
Logistics

• Grades	for	the	midterm	and	the	
course	average	have	been	
posted	on	learn.unm.edu.

• Reviews	are	due	today	at	6:00pm
• Project	3	will	be	posted	this	
afternoon.

• Self	organise	groups	of	2	for	
Project	3.

• Project	4	will	likely	be	individual.

• Transitioning	to	Modelling	and	
Game	Theory	this	week.







Core	Wars	Class	Competition











Semifinal:	Team	7	vs	Team	14	A



Semifinal:	Team	5	vs	Team	14	B



Serena	(16)	and	Venus	Williams	(17),	Australian	Open	1st and	2nd place.

Warriors	14	A	and	B	
move	to	the	final!



+20	pts

+15	pts

+10	pts

+5	pts

Bonus



Final:	Warrior	14A	vs	14B	(+35	bonus	points)



Bonus	Round:	Free	for	All



+10	pts



Cellular	Automata

Wolfram,	S.,	A	New	Kind	of	Science



Cellular	Automata



Cellular	Automata



Wolfram’s Rule Numbering System.

We keep the order of input combinations fixed.

Our numbering is just the decimal for the output bits:

111
110
101
100
011
010
001
000

Cellular	Automata



Wolfram’s Rule Numbering System.

We keep the order of input combinations fixed.

Our numbering is just the decimal for the output bits:

111
110
101
100
011
010
001
000

!

?
?
?
?
?
?
?
?

Cellular	Automata



Wolfram’s Rule Numbering System.

We keep the order of input combinations fixed.

Our numbering is just the decimal for the output bits:

111
110
101
100
011
010
001
000

!

1
1
1
1
1
1
1
0

= 11111110 = 254

Cellular	Automata



Wolfram’s Rule Numbering System.

We keep the order of input combinations fixed.

Our numbering is just the decimal for the output bits:

111
110
101
100
011
010
001
000

!

0
0
0
1
1
1
1
0

= 00011110 = 30

Cellular	Automata



Wolfram’s Rule Numbering System.

We keep the order of input combinations fixed.

Our numbering is just the decimal for the output bits:

111
110
101
100
011
010
001
000

!

0
0
0
1
1
1
1
0

= 00011110 = 30

Cellular	Automata



Number	of	Elementary	CAs

• We	have	seen	that	there	are	256	unique	rules.

• We	can	reduce	this	number	to	128	because	of	the	1/0	symmetry.

• We	can	further	reduce	this	number	to	64	through	left/right	
symmetry.





Cellular	Automata

Seashell	pattern



Cellular	Automata

Seashell	pattern

We	are	back	to	our	recurring	theme	in	this	class.	Simple	rules	can	produce	very	complex	behaviour.
The	complexity	of	the	world	(computational	and	physical)	can	be	modelled	with	simple	rules,	and	that	
This	may	be	the	only way	to	study	many	systems.





Universal	Computation

• One	of	the	most	powerful	systems	we	know	of	is	the	Universal	Turing	
Machine	(The	subject	of	most	of	CS500).

• Each	Turing	Machine	is	capable	of	solving	an	problem.	Modelled	after	an	
abstract	mathematician	(who	has	paper,	pencil,	and	lookup	rules).

• Allan	Turing	showed	that	there	is	a	single	Turing	Machine	that	can	simulate	
every	other	Turing	Machine.

• So	from	simple	lookup	rules,	pencil	and	paper	we	can	generate	the	entire	
diversity	of	the	computational	universe.	

• Von	Neumann’s	self-reproducing	automata	was	the	first	universal	CA.



What	is	a	program	really?

•A	set	of	rules
•An	input	state
•An	output



Universal	Turing	Machine Rules

Initial	value	of	the	tape	is	the	input



Universal	Computation

• The	“brain”	of	the	mathematician	in	a	Turing	Machine	is	a	finite	state	
automata:



Universal	Computation

• The	“brain”	of	the	mathematician	in	a	Turing	Machine	is	a	finite	state	
automata	(FSA):

• Wolfram	showed	that	you	can	encode	these	FSA	as	rules	in	a	cellular	
automata.



Universal	Computation

• We	are	no	longer	thinking	about	elementary	CAs	where	we	just	look	
at	the	neighbouring	cells.

• Wolfram	showed	that	you	can	encode	these	FSA	as	rules	in	a	cellular	
automata.



Universal	Computation

• We	are	no	longer	thinking	about	elementary	CAs	where	we	just	look	
at	the	neighbouring	cells.

• In	this	example	there	are	only	3	symbols	and	2	states	in	the	FSA.	The	
1	and	-1	after	the	comma	indicate	the	offset.



Universal	Computation

• For	elementary	machines	we	saw	there	are							rules	for							inputs.

• The	number	of	Wolfram’s	Turing	Machine	CAs	is	larger

28 23

(2|⌃||S|)2·3 = 126 = 2985984



Universal	Computation

• The	number	of	Wolfram’s	Turing	Machine	CAs	is	larger

(2|⌃||S|)2·3 = 126 = 2985984

• This	is	machine	number	596440	in	Wolfram’s	scheme.



Translating	a	Turing	Machine	into	a	CA.

In	State A In	State	B

0
Print 1,
Move Right,
Goto State B

Print 2,	
Move Left,
Goto State A

1
Print 2,
Move Left,
Goto State A

Print	2,	
Move Right,
Goto State	B

2
Print 1,	
Move Left,
Goto State A

Print 0,	
Move Right,
Goto State A

Claimed	but	not	proven	that	this	is	the	smallest	possible	universal	Turing	machine	(the	proof	by	Alex	Smith	is	being	debated)

Colours	=	symbols	on	the	tape
Each	column	is	the	transition	from	tape	input	to	output
The	droplet	indicates	whether	the	tape	read	head
moved	left	or	right.



Universal	Computation

• This	is	machine	number	596440	in	Wolfram’s	scheme.



Cellular	Automata

One-dimensional	cellular	automata	can	be	universal.	

Wolfram	(New	Kind	of	Science,	2002)	gave	an	example	of	a	19-color	
universal	one-dimensional	next-nearest	neighbor	cellular	automaton	in	which	a	
block	of	20	cells	is	used	to	represent	each	single	cell	in	the	cellular	automaton	
being	emulated.	

Even	more	amazing rule	110 elementary	cellular	automaton is	universal.
(Cook,	M.	"Universality	in	Elementary	Cellular	Automata."
Complex	Systems 15,	1-40,	2004.).



2D	Automata:	Game	of	Life

• John	Conway	was	
interested	in	simplifying	
John	von	Neumann’s	rules	
for	self-reproducing	
automata.

• Invented	a	2D	cellular	
automata	to	demonstrate	
this	in	1970.



Numberphile:	https://www.youtube.com/watch?v=R9Plq-D1gEk



2D	Automata:	Game	of	Life	- Rules

•Any	live	cell	with	fewer	than	2 live	neighbours dies
•Any	live	cell	with	more	than	3 live	neighbours dies
•Any	dead	cell	with	exactly	3 live	neighbours becomes	
alive

•Otherwise	(2	or	3	neighbors)	the	cell	is	unchanged



Alex	Bellos:	https://www.youtube.com/watch?v=vGWGeund3eA



Cellular	Automata

Rendell, Paul, Turing Machine Universality of the Game of Life, Springer, 2016



Models

• We	have	seen	a	lot	of	different	models	in	this	class	being	used	for	
different	things.

• But	what	is	a	model?	What	can	they	do?



Models

Can	you	think	of	a	model	we	have	seen	in	class	that	address	each	of	the	
following.	(Work	with	the	person	next	to	you)

• A	model	that	makes	predictions about	some	system
• A	models	used	to	define	computation
• Existence	proof	models	(models	demonstrating	
the	possibility	of	something).

• A	model	used	to	explain something	that	already	
happened.



Models

• `Now	it	would	be	very	remarkable	if	any	system	existing	in	the	real	
world	could	be exactly represented	by	any	simple	model.	However,	
cunningly	chosen	parsimonious	models	often	do	provide	remarkably	
useful	approximations.´

• `For	such	a	model	there	is	no	need	to	ask	the	question	"Is	the	model	
true?".	If	"truth"	is	to	be	the	"whole	truth"	the	answer	must	be	"No".	
The	only	question	of	interest	is	"Is	the	model	illuminating	and	
useful?”´.

Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer, 
R. L.; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201–236.



Models

• `Now	it	would	be	very	remarkable	if	any	system	existing	in	the	real	
world	could	be exactly represented	by	any	simple	model.	However,	
cunningly	chosen	parsimonious	models	often	do	provide	remarkably	
useful	approximations.´

• `For	such	a	model	there	is	no	need	to	ask	the	question	"Is	the	model	
true?".	If	"truth"	is	to	be	the	"whole	truth"	the	answer	must	be	"No".	
The	only	question	of	interest	is	"Is	the	model	illuminating	and	
useful?”´.

• “All	models	are	wrong,	some	are	useful.”

Box, George. E. P. (1979), "Robustness in the strategy of scientific model building", in 
Launer, R. L.; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201–236.



Models as Homomorphic Maps
Commutativity of the Diagram

Algorithm A

Laws LWorld at time t World at time t + 1

Model at time t + 1Model at time t 

.
Modeling Relation M Modeling Relation M

M is an equivalence relation.
Model M is valid if this is a homomorphic map:

M(L(x)) = A(M(x))
Stephanie	Forrest



transformation of one set into another that preserves in 
the second set the relations between elements of the first.

Algorithm A

Laws LWorld at time t World at time t + 1

Model at time t + 1Model at time t 

.
Modeling Relation M Modeling Relation M

Models as Homomorphic Maps



Models

• “It	can	scarcely	be	denied	that	the	supreme	goal	of	all	theory	is	to	
make	the	irreducible	basic	elements	as	simple	and	as	few	as	possible	
without	having	to	surrender	the	adequate	representation	of	a	single	
datum	of	experience.”

Attributed	to	Albert	Einstein	in	“On	the	Method	of	Theoretical	Physics,”	the	Herbert	Spencer	Lecture,	Oxford,	
June	10,	1933.	This	is	the	Oxford	University’	Press



Equivalence Classes (CS261)
• Equivalence class = 

• R is an equivalence relation:
• Reflexive:
• Symmetric:
• Transitive: 

• Example: xRy <=> x and y are in the same little box.

€ 

{x | x∈R} and R is an equivalence relation.

)(xRxx∀
yRxxRy⇒

)()()( xRzyRzxRy ⇒∧

Set of Objects Partition set into 6 little 
boxes

. . .. . . . . .
.

.
.

.  .  . 

.  .  .
Equivalence classes

Stephanie	Forrest



Examples of Equivalence Relations
• “Is similar to" or "congruent to" on the set of all triangles.
• Logical equivalence of statements in logic.
• "Has the same image under a function" on the elements of the domain of the 

function.
• What’s not an equivalence relation?

• The relation "≥" between real numbers is reflexive and transitive, but not 
symmetric. For example, 7 ≥ 5 does not imply that 5 ≥ 7. It is, however, a 
partial order.

• The relation "is a sibling of" on the set of all human beings is not an 
equivalence relation. 

• Is Symmetric (if A is a sibling of B, then B is a sibling of A) 
• Not reflexive (no one is a sibling of himself),
• Not transitive (since if A is a sibling of B, then B is a sibling of A, but A is not a sibling of A). 

Stephanie	Forrest



Example Homomorphism: 
Multiplication of Integers

• Model all pairs of integers and their product:
• e.g., 14792 x 4183584 = 61883574528

• Model:
• Even X Even = Even
• Even X Odd  = Even
• Odd X Even = Even
• Odd X Odd = Odd

Stephanie	Forrest



Example Homomorphism: 
Multiplication of Integers

Model:
Even	x	Even	=	Even
Even	x	Odd	=	Even
Odd	x	Odd	=	Odd
Odd	x	Even	=	Even

Model	relationship:

2n	x	2m	=	2k	R Even	x	Even	=	Even
2n+1	x	2m+1		=	2k+1	R Odd	x	Odd	=	Odd
2n	x	2m+1	=	2k	R Even	x	Odd	=	Even
2n+1	x	2m	=	2k+1	R Odd	x	Even	=	Even

Model:
Even	x	Even	=	Even
Even	x	Odd	=	Even
Odd	x	Odd	=	Odd
Odd	x	Even	=	Even

M(L(x))	=	M(2n	x	2m	=	2k)	=	Even	x	Even	=	Even

The	relationships	are	preserved	under	our	
model.



Allele	Dominance	

Recall	Gregor	Mendel’s	experiments
with	peas

Image credit: Genome Research Limited



Example: Hardy-Weinberg Equilibrium
• Allele and genotype frequencies in a population remain constant from 

generation to generation in the absence of disturbing influences, 
such as:

• Non-random mating, mutation, selection, limited population size, overlapping 
generations, random genetic drift, gene flow, and meiotic drive

• Impossible in nature. Genetic equilibrium is an ideal state that 
provides a baseline against which to measure change.

freq(A)	=	p;	freq(a)	=	q;	p	+	q	=	1.	If	the	population	
is	in	equilibrium,	then	we	will	have	freq(AA)	=	p2
for	the	AA	homozygotes	in	the	population,	freq(aa)	
=	q2 for	the	aa	homozygotes,	and	freq(Aa)	=	2pq	
for	the	heterozygotes.

Source:	Wikipedia Stephanie	Forrest



Homomorphic Model (sketch)
Hardy-Weinberg Equilibrium

• Taken from Melanie Moses (2000).
• Example CAS:

• Theoretical population of desert shrubs, randomly distributed across a homogeneous landscape and isolated from all 
other populations of shrubs.

• The shrubs have one relevant genetic variation with two values (alleles).
• Genotype AA 

• Thrives in annual mean high temperatures T (29 <= T <= 33).
• Let  X = number of AA individuals.

• Genotype Aa  (and aA )
• Thrives in annual mean high temperature 28 <= T <= 32.
• Let  Y = number of Aa and aA individuals.

• Genotype aa 
• Thrives where 27 <= T <= 31.
• Let Z = number of aa individuals.  

• Need some rules for how populations change (not shown).

• Set of states for system are all (X,Y,Z,T) s.t. X+Y+Z=N for all T:
• Fixed size population.

Stephanie	Forrest



Hardy-Weinberg Equilibrium cont.
• Equivalence classes for this set are all X, Y, 

Z, T such that the ratio of X:Y:Z is constant 
and T is constant:

• E.g., <100, 200, 100, 30> and <200, 400, 200, 
30> are in the same class.

• Can show that this defines an equivalence 
relation.

• Transition rules for model are of the form:
• If 29 <= T <= 31, then population remains in 

Hardy-Wienberg equilbrium: X=p2 , Y=2pq, and 
X=q2.  (p=proportion of A’s in population, q = 1-p).

• If T=32: X=p2 + 0.05q2 ; Y = 2pq + 0.05q2; Z = 
0.9q2 

• Etc.
• Now, show that this is a homomorphism. Source: Wikipedia

Stephanie	Forrest



Homomorphic Models Final Remarks
• What if the inside of the box is not deterministic?

• Search for a set of inputs/outputs that take more variables into account 
(refine the model) and see if the result is deterministic.  OR

• Look for statistical determinacy, i.e. determinacy in the averages, as in 
Markov chains.

• Models themselves are seldom regarded in all their detail:
• Only some aspect of the model is related to the system of study.
• E.g., a tin mouse may be a satisfactory model of a living system, if we ignore 

the  “tinniness” of the model and the “proteinness” of the living mouse.
• Thus, two systems (the system of study and the model) are often related 

such that a homomorphism of one is isomorphic with a homorphism of the 
other.

Stephanie	Forrest



• Gasses	and	fluids	can	be	modelled	with	continuous	models
• That	is,	we	can	use	continuous	values	of	pressure,	temperature,	and	
velocity

Lattice	Gas	Models	(LGCA)



• Gasses	and	fluids	can	be	modelled	with	continuous	models
• That	is,	we	can	use	continuous	values	of	pressure,	temperature,	and	
velocity

• What	happens	when	we	get	to	extreme	cases:	
• If	we	are	modelling	a	disk	drive	head	moving	just	a	micron	above	the	platter	
these	continuous	models	break	down.	

• We	have	to	model	the	individual	molecules	of	gas.

Lattice	Gas	Models



• Gasses	and	fluids	can	be	modelled	with	continuous	models
• That	is,	we	can	use	continuous	values	of	pressure,	temperature,	and	
velocity

• What	happens	when	we	get	to	extreme	cases:	
• If	we	are	modelling	a	disk	drive	head	moving	just	a	micron	above	the	platter	
these	continuous	models	break	down.	

• We	have	to	model	the	individual	molecules	of	gas.

• If	we	are	modelling	systems	with	very	high	energies	(such	as	a	nuclear	
explosion)	we	have	to	have	a	discrete	model	of	the	internal	states	of	
the	atoms	involved.

Lattice	Gas	Models



• If	the	molecules	are	very	cold	quantum	effects	start	to	dominate	their	
interactions.	

• Here	we	have	to	model	the	quantum	effects	explicitly.	

Lattice	Gas	Models



• If	the	molecules	are	very	cold	quantum	effects	start	to	dominate	their	
interactions.	

• Here	we	have	to	model	the	quantum	effects	explicitly.	

• These	systems	require	models	of	the	microscopic behaviour

• Models	that	are	able	to	describe	the	behaviour	of	the	system	using	just	
pressure,	velocity,	and	temperature	are	macroscopic.	

• Of	course,	we	could	model	all	gasses	and	fluids	at	the	microscopic	level.	

Lattice	Gas	Models



• Cellular	automata	are	used	to	model	
molecular	systems.	

• The	use	of	cellular	automata	to	model	
particles	such	as	gasses,	fluids,	and	

• The	propagation	of	subatomic	
particles	was	pioneered	by	Stanislaw	
Ulam and	John	von	Neumann	in	the	
1950s.

Lattice	Gas	Models

Stanislaw	Ulam with	the	FERMIAC,	used	to	model
neutron	transport,	Los	Alamos	National	Labs
MCNP SOFTWARE QUALITY: THEN AND NOW Gregg C. Giesler, 
Los Alamos National Laboratory LA-UR-00-2532; 16 October 2000
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