity at the end of flush epochs is nearly
double its initial value, which means that the majority of individu-
als contain 7 or more predicates which compile to non-trivial test
bytecodes not present in the initial population. Furthermore, the
median complexity at the end of lean epochs is always 10 or more,
which suggests that either 1) the shrink operator is not fully able to
reverse the effects of the bloat operator so that one or more bloat
mutations (on average) survive through lean epochs; or 2) one (or
both) of the B and C alleles is fixed in the population. Examina-
tion of Figure 9 shows that after 40 generations, the median self-
replication cost at the end of lean epochs is slightly more than half
of its initial value. This is consistent with evolution of one or both
of the B and C genotypes. Self-replication cost continues to in-
crease and decrease (depending on epoch) eventually reaching a
point where the median value at the end of the fifth lean epoch is
nearly three times smaller than the initial value. This is consistent
with the evolution of the D genotype.

After running the system 100 times, the probabilities of the B, C,
and D genotypes evolving and for the mutations becoming fixed
in the population were estimated. See Table 2. Notably, the most
complex and most efficient genotype, D, evolved within 100 gen-
erations 81 times. Additionally, the average and median number of
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Figure 9: The median number (in a population of size 200)
of return bytecodes executed during self-replication averaged
over 20 runs (error bars show plus or minus one standard de-
viation).

generations required for each genotype to evolve and for the mu-
tations to become fixed were also estimated. Considering only the
81 runs in which the D genotype evolved, the average number of
generations required was approximately 36 and the median num-
ber was 29. This is over 15 times faster than if fitness were based
on efficiency alone, which clearly demonstrates the utility of the
alternating fitness function.

Table 2: Generation of initial evolution and fixation.
B C D B′ C′ D′

probability 0.90 0.91 0.81 0.89 0.78 0.70
mean 21.8 24.5 35.8 29.9 34.3 43.3

std. dev. 21.0 22.0 24.5 21.1 22.2 24.5
median 11 13 29 17 33 36

If we know the average numbers of individuals of a given genotype
in each generation, then we can compute cumulative distribution
functions (c.d.f.)’s for evolution and fixation of that genotype; see
Figure 10. If we examine the c.d.f.’s, which look like step functions,
we see several interesting things.

First, the c.d.f.’s for evolution of genotypes have zero slope during
lean epochs, which suggests that new genotypes typically appear
during flush epochs, when fitness is equated with effective com-
plexity. Conversely, the c.d.f.’s for genotype fixation have zero
slope during flush epochs, which leads us to conclude that fixa-
tion of genotypes typically occurs during lean epochs, when fitness
is equated with efficiency. This is consistent with an increase in
diversity during flush epochs and a decrease during lean epochs.

Second, there is always a lag between the generations of evolution
and fixation, and the size of the lag depends on the improvement in
self-replication efficiency–the greater the improvement, the shorter
the lag. The C allele (which confers an advantage of 119 returns
relative to the A allele) requires more time for fixation than the B
allele (which confers an advantage of 218 returns).
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Figure 10: Cumulative distribution functions representing the
probabilities that genotypes B, C, and D have evolved and are
fixed by the given generation.

Table 3: Probabilities of pathways to D genotype.
tB < tC = tD tC < tB = tD tB < tC < tD tC < tB < tD

0.33 0.31 0.26 0.09

If we know the generation in which each genotype evolved, it is
possible to estimate probabilities for each of the pathways leading
from the (least complex and least efficient) A genotype to the (most
complex and most efficient) D genotype; see Table 3. This analy-
sis shows that in 64% of the runs in which D evolved, one of the
B or C alleles evolved and was fixed prior to the evolution of the
other; the D genotype then evolved by mutation from an ancestral
program of the B or C genotype. However, in 35% of the runs in
which D evolved, something (arguably) more interesting happened.
Namely, the B and C alleles evolved in distinct lineages before ei-
ther was fixed. The D genotype then evolved when an individual
with the B allele and an individual with the C allele were com-
bined by crossover. Stated differently, in 35% of the runs where D
evolved, beneficial traits which evolved separately were combined
by crossover to produce a child program more complex and more
efficient than either parent program.

6. FUTURE WORK
This paper describes work that, although preliminary, opens many
avenues for further exploration, including

• Determining whether or not a self-replicating program which
reproduces by compiling itself can evolve the optimum or-
der for the tests comprising the decision tree which performs
syntactic analysis; this would require a new mutation opera-
tor which could reorder nested-if expressions.

• Determining whether or not it is possible to evolve dead code
elimination, which would be a useful optimization in a sys-
tem which includes mutation operators (like bloat) which (in
effect) introduce dead code; to accomplish this, the bloat op-
erator would have to generate a much larger set of φ expres-
sions, including dereferencing source code with car and cdr
combinations.



• In the present system, de Bruijn indices are used mainly to
simplify the compilation process by eliminating the need for
static analysis; however, it is difficult to see how new lexi-
cal scopes could evolve (via a new mutation operator which
introduces lambda expressions) unless bound variables are
represented by symbols, and this would mean that the self-
hosting compiler must be generalized so that it performs static
analysis.

• Demonstration of auto-constructive evolution as described
by Spector and Robinson[15], in which artificial organisms
possess not only their own means of self-replication, but also
of producing variation; this would require coding all muta-
tion operators in Skeme and including this code in the sub-
tree of the self-hosting compiler which copies quoted expres-
sions.

• Reification of the compiling quine as a self-replicating dis-
tributed virtual machine and demonstration of evolution of
increased complexity and self-replication efficiency.

7. CONCLUSION
We introduced a new type of self-replicating program which (unlike
previous self-replicating programs) includes distinct phenotype and
genotype components. Although the program is encoded in ma-
chine language, and (for this reason) can be executed on a CPU, it
reproduces by compiling itself from its own source code, which is
written in a more expressive high-level language. Because compil-
ing is an intrinsically more complex process than copying, there is
a much larger space of implementations to be explored by an evo-
lutionary process; because its genotype is encoded in a high-level
language, the space of neighboring self-replicating programs can
be more efficiently probed.

To address the problem of how a complicated lexically scoped pro-
gram like a compiler can evolve into a more complex and efficient
program without breaking, we designed, implemented and tested
a novel genetic programming system, which uses a pair of muta-
tion operators analogous to gene duplication and specialization, to-
gether with homologous crossover and an alternating fitness func-
tion which selects for complexity or efficiency depending on epoch.
Using this system, we experimentally demonstrated the evolution
of several self-replicating programs of increased complexity and
efficiency from a less complex and less efficient ancestor. We were
able to show that in a population of 200 individuals, the most com-
plex and efficient self-replicating program evolved within 100 gen-
erations in over three quarters of all trials, and by crossover of less
complex and less efficient parent programs a significant fraction of
the time.
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