Current Assignments

- Homework 1 due in 4 days (June 16th)
 Variables, mathematical and logical operators, input/output, and the "if" operator.
- Project 1 Due in 11 days (June 23rd)
 Write a binomial root solver using the quadratic equation.
- Homework 2 will be assigned on Monday and will be due Thursday.

Last Time

- Whitespace and Input/Output Revisited
- Boolean Operators
- The Programming Cycle
- The if control structure
- Lab: We wrote the parity program

This Time

- Homework 1
- The "if ... else" control structure
- Nested "if" and "if ... else" statements
- Project 1
- LAB

- Problem 1, Example 1
- Assume int x = 2; and int y = 3;
- cout << x << "+" << y;

- The answer should look like this:
 - 2 + 3

- Problem 1, Example 2
- Assume int x = 2; and int y = 3;
- cout << x + y;

5

• The answer should look like this:

- Problem 1, Example 3
- Assume int x = 2; and int y = 3;
- cout << x << + << y;

• The answer should look like this:

Invalid C++ syntax

- Problem 2, Example 1
- Is the following statement a valid C++ representation of the equation $y = ax^3 + 7$.

•
$$y = a^*x^*(x * x) + 7;$$

• The answer should look like this:

Valid

- Problem 2, Example 1
- Is the following statement a valid C++ representation of the equation $y = ax^3 + 7$.

•
$$y = axxx + 7;$$

• The answer should look like this:

Invalid

- Problem 3, Example 1
- x = 7 + 2/8 * 10 * 6 * (6 + 7* (3 + 4));

• The answer should look like this:

$$+*+/***+=, x = 7$$

- Problem 3, Example 2
- x = 7 + 10 * 2/8 * 6 * (6 + 7 * (3 + 4)));

• The answer should look like this:

- Problem 3, Example 3
- x = 7 + 10 * 2/8 * 6 * (6 + 7 * (3 + 4)));

• The answer should look like this:

invalid C++ syntax

- Problem 4, Example 1
- Write a single C++ statement to do the following:
 - -Declare two floating point variables and call them foo and bar.
- The answer should look something like one of the following:

float foo, bar;

double foo = 0.0, bar = 0.0;

- Problem 4, Example 2
- Write a single C++ statement to do the following:

-Print the values of foo and bar;

• The answer should look something like one of the following:

cout << foo << " " << bar; cout << foo << "," << bar << endl;

If... else...

Syntax:

```
if (boolean expression)
  statements 1...
}
else
  statements 2...
  statements 3...
```

boolean_expression is true? Then statement block 1 is executed

boolean_expression is false? Then statement block 2 is executed

Statement block 3 executed after the if... else...

int x = 10; if (x % 2 == 0)cout << "x is even"; x is even, done else cout << "x is odd"; cout << ", done" << endl;</pre>

int x = 9; if (x % 2 == 0)cout << "x is even"; x is odd, done else cout << "x is odd": cout << ", done" << endl;</pre>

```
int foo = 10, bar = 15;
if ((foo < bar) \&\& ((bar \% 2) == 0))
  foo = 2*bar;
                                  10,30
else
  bar = 2*foo:
  cout << foo << ", " << bar << endl;
```

```
int foo = 10, bar = 12;
if ((foo < bar) \&\& ((bar \% 2) == 0))
  foo = 2*bar;
                               24, 12
else
  bar = 2*foo;
  cout << foo << ", " << bar << endl;
```

Syntax:

Same as:

```
if ( bool_expr_1 )
{
    if ( bool_expr_2 )
    {
        statements ...
    }
```

if (bool_expr_1 &&
 bool_expr_2)
{
 statements ...
}

```
Syntax:
if (bool expr_1)
{
  statements...
  if (bool expr_2)
      statements...
  statements...
}
Not the same as bool expr 1 && bool expr 2
```

```
int x = 2, y = 5;
if (x < y) x is smaller than y and even, done
  cout << "x is smaller than y";
  if ((x \% 2) == 0)
      cout << " and even";</pre>
cout << ", done" << endl;
```


Nested If ... else statements

```
Syntax:
if ( bool_expr_1 )
  statements...
}
else if (bool expr 2)
  statements ...
else
  statements ...
```

```
Nested If ... else statements, example 1
int grade = 82;
if (grade > 90)
   cout << "A";
else if ( grade > 80 )
   cout << "B";
else if (grade > 70)
   cout << "C";
else
   \operatorname{cout} \ll \operatorname{"D} \operatorname{or} \operatorname{F"};
```

```
Nested If ... else statements, example 1
int grade = 10;
if (grade > 90)
   cout << "A";
else if ( grade > 80 )
   cout << "B";
else if (grade > 70)
   cout << "C";
else
   \operatorname{cout} \ll \operatorname{"D} \operatorname{or} \operatorname{F"};
```

Nested If ... else statements, use braces It is legal to leave out braces if you only execute one statement.

else if

cout << "x less than y";

Nested If ... else statements, use braces What about this? int x = 5, y = 10; if (x > y)if $(x \ge 0)$ cout \ll "x positive and x > y"; else if (x < 0) cout << "x negative and x > y"; else if (x == 0) cout << "cout << "x negative and x > y"; else cout << "x less than y";

```
Nested If ... else statements, use braces
int x = 5, y = 10;
if (x > y)
        if (x > 0)
                 cout << "x positive and > y";
        }
        else if ( x < 0)
        {
                cout << "x negative and > y";
        else if ( x == 0)
        ł
                cout << "x negative and > y";
        }
else
        cout << "x less than y";</pre>
}
```

Project 1

Write a root solver using the quadratic equation.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

There are four cases. The cases are determined by the value of the discriminant (b² - 4ac).

You are going to use multiple nested "if" or "if ... else" control structures to execute the appropriate code based on the value of the discriminant.

Project 1, example run

SOLVING QUADRATIC EQUATIONS For an equation of the form $ax^2 + bx + c = 0$ enter the coefficients a, b, c (separated by spaces): **5 1 -1**

There are two irrational solutions to the quadratic equation $5x^2 + 1x + -1 = 0$

they are:

-0.558258 and 0.358258

Project 1, hints

- I have given two hints
 - This boolean expression will return true when x is a perfect square: (floor(sqrt(x)) == sqrt(x))

sqrt() in C++ won't take negative numbers.

- In the case where the discriminant is negative (yielding complex numbers as our roots) break the quadratic equation into $\pm \sqrt{(b^2 - 4ac)/2a}$ and (-b/ 2a).
- Factor the $\sqrt{(-1)}$ out of $\pm \sqrt{(b^2 4ac)}/2a$ to give $\pm \sqrt{(-(b^2 4ac))}/2a$ i
- Now you can take the $sqrt(-(b^2 4ac)/2a)$

LAB

- Use if ... else... to write a program which takes two floating point numbers and prints whether the second number is a square root of the first one.
- If the first number entered is negative print "Error: enter a positive number."
- You may use only one return statement in your program and no exit() statements.