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CO2 from preindustrial levels will result in a
30% decrease in carbonate ion concentration
and a 60% increase in hydrogen ion concen-
tration. As the carbonate ion concentration
decreases, the Revelle factor increases and
the ocean’s ability to absorb more CO2 from
the atmosphere is diminished. The impact of
this acidification can already be observed
today and could have ramifications for the
biological feedbacks in the future (26). If
indeed the net feedbacks are primarily posi-
tive, the required socioeconomic strategies to
stabilize CO2 in the future will be much more
stringent than in the absence of such feed-
backs. Future studies of the carbon system in
the oceans should be designed to identify and
quantitatively assess these feedback mecha-
nisms to provide input to models that will
determine the ocean’s future role as a sink for
anthropogenic CO2.
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Evolution of Influenza Virus
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The antigenic evolution of influenza A (H3N2) virus was quantified and visualized
from its introduction into humans in 1968 to 2003. Although therewas remarkable
correspondence between antigenic and genetic evolution, significant differences
were observed: Antigenic evolution was more punctuated than genetic evolution,
and genetic change sometimes had a disproportionately large antigenic effect. The
method readily allows monitoring of antigenic differences among vaccine and
circulating strains and thus estimation of the effects of vaccination. Further, this
approach offers a route to predicting the relative success of emerging strains,which
could be achieved by quantifying the combined effects of population level immune
escape and viral fitness on strain evolution.

Much of the burden of infectious disease
today is caused by antigenically variable
pathogens that can escape from immunity
induced by prior infection or vaccination.
The degree to which immunity induced by
one strain is effective against another is most-
ly dependent on the antigenic difference be-
tween the strains; thus, the analysis of anti-
genic differences is critical for surveillance
and vaccine strain selection. These differenc-
es are measured in the laboratory in various
binding assays (1–3). Such assays give an
approximation of antigenic differences, but
are generally considered unsuitable for quan-
titative analyses. We present a method, based

on the fundamental ideas described by Lape-
des and Farber (4), that enables a reliable
quantitative interpretation of binding assay
data, increases the resolution at which anti-
genic differences can be determined, and fa-
cilitates visualization and interpretation of
antigenic data. We used this method to study
quantitatively the antigenic evolution of in-
fluenza A (H3N2) virus, revealing both sim-
ilarities to, and important differences from,
its genetic evolution.

Influenza viruses are classic examples of
antigenically variable pathogens and have a
seemingly endless capacity to evade the im-
mune response. Influenza epidemics in hu-
mans cause an estimated 500,000 deaths
worldwide per year (5). Antibodies against
the viral surface glycoprotein hemagglutinin
(HA) provide protective immunity to influen-
za virus infection, and this protein is therefore
the primary component of influenza vaccines.
However, the antigenic structure of HA has
changed significantly over time, a process
known as antigenic drift (6 ), and in most
years, the influenza vaccine has to be up-
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dated to ensure sufficient efficacy against
newly emerging variants (7, 8). The World
Health Organization coordinates a global
influenza surveillance network, currently
consisting of 112 national influenza centers
and four collaborating centers for reference
and research. This network routinely char-
acterizes the antigenic properties of influ-
enza viruses using a hemagglutination in-
hibition (HI) assay (1). The HI assay is a
binding assay based on the ability of influ-
enza viruses to agglutinate red blood cells
and the ability of animal antisera raised
against the same or related strains to block
this agglutination (9). Additional surveil-
lance information is provided by sequenc-
ing the immunogenic HA1 domain of the
HA gene for a subset of these strains. The
combined antigenic, epidemiological, and
genetic data are used to select strains for
use in the vaccine.

Retrospective quantitative analyses of the
genetic data have revealed important insights
into the evolution of influenza viruses (10–
13). However, the antigenic data are largely
unexplored quantitatively because of difficul-
ties in interpretation, even though antigenic-
ity is a primary criterion for vaccine strain
selection and is thought to be the main driv-
ing force of influenza virus evolution. When
antigenic data have been analyzed quantita-
tively, it has usually been with the methods
of, or methods equivalent to, numerical tax-
onomy (14–16). These methods have pro-
vided insights (15–19); however, they
sometimes give inconsistent results, do not
properly interpret data that are below the
sensitivity threshold of the assay, and approx-
imate antigenic distances between strains in
an indirect way [discussed by (4, 16, 18)].
Lapedes and Farber (4) solved these prob-
lems with a geometric interpretation of bind-
ing assay data, in which each antigen and
antiserum is assigned a point in an “antigenic
map” [based on the theoretical concept of
“shape space” (20–23)], such that the dis-
tance between an antigen and antiserum in
the map directly corresponds to the HI mea-
surement. Lapedes and Farber used ordinal
multidimensional scaling (MDS) (24) to po-
sition the antigens and antisera in the map.

The method used in this manuscript is
based on the fundamental ideas described
by Lapedes and Farber (4 ) and, in particu-
lar, takes advantage of their observation
that antigenic distance is linearly related to
the logarithm of the HI measurement. Ex-
ploiting this observation allowed us to cre-
ate a new method that is parametric yet still
handles HI measurements that are beyond
the sensitivity of the HI assay (9). We use
a modification of metric MDS (25 ) to po-
sition the antigens and antisera in the map
(9). This new approach offers computation-
al advantages over the ordinal approach,

including reduced running time and fewer
local minima, making it tractable to run on
datasets the size of the one used in this
manuscript, and on larger datasets.

Antigenic map of human influenza A
(H3N2) virus. We applied this method to
mapping the antigenic evolution of human
influenza A (H3N2) viruses, which became
widespread in humans during the 1968 Hong
Kong influenza pandemic and have been a
major cause of influenza epidemics ever
since. Antigenic data from 35 years of influ-
enza surveillance between 1968 and 2003
were combined into a single dataset. We se-
quenced the HA1 domain of a subset of these
virus isolates (26, 27) and restricted the an-
tigenic analysis to these sequenced isolates to
facilitate a direct comparison of antigenic and
genetic evolution. The resulting antigenic
dataset consisted of a table of 79 postinfec-
tion ferret antisera by 273 viral isolates, with
4215 individual HI measurements as entries
in the table. Ninety-four of the isolates were
from epidemics in the Netherlands, and 179
were from elsewhere in the world.

We constructed an antigenic map from
this dataset to determine the antigenic evolu-
tion of influenza A (H3N2) virus from 1968
to 2003 (Fig. 1). Because antigen-antiserum
distances in the map correspond to HI values,
it was possible to predict HI values that were
missing in the original dataset and subse-
quently to measure those values using the HI
assay, so as to determine the resolution of the
map. We predicted and then measured 481
such HI values with an average absolute pre-
diction error of 0.83 (SD 0.67) units (each
unit of antigenic distance corresponds to a
twofold dilution of antiserum in the HI assay)
and a correlation between predicted and mea-
sured values of 0.80 (p �� 0.01). The accu-
racy of these predictions indicates that the
map has resolution higher than that previous-
ly considered available from HI data and
higher than the resolution of the assay. The
resolution of the map can be greater than the
resolution of the assay because the location of
a point in the map is fixed by measurements
to multiple other points, thereby averaging
out errors (9).

The map reveals high-level features of the
antigenic evolution of influenza A (H3N2)
virus. The strains tend to group in clusters
rather than to form a continuous antigenic
lineage, and the order of clusters in the map is
mostly chronological; from the original Hong
Kong 1968 (HK68) cluster, to the most recent
Fujian 2002 (FU02) cluster. The antigenic
distance from the HK68 cluster, through con-
secutive cluster centers, to the FU02 cluster is
44.6 units, and the average antigenic distance
between the centers of consecutive clusters is
4.5 (SD 1.3) units. The influenza vaccine is
updated between influenza seasons when
there is an antigenic difference of at least 2

units between the vaccine strain and the
strains expected to circulate in the next sea-
son; thus, not unexpectedly, we find at least
one vaccine strain in each cluster.

The ability to define antigenic clusters
allows us to identify the amino acid substitu-
tions that characterize the difference between
clusters (Table 1, fig. S1). Some of these
“cluster-difference” substitutions (9) will
contribute to the antigenic difference between
clusters, some may be compensatory muta-

Fig. 1. Antigenic map of influenza A (H3N2)
virus from 1968 to 2003. The relative positions
of strains (colored shapes) and antisera (uncol-
ored open shapes) were adjusted such that the
distances between strains and antisera in the
map represent the corresponding HI measure-
ments with the least error (9). The periphery of
each shape denotes a 0.5-unit increase in the
total error; thus, size and shape represent a
confidence area in the placement of the strain
or antiserum. Strain color represents the anti-
genic cluster to which the strain belongs. Clus-
ters were identified by a k-means clustering
algorithm (9) and named after the first vaccine-
strain in the cluster—two letters refer to the
location of isolation (Hong Kong, England, Vic-
toria, Texas, Bangkok, Sichuan, Beijing, Wuhan,
Sydney, and Fujian) and two digits refer to year
of isolation. The vertical and horizontal axes
both represent antigenic distance, and, because
only the relative positions of antigens and an-
tisera can be determined, the orientation of the
map within these axes is free. The spacing
between grid lines is 1 unit of antigenic dis-
tance—corresponding to a twofold dilution of
antiserum in the HI assay. Two units corre-
spond to fourfold dilution, three units to eight-
fold dilution, and so on.
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tions to retain function, and others may be
hitchhikers carried along by chance. Of the
67 cluster-difference amino acid substitu-
tions, 63 were in antigenic sites (28), 8 were
in the receptor-binding site (29), and 21 were
in codons previously identified as positively
selected in an independent genetic dataset
covering 1985 to 1997 (10). We see two
patterns with respect to these positively se-
lected codons: For the cluster transitions that
happened during the period from 1985 to
1997—the period of the sample used to cal-
culate the positively selected codons—most
(10 of 12) of the cluster-difference substitu-
tions were in positively selected codons;
whereas outside of this timeframe, most [44
of 55, or 16 of 20 if the underrepresented
Texas 1977 (TX77) and FU02 clusters are
excluded] were not in positively selected
codons. A possible explanation for this differ-
ence is that cluster-difference substitutions are
positively selected, but that the positively se-
lected codons have changed over time, resulting
in some pre-1985 positively selected codons
not being previously identified, possibly be-
cause they were underrepresented in the dataset

used by Bush et al. (10). Other possible expla-
nations are that not all cluster-difference substi-
tutions are positively selected or that they can-
not be detected as such with methods that use
only genetic information.

Comparison of antigenic and genetic
evolution. To further investigate the genetic
basis of the antigenic cluster structure, we
generated a maximum likelihood (ML) phy-
logenetic tree and a “genetic map” of the
HA1 sequences of strains used in the antigen-
ic analysis and color-coded both according to
the clusters identified in the antigenic map of
Fig. 1 (Fig. 2). The genetic map facilitates a
side-by-side comparison with the antigenic
map and is a visualization of the amino acid
distance matrix calculated from the alignment
of HA1 sequences (9). Previous comparisons
of the antigenic and genetic evolution have
revealed important insights (6, 19, 30, 31);
however, a quantitative comparison has not
been possible until now because of the pre-
viously low resolution of the antigenic data.

We find a remarkable overall correspon-
dence between the relative positions of clus-
ters in the genetic and antigenic maps (Fig. 2,

B and C, respectively). The correlation be-
tween antigenic distance and the number of
amino acid substitutions between strains was
0.81, and on average, 2.9 amino acid substi-
tutions resulted in one unit change in antigen-
ic distance. The rate of antigenic evolution
per amino acid substitution was slower within
clusters [on average 3.1 (SD 0.06) amino acid
substitutions for each unit of antigenic
change] than between clusters [on average
2.1 (SD 0.17) amino acid substitutions for
each unit of antigenic change].

There is also a correspondence between the
phylogenetic tree and antigenic map, with
closely related nucleotide sequences generally
belonging to the same antigenic cluster (Fig. 2,
A and C). The correlation between antigenic
distance and ML phylogenetic tree distance
between strains was 0.78, and on average, an
ML distance of 0.0085 corresponded to a 1-unit
change in antigenic distance.

Although antigenic clusters are mostly con-
tiguous when shown on the phylogenetic tree
and genetic map (Fig. 2, A and B), it is not
possible to reliably determine antigenic clusters
from these genetic data alone. From the tree, it

Table 1. Cluster-difference amino acid substitutions, and distances between
antigenic clusters. Cluster-difference amino acid substitutions defined in (9),
antibody binding sites defined by (28). Substitution *at a codon in the
receptor binding site (29); †at a codon with a rapid rate of amino acid
replacement but not positively selected (11); and ‡at a positively selected
codon (10). The TX77 and FU02 clusters are represented by fewer strains than
other clusters; thus, the number of cluster-difference substitutions into

and out of these clusters might decrease with more strains in these clusters.
Cluster transitions follow the chronological order of cluster dominance, which
is occasionally different from the genetic lineage. Antigenic and genetic
distances are between cluster centroids in the antigenic map (Fig. 1) and
genetic map (Fig. 2B), respectively. The average standard error (SE) for the
genetic distances between clusters was 0.9, for the antigenic distances
between clusters was 0.3, and for the ratio was 0.3 (table S1).

Cluster
transition

Genetic
distance

(aa changes)

Antigenic
distance
(units)

Genetic
antigenic

ratio

Cluster-difference substitutions

Site A Site B Site C Site D Site E Other

HK68-EN72 12.1 3.4 3.6 T122N T155Y* R207K
G144D N188D

EN72-VI75 14.6 4.4 3.3 N137S*† L164Q N53D F174S
S145N‡ Q189K I278S R102K‡

S193D‡ I213V
I217V
I230V

V175-TX77 14.8 3.4 4.4 S137Y*† G158E‡ K50R† S174F E82K
Q164L D53N K201R‡ M260I
D193N‡ V213I

V230I
TX77-BA79 16.0 3.3 4.8 N133S‡ K156E‡ N53D D172G† 162K

P143S T160K N54S V217I K82E
G146S Q197R‡ V244L

BA79-SI87 11.9 4.9 2.4 G124D‡ Y155H*
K189R

SI87-BE89 6.9 4.6 1.5 N145K‡
BE89-BE92 13.7 7.8 1.8 S133D‡ E156K‡ T262N‡

K145N‡ E190D*‡
BE92-WU95 9.9 4.6 2.2 N145K‡
WU95-SY97 16.0 4.7 3.4 K156Q‡ N276K† K62E

E158K‡
V196A†

SY97-FU02 16.0 3.5 4.5 A131T H155T* R50G† H75Q L25I
Q156H‡ E83K V202I

W222R
G225D*

Total 131.9 44.6
Average 13.2 4.5 3.2
SD 2.9 1.3 1.1
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is rarely obvious if a branch or lineage belongs
to the same or a different antigenic cluster as its
neighbors, and from the genetic map, it is not
always possible to determine where one anti-
genic cluster ends and another begins. The most
striking example is the distance between the
Sichuan 1987 (SI87) and Beijing 1989 (BE89)
clusters, which are genetically closely related
but antigenically distinct. The difficulties with an
antigenic interpretation of genetic data include the
variation in the antigenic effect of amino acid
substitutions because of the particular amino acid
substitution, the location of the substitution, or the
interaction of multiple substitutions.

Surprisingly, a single amino acid substi-
tution, N145K (32), is the only cluster-differ-
ence substitution between the SI87 and BE89
and between the Beijing 1992 (BE92) and
Wuhan 1995 (WU95) clusters. This is sur-
prising because other cluster transitions are
characterized by multiple cluster-difference
substitutions and because, on average, a sin-
gle amino acid substitution causes only 0.37
units of antigenic change. Three pieces of
evidence, however, indicate that N145K has a
large antigenic effect and, thus, alone can be
responsible for a cluster transition. First,
there are 12 pairs of strains in the dataset that
only differ by N145K, and the average anti-
genic distance between these pairs in the
antigenic map is 4.0 units (SD 1.1). In con-
trast, other amino acid substitutions at the
same position (I145S, N145S), and the same
substitution at a different position (N92K),
each resulted in less than 1 unit of antigenic

change. Second, we took a strain from the
BE92 cluster and performed experimental
site-directed mutagenesis of position 145
from N to K, and this resulted in 2.6 units of
antigenic difference. Third, there were nine
strains in the genetic map for which the ge-
netic cluster did not correspond with the an-
tigenic cluster, and N145K was responsible
for the difference. These nine strains were
interdigitated between the BE92 and WU95
clusters: Five strains from the BE92 antigenic
cluster were genetically WU95-like but
lacked the N145K substitution [seen as pink
triangles in the green WU95 genetic cluster
(Fig. 3)], and vice versa, four strains from the
WU95 antigenic cluster were genetically
BE92-like but had the N145K substitution
[shown as green circles in the pink BE92
genetic cluster (Fig. 3)]. To exclude the pos-
sibility of laboratory errors, we resequenced
and regenerated the HI data for seven of these
interdigitated strains and obtained the same
results. These three pieces of evidence indi-
cate that a single amino acid substitution, in
this case N145K, can cause sufficient anti-
genic change to be responsible for a cluster
transition. Thus, although there is a remark-
able correspondence between the genetic and
antigenic evolution, there are exceptions that
have epidemiological significance of suffi-
cient magnitude that they require an update of
the vaccine strain.

Gradual genetic evolution, but punctu-
ated antigenic evolution. A season-by-sea-
son analysis of the clusters in the antigenic

map shows that in some seasons strains were
isolated from more than one antigenic cluster
(Fig. 4A). On average, clusters remained
dominant for 3.3 years (SD 1.9), with two
clusters being dominant for only one season
and one for eight seasons. In this dataset, we
see strains appear in a cluster up to 2 years
before, and 2 years after, the period in which
that cluster is the dominant cluster.

The corresponding season-by-season
analysis of ML tree distances (Fig. 4B) shows
that the rate of genetic change is relatively
continuous compared with the rate of anti-
genic change (Fig. 4A), which is more punc-
tuated. Because this relatively continuous
rate of change may in part be due to silent
nucleotide substitutions, we repeated the
analysis using the number of amino acid
substitutions between strains instead of the
ML tree distance (Fig. 4C) and found gaps
between some clusters, but still a gradual
accumulation of mutations, which is not re-
flected in the corresponding antigenic figure.
This finding suggests that some of these
amino acid substitutions have little antigenic
effect or an effect spreading the cluster side-
ways in relation to the distance from
A/Bilthoven/16190/68 antigen.

The average rates of evolution are given
by the slope of the best linear fit to the data in
Fig. 4, A, B, and C. The average rate of
antigenic drift calculated this way was 1.2
units per year, the average rate of amino acid
substitutions was 3.6 per year, and the aver-
age rate of change in ML distance was 0.0060
per year. Sometimes the rate of antigenic
evolution was faster than genetic evolution
and sometimes vice versa, as shown by the
deviations from the linear regression line in

Fig. 3. Detail of the genetic map (Fig. 2B)
showing the BE92 and WU95 clusters and how
a single amino acid substitution can determine
the antigenic cluster. Pink and green symbols
represent strains from the BE92 and WU95
antigenic clusters, respectively. Ovals are
drawn around the BE92 (circles) and WU95
(triangles) genetic clusters. Green symbols have
a lysine (K) at position 145, whereas pink sym-
bols have an asparagine (N) at 145. This single
N145K substitution can cause an antigenic
cluster change and warrant an update of the
vaccine. Two pink triangles are coincident thus
only four of the five can be seen. Grid and axes
are the same as for Fig. 2B.

Fig. 2. Comparison of antigenic and genetic evolution of influenza A virus. (A) Phylogenetic tree of
the HA1 nucleotide sequences, color-coded based on antigenic clusters of Fig. 1. Multiple trees
were built using a reversible site-dependent nucleotide ML method (37). There was good consensus
among trees, and the tree with ML is shown. (B) Genetic map of the HA1 amino acid sequences,
color-coded according to the antigenic clusters of Fig. 1. The vertical and horizontal axes represent
genetic distance, in this case the number of amino acid substitutions between strains; the spacing
between grid lines is 2.5–amino acid substitutions. The orientation of the map was chosen to match
the orientation of the antigenic map in Fig. 1. (C) The same antigenic map of influenza A virus
strains as shown in Fig. 1, except for a rigid-body rotation and translation of the pre-TX77 clusters
(fig. S2) to match the genetic map and except that virus strains are represented by colored circles
and antisera by open squares. Arrows indicate the two cluster transitions for which the amino acid
substitution N145K is the only cluster-difference substitution ( Table 1, fig. S1).

R E S E A R C H A R T I C L E S

16 JULY 2004 VOL 305 SCIENCE www.sciencemag.org374

 o
n 

Ja
nu

ar
y 

15
, 2

01
3

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/


Fig. 4D, again, this indicates a remarkable
correspondence, with significant exceptions.

The observed pattern of clustered antigen-
ic drift with similar antigenic distances be-
tween consecutive cluster centroids is similar
to that observed by Gog and Grenfell in a
theoretical model in which strain dynamics
were governed by a combination of epidemi-
ology and cross-reactive immunity based on
antigenic distance (33). This similarity is
phenotypic evidence that escape from immu-
nity in the human population plays a major
role in determining influenza strain dynam-
ics. Furthermore, there is a selective advan-
tage for clusters that move away linearly
from previous clusters as they most effective-
ly escape existing population-level immunity,
and this is a plausible explanation for the
somewhat linear antigenic evolution in re-
gions of the antigenic map (Fig. 1). The
observed deviations from a linear path, as
well as the rate of the antigenic evolution,
might be determined by tradeoffs between
intrinsic viral fitness and extrinsic fitness de-
termined by population-level immunity, pos-
sibly in concert with stochastic seeding pro-
cesses (34), short-lived broad immunity (13),
and the phylodynamics of the virus (35).

Genetic analyses of Darwinian selection on
influenza HA have focused on the gene level,
with more recent refinements to the codon level
(10). The quantification of antigenic data de-

scribed here, which allows the estimation of the
antigenic effect of individual amino acid sub-
stitutions, provides the opportunity for analyses
which integrate selection at the phenotypic lev-
el with genetic change at the level of individual
amino acid substitutions.

In summary, we have presented a quanti-
fication and visualization of the antigenic
evolution of influenza A (H3N2) virus from
1968 to 2003 and have tested the accuracy of
the method using blind prediction. We show
that antigenic evolution is clustered and
mostly two-dimensional and reveal a higher
rate of antigenic evolution between clusters
than within clusters, a remarkable correspon-
dence between antigenic and genetic evolu-
tion, but with important exceptions of epide-
miological significance, and punctuated
antigenic evolution compared with more con-
tinuous genetic evolution. The data used for
this study were collected as part of routine
influenza surveillance, and although there are
significant biases in such data, these biases
do not have a significant effect on the results
(9). This is the most detailed characterization
of a real antigenic shape space to date.

From a public health perspective, these
methods increase the value of surveillance
data and facilitate vaccine strain selection by
allowing a finer-grain interpretation of anti-
genic data, a way to interpret complex data in
a simple visual format, and a further integra-

tion of antigenic and genetic data. In addition,
antigenic maps, in conjunction with strain
prevalence data, could be used to quantify the
extent to which emerging strains escape im-
munity in the human population. This would
allow the immune-escape component of viral
fitness to be compared among multiple cocir-
culating strains and, if immune-escape is a
dominant aspect of total fitness, to be a pre-
dictor of which strains would be more likely
to seed a new epidemic. It might also be
possible to increase the efficacy of repeated
vaccination by accounting quantitatively for
the antigenic distances among vaccine and
circulating strains (23).

We have used human influenza A (H3N2)
virus to develop and validate analyses of
antigenic properties from binding assay data.
We have applied the same methods to the
characterization of human H1N1, swine
H3N2, and equine H3N8 influenza A viruses,
as well as human influenza B virus. There are
no assumptions that limit the use of these
methods to influenza virus and the HI assay,
and we have also applied the methods to the
recognition of epitopes by cytotoxic T lym-
phocytes. We expect these methods will ap-
ply to other binding assays such as virus
neutralization, complement fixation, and
ELISA (36) and that they will be useful for a
wide variety of antigenically variable patho-
gens including human immunodeficiency vi-
rus and hepatitis C virus. In general, these
methods facilitate the analyses of phenotypes
similarly to the way phylogenetic algorithms
facilitate analyses of genotypes. Such quan-
titative analyses have potentially wide-
ranging implications for strain surveillance
and vaccine strain selection, and for applied
and basic research involving antigenically
variable pathogens.
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Phase-Resolved Spectroscopy of
Geminga Shows Rotating Hot

Spot(s)
P. A. Caraveo,1* A. De Luca,1 S. Mereghetti,1 A. Pellizzoni,1

G. F. Bignami2,3,1

Isolated neutron stars are seen in x-rays through their nonthermal and/or surface
thermal emissions. X-ray Multimirror Mission–Newton observations of the Gem-
inga pulsar show a 43–electron volt spectrum from thewhole neutron star surface,
as well as a power-law component above 2 kiloelectron volts. In addition, we have
detected a hot (170 electron volts) thermal emission from an �60-meter-radius
spot on the pulsar’s surface. Such a thermal emission, only visible at selected phase
intervals, may be coming from polar hot spot(s), long thought to exist as a result
of heating from magnetospheric accelerated particles. It may provide the missing
link between the x-ray and gamma-ray emission of the pulsar.

Photons emitted by pulsars carry the signature of
their production mechanisms as well as of the
geometry of their emitting regions. Although neu-
tron star physics is reflected in their photon spec-
tra, geometrical constraints, such as viewing an-
gles of rotational and magnetic axes, shape their
observed light curves. Phase modulation takes
place as different emitting regions are brought into
view during the star rotation. Geometry can also
influence source spectral shapes because of differ-
ent emission mechanisms in different regions.

In spite of the potential interest of phase-
resolved spectroscopy, the paucity of detected
x-ray photons has made it impossible to apply
this method to isolated neutron stars (INS), with
the exception of the Crab pulsar (1). The Euro-
pean Photon Imaging Camera (EPIC) on
XMM-Newton and Chandra can now provide
an adequate harvest of time-tagged photons.
However, phase-resolved spectroscopy is not
yet commonly used. So far, it has been applied
only to the Crab pulsar with Chandra (2) and to
1E1207-5209 with EPIC (3, 4). Although inter-
esting, these sources represent specific and
somewhat extreme cases among x-ray–emit-
ting neutron stars. The Geminga pulsar, on the
other hand, is often considered as archetypal (5)
for middle-aged (350,000 years old) neutron
stars, which emit x-rays mostly, but not solely,
owing to their surface thermal emission. INS
surface temperatures frequently yield radiation

in the x-ray domain (6), but keV photons can
also be produced by energetic electrons in their
strong magnetic fields. Geminga has the interest-
ing characteristic of showing both thermal (7) and
nonthermal processes to be at work in the sub-
keV to several keV range (8, 9). With a photon
number more than doubling all previous statistics,
and with a wider (0.15 to 8 keV) spectral range,
EPIC now offers the chance of a meaningful
phase-resolved spectroscopy for Geminga.

XMM-Newton performed a 100-ksec ex-
posure on 4 April 2002 with its three EPIC
cameras. The two metal-oxide semiconductor
(MOS) cameras (10) operated in “full frame”
mode, while the positive-negative (pn) cam-
era (11) operated in “small window” mode,
ideal for accurate timing of source photons.
After removing intervals with high particle
background and correcting for dead time, we
obtain a net exposure of 55.0 ksec for the pn
camera and of 76.9 and 77.4 ksec for MOS1
and MOS2, respectively. The EPIC observa-
tion yielded a total of 76,850 photons in the
energy range 0.15 � E � 8 keV, the majority
of which (52,850 photons) are due to the pn
detector. The MOS images have unveiled two
tails of diffuse emission that are trailing
Geminga and are well aligned with the source
proper motion (12). Here, we present the
analysis of the pn data, which were processed
with the XMM-Newton Science Analysis
Software (SAS version 5.4.1).

First, we have fitted the time-averaged, total
source data (Fig. 1), using a combination of a
black body and a power law. In view of the
unsatisfactory result, we added a third compo-
nent, both in the form of a black body and of a
power law. The resulting �2 improved signifi-
cantly, which suggests that Geminga’s spec-
trum indeed requires a three-component model.
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