
Current Assignments
•  Start Reading Chapter 6
•  Project 3 – Due Thursday, July 24
 Contact List Program

• Homework 6 – Due Sunday, July 20
 First part easy true/false questions about arrays.
 Second part implement a stack and a queue
using an array.

Today
• Argv and Argc
• String conversion
• The Heap
• The new and delete commands
• Dynamic Arrays
• Structs

Argc and Argv
•  Programs often take arguments just

like functions.
•  For example in unix you might type:
 cp file1.cpp file2.cpp

•  The program takes the arguments
file1.cpp and file2.cpp and does
something with those arguments.

•  It copies the file with name file1.cpp
to file2.cpp

Argc and Argv
•  Programs can take an unlimited

number of arguments all of type
string.

•  The arguments are passed into the
program via argc and argv

• Argv is an array of strings (the
argument values)

• Argc is a integer and is the number of
argument the user gave your program

Argc and Argv
#include <iostream>

using namespace std;

int main(int argc, char* argv[])
{

 cout << "Argument list:" << endl;

 for (int i = 0; i < argc; i++)
 {

 cout << argv[i] << " " << endl;
 }

 return 0;

}

Input:
program1 argument1 2 3

Output:
Argument list:
program1
argument1
2
3

Argc and Argv
•  Since program arguments are always

strings we often have to do some
work to extract the value we want
from an argument.

•  There are a number functions for
converting strings into other types.

•  Eg. atoi(string) converts the string
into an integer.

Argc and Argv
#include <iostream>
#include <cstdlib>
using namespace std;
int main(int argc, char* argv[])
{

 int x = 0, y = 0;

 x = atoi(argv[1]);
 y = atoi(argv[2]);

 cout << x*y << endl;

 return 0;

}

Input:
program2 4 3

Output:
12

String conversion functions
Other string conversion functions:

long int atol(char* string);

double strtod(char* start, char* end);

long int strtol(char* start, char* end);

unsigned long int strtoul(char* start, char* end, int base);

Page 1026 of Deitel and Deitel.

The Stack
• Until now all the memory locations

we have used for our data existed on
the stack.

•  Stack memory is fixed when the
program is compiled.

• We can’t dynamically get more stack
memory after the program starts.

•  This is a problem.

The Heap

• If we don’t know how much
space we will need before the
program starts we are in
trouble.

• … but we can ask for
memory on the heap even
after the program starts.

The Heap
• When we ask for memory from the heap we
are responsible for managing that memory.
• Before, the memory we needed to store data
was created for us when we declared a
variable
• And destroyed for us when the end of that
variables scope was reached.
• We have to manually create and destroy the
memory we use on the heap.

The New and Delete commands
•  We ask for memory on the heap with the new

command (in old C it was malloc).
•  We return memory to the heap with the delete

command (in old C it was free).
•  Syntax for new and delete:

type* variable_name = new type;
delete variable_name;
or
delete [] variable_name; // If deleting an array

New and Delete
int main()
{

 int* x = new int(0); // Initialize variable to 0
 float* y = new float(6.0);
 char* z = new char('z');

 cout << *x << " " << *y << " " << *z << endl;
 *x = 7;
 *y = 10.0;
 *z = 'k';

 cout << *x << " " << *y << " " << *z << endl;

 delete x; delete y; delete z;

 return 0;

}

Output:
0 6 z
7 10 k

New and Delete – Memory Leaks
•  If the program keeps allocating memory and doesn’t return it all,

eventually all the memory in the system will be used up.
•  For example:

 for(int i = 0; i < size; i++) // the memory reserved for x is returned to the
 { // stack when x goes out of scope “}”
 int x = 5;
 }

 for(int i = 0; i < size; i++) // The pointer goes out of scope but the memory
 { // it pointed too is still reserved
 int* x = new int(5); // But now we have lost its address, there is no
 } // way to find it again – it is orphaned memory

•  If this occurs enough times the system will crash for lack of

unallocated memory.

•  During GWI the patriot missile systems had to be shutdown and
restarted every few hours because their control system had a
memory leak.

Dynamic Arrays
int main()
{

 int size = 0;

 cin >> size;

 int array[size] = {0};

 for (int i = 0; i < size; i++)
 {
 array[i] = i;
 cout << array[i] << “ “;
 }

 return 0;

}

Output:
error C2057: expected constant expression

Dynamic Arrays
int main()
{

 int size = 0;

 cin >> size;

 int* array = new int[size];

 for (int i = 0; i < size; i++)
 {
 array[i] = i;
 cout << array[i] << “ “;
 }
 delete [] array;
 return 0;

}

Output:
10
0 1 2 3 4 5 6 7 8 9

Multidimensional Dynamic Arrays
•  We can create multidimensional dynamic arrays

too.
•  They consist of dynamic arrays of pointers to

other dynamic arrays.
•  They are not quite like multidimensional static

arrays since all the memory locations are not
guaranteed to be contiguous.

•  But they look the same from our point of view
though they might be slightly slower under
certain circumstances.

Multidimensional Dynamic Arrays
int main()
{

 const int d1size = 10, d2size = 10;

 int array[d1size][d2size];

 for (int i = 0; i < d1size; i++)
 {
 for (int j = 0; j <d2size; j++)
 {
 array[i][j] = (i+1)*(j+1);
 cout << array[i][j] << " ";
 }
 cout << endl;
 }

 return 0;

}

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

Multidimensional Dynamic Arrays
int main()
{

 int d1size = 0, d2size = 0;
 cin >> d1size >> d2size;
 int** array = new int*[d1size];

 for (int k = 0; k < d1size; k++)
 {
 array[k] = new int[d2size];
 }

 for (int i = 0; i < d1size; i++)
 {
 for (int j = 0; j < d2size; j++)
 {
 array[i][j] = (i+1)*(j+1);
 cout << array[i][j] << " ";
 }
 cout << endl;
 }

Input:
4 5

Output:
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

Multidimensional Dynamic Arrays

Input:
4 5

Output:
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

 // Clean up
 for (int k = 0; k < d1size; k++)
 {
 delete [] array[k];
 }

 delete [] array;

 return 0;

}

