Current Assignments

 Start Reading Chapter 6
* Project 3 — Due Thursday, July 24
Contact List Program

 Homework 6 — Due Sunday, July 20
First part easy true/false questions about arrays.

Second part implement a stack and a queue
using an array.

Today
» Argv and Argc
* String conversion
* The Heap
* The new and delete commands
* Dynamic Arrays

e Structs

Argc and Argv

» Programs often take arguments just
like functions.

* For example 1n unix you might type:
cp filel.cpp file2.cpp

» The program takes the arguments
filel.cpp and file2.cpp and does
something with those arguments.

* It copies the file with name filel.cpp
to file2.cpp

Argc and Argv

* Programs can take an unlimited
number of arguments all of type
string.

* The arguments are passed into the
program via argc and argv

* Argv 1s an array of strings (the
argument values)

» Argc 1s a integer and 1s the number of
argument the user gave your program

Argc and Argv

#include <iostream>

using namespace std; Input:
programl argumentl 2 3
int main(int argc, char™ argv[])
{ Output:
Argument list:
cout << "Argument list:" << endl; programl

argument |
for (mnt1=0;1<argc; 1++) 2
{ 3
cout << argv[i] <<" " <<endl;
h
return O;

Argc and Argv

* Since program arguments are always
strings we often have to do some
work to extract the value we want
from an argument.

e There are a number functions for
converting strings into other types.

» Eg. atoi(string) converts the string
into an integer.

Argc and Argv

#include <iostream>
#include <cstdlib>

using namespace std; Input:
int main(int argc, char™® argv([]) pro gramz 4 3
d
mtx=0,y=0;
Output:

x = ato1(argv[1]

11);
y = atoi(argv([2]); 12

>

cout << x*y << endl;

return O;

String conversion functions

Other string conversion functions:

long int atol(char* string);
double strtod(char* start, char™ end);
long int strtol(char* start, char™ end);

unsigned long int strtoul(char* start, char™ end, int base);

Page 1026 of Deitel and Deitel.

The Stack

» Until now all the memory locations
we have used for our data existed on
the stack.

» Stack memory 1s fixed when the
program 1s compiled.

» We can t dynamically get more stack
memory after the program starts.

* This 1s a problem.

The Heap

» [f we don t know how much
space we will need before the
program starts we are 1n
trouble.

e ... but we can ask for
memory on the heap even
after the program starts.

The Heap

*When we ask for memory from the heap we
are responsible for managing that memory.
*Before, the memory we needed to store data
was created for us when we declared a
variable

*And destroyed for us when the end of that
variables scope was reached.

*We have to manually create and destroy the
memory we use on the heap.

The New and Delete commands

* We ask for memory on the heap with the new
command (in old C 1t was malloc).

* We return memory to the heap with the delete
command (in old C 1t was free).

e Syntax for new and delete:
type™* variable name = new type;
delete variable name;
or

delete [] variable name; //If deleting an array

New and Delete

int main()

d

int* x = new 1nt(0); // Initialize variable to 0
float™ y = new float(6.0);
char* z =new char('z');

cout << *Fx <<" " << HFy <<M" M << Hz << endl; OU.tpU,tI
X7 06z
*y =10.0;

e 710k

cout << Fx <<" " << Ty << << *7z << endl;
delete x; delete y; delete z;

return O;

New and Delete — Memory Leaks

* If the program keeps allocating memory and doesn’ t return it all,
eventually all the memory in the system will be used up.

e For example:

for(int 1= 0; 1 <size; 1++) // the memory reserved for x is returned to the

{ // stack when x goes out of scope “}”
intx =3;
)
for(int 1= 0; 1 <size; 1++) // The pointer goes out of scope but the memory
{ // 1t pointed too is still reserved
int* x = new int(5); // But now we have lost its address, there is no
} // way to find 1t again — it is orphaned memory

 If this occurs enough times the system will crash for lack of
unallocated memory.

* During GWI the patriot missile systems had to be shutdown and
restarted every few hours because their control system had a
memory leak.

Dynamic Arrays

int main()
d
Output:
int size = 0; error C2057: expected constant expression
cin >> S1ze;

int array[size] = {0};

for (mnt1=0;1<size; 1++)

d

array[i] = 1;

cout << array[i] << “ “;
h
return O;

Dynamic Arrays

int main()
{ Output:
int size = 0; 10
in > size 0123456789

int* array = new 1nt[size];

for (1nt1=0; 1 <size; 1++)
d

array[i] = 1;

cout << array[i] << “ “;
h
delete [] array;
return O;

Multidimensional Dynamic Arrays

We can create multidimensional dynamic arrays
too.

They consist of dynamic arrays of pointers to
other dynamic arrays.

They are not quite like multidimensional static
arrays since all the memory locations are not
guaranteed to be contiguous.

But they look the same from our point of view
though they might be slightly slower under
certain circumstances.

Multidimensional Dynamic Arrays

int main() 12345678910

{ 246810121416 18 20

36912151821242730

4812162024 28323640
5101520253035404550
612 1824 30 36 42 48 54 60
7142128354249 56 6370
81624 32 40 48 56 64 72 80

const int d1size = 10, d2size = 10;
int array[d1size][d2size];

for (inti=0; i< dlsize;i++)

d o 91827 36 45 54 63 72 81 90
for (intj = 0; j <d2size; j++) 10 20 30 40 50 60 70 80 90 100
{
array[i][j] = (i+1)*g+1);
cout << array[i][j] <<" ";
h
cout << endl;
h
return O;

{

Multidimensional Dynamic Arrays

int main()

int d1size = 0, d2size = 0;
cin >> d1size >> d2size;
Int™** array = new int*[d1size];

for (int k = 0; k < d1size; k++)
{

b

array[k] = new int[d2size];

for (inti=0; i< dlsize;i++)
{
for (int j = 0; j < d2size; j++)
{
array[1][j] = (+1)*(+1);
cout << array[i][j] <<"";

b

cout << endl;

Input:
45

Output:
12345
246810
3691215
48121620

Multidimensional Dynamic Arrays

// Clean up

for (1int k = 0; k < dlsize; k++)
Input:

{ 45

delete [] array[k];

b Output:
12345

delete [] array; 246810
3691215
48121620

return O;

