
Current Assignments
•  Homework 5 will be available tomorrow and is

due on Sunday.
 Arrays and Pointers

•  Project 2 due tonight by midnight.
•  Exam 2 on Monday. Review on Thursday.

 Functions (overloading, pass-by-value, pass-by-reference)
 Recursion

 Arrays
 Pointers
 Sorting (insertion sort, selection sort, and bubble sort)

Today
• Recursion from Homework 4

– Recursive Adder
• Basic String Processing
• Recursion and Arrays

– Palindrome
– Recursive Insertion Sort

Basic String Processing
•  Strings (arrays of chars) are very

common
•  They are usually referred to as char*s

(remember a pointer is really the
same as an array)

• …but be careful. Declaring an array
allocates memory to store the data in,
declaring a pointer just allocates
memory for one address.

Fundamentals of Characters and Strings

• Character constant
– Integer value represented as

character in single quotes
– 'z' is integer value of z
• 122 in ASCII

Fundamentals of Characters and Strings
• String - series of characters treated as single unit

• Can include letters, digits, +, -, *, etc.

• String literal (string constants)

 Enclosed in double quotes, for
 example: "I like C++“

• Array of characters, ends with null character '\0'
• String constant is a const pointer that points to
string’s first character

• Like arrays

Fundamentals of Characters and Strings

•  String assignment
– Character array

• char color[] = "blue";
–  Creates 5 element char array color last element is '\0'

– Variable of type char *
• char *colorPtr = "blue";

–  Creates pointer colorPtr to letter b in string “blue”
»  “blue” somewhere in memory

– Alternative for character array
• char color[] = { ‘b’, ‘l’, ‘u’, ‘e’,
‘\0’ };

Fundamentals of Characters and Strings
•  Reading strings

– Assign input to character array word[20]
 cin >> word

• Reads characters until whitespace or EOF
• String could exceed array size

cin >> setw(20) >> word;

• Reads 19 characters (space reserved for '\0')

String Manipulation Functions of the
String-handling Library

•  String handling library <cstring>
provides functions to
– Manipulate string data
– Compare strings
– Search strings for characters and other strings
– Tokenize strings (separate strings into logical

pieces)

char *strcpy(char *s1,
const char *s2);

Copies the string s2 into the character
array s1. The value of s1 is returned.

char *strncpy(char *s1,
const char *s2, size_t n);

Copies at most n characters of the string
s2 into the character array s1. The value
of s1 is returned.

char *strcat(char *s1,
const char *s2);

Appends the string s2 to the string s1.
The first character of s2 overwrites the
terminating null character of s1. The
value of s1 is returned.

char *strncat(char *s1,
const char *s2, size_t n);

Appends at most n characters of string s2
to string s1. The first character of s2
overwrites the terminating null character
of s1. The value of s1 is returned.

int strcmp(const char *s1,
const char *s2);

Compares the string s1 with the string
s2. The function returns a value of zero,
less than zero or greater than zero if s1 is
equal to, less than or greater than s2,
respectively.

int strncmp(const char *s1,
const char *s2, size_t n);

 Compares up to n characters of the
string s1 with the string s2. The
function returns zero, less than zero or
greater than zero if s1 is equal to, less
than or greater than s2, respectively.

char *strtok(char *s1, const
char *s2);

 A sequence of calls to strtok breaks
string s1 into “tokens”—logical
pieces such as words in a line of text—
delimited by characters contained in
string s2. The first call contains s1 as
the first argument, and subsequent calls
to continue tokenizing the same string
contain NULL as the first argument. A
pointer to the current to-ken is returned
by each call. If there are no more
tokens when the function is called,
NULL is returned.

int strlen(const char *s); Determines the length of string s. The
number of characters preceding the
terminating null character is returned.

•  Copying strings
– char *strcpy(char *s1, const
char *s2)

•  Copies second argument into first argument
–  First argument must be large enough to store string and

terminating null character

– char *strncpy(char *s1, const
char *s2, size_t
n)

•  Specifies number of characters to be copied from
string into array

•  Does not necessarily copy terminating null character

String Manipulation Functions of the
String-handling Library

String Manipulation Functions
•  Concatenating strings

– char *strcat(char *s1, const
char *s2)

•  Appends second argument to first argument
•  First character of second argument replaces null

character terminating first argument
•  Ensure first argument large enough to store

concatenated result and null character

– char *strncat(char *s1, const
char *s2, int n)

•  Appends specified number of characters from
second argument to first argument

•  Appends terminating null character to result

•  Comparing strings
– Characters represented as numeric codes
– Strings compared using numeric codes
– Character codes / character sets

• ASCII
– “American Standard Code for Information Interchange”

String Manipulation Functions

•  Comparing strings
– int strcmp(const char *s1, const
char *s2)

•  Compares character by character
•  Returns

–  Zero if strings equal
–  Negative value if first string less than second string
–  Positive value if first string greater than second string

– int strncmp(const char *s1,
 const char *s2, int n)

•  Compares up to specified number of characters
•  Stops comparing if reaches null character in one of

arguments

String Manipulation Functions

•  Tokenizing
– Breaking strings into tokens, separated by

delimiting characters
– Tokens usually logical units, such as

words (separated by spaces)
– "This is my string" has 4 word

tokens (separated by spaces)

String Manipulation Functions

– char *strtok(char *s1, const char *s2)
• Multiple calls required

– First call contains two arguments, string to
be tokenized and string containing
delimiting characters

» Finds next delimiting character and
replaces with null character

– Subsequent calls continue tokenizing
» Call with first argument NULL

•  Returns NULL if no characters matching the
delimiter could be found

String Manipulation Functions

/* strtok example */
#include <iostream>
#include <cstring>
 int main ()
{
 char str[] ="This is a sample string, just testing.";
 char * pch;
 cout << "Splitting string " << str << “into tokens: ”;
 pch = strtok (str," ");
 while (pch != NULL)
 {
 cout << pch;
 pch = strtok (NULL, " ,.");
 }
 return 0;
 }

String Manipulation Functions

Splitting string "This is a sample string, just testing."
in tokens:
This
is
a
sample
string
just
testing

String Manipulation Functions

String Manipulation Functions

• Determining string lengths
– int strlen(const char *s)

• Returns number of characters in string
– Terminating null character not included in

length

String Manipulation Functions

• Write iterative palindrome
• Write recursive palindrome
• Write recursive insertion sort

