
This Time 

•  Whitespace and Input/Output revisited 
•  The Programming cycle 
•  Boolean Operators 
•  The “if” control structure 
•  LAB 

– Write a program that takes an integer from 
the user and prints “even” if the number is 
even and “odd” otherwise 



Whitespace 
•  Whitespace consists of spaces, newlines, and 

tabs. C++ treats all whitespace as if it were just 
one space 
– e.g. int x is the same as int      x 

•  You do need white space to separate names 
and keywords in C++ 
– e.g. int x is not the same as intx  

•  You do not need whitespace between a 
variable name or keyword and an operator 
– e.g. x + y, x    +     y, and x+y are all correct 
– e.g. cout<<x; is the same as cout   <<   x;  



Input/Output, revisited 
•  Think of input and output as two streams 

of data. 
•  One stream flows out of your program to 

the screen 
•  One stream flow into your program from 

the keyboard 
•  “cout” is the name of the output stream 
•  “cin” is the name of the input stream  



Input/Output, revisited 
•  In order to put things into the output 

stream so that they are displayed we used 
the stream insertion operator 
– e.g cout << x; 
– Think of the stream insertion operator as 

pointing x towards the “cout” output stream. 



Input/Output, revisited 
•  To get values out of the input stream we 

use the stream extraction operator 
– e.g. cin >> x 
– Think of >> as pointing from the input 

stream “cin” towards the variable. 
•  You can have as many insertion and 

extraction operators as you want for each 
cout or cin. 
– So we can write cout << x << y << z; 
– Or cin >> x >> y >> z; 



Input/Output, revisited 
•  We can also put text directly into the 

output stream with String Constants: 
– A string constant is a sequence of 

characters enclosed in double quotes 
– e.g. cout << “This is a string constant”; 
– There are special characters that we can 

include in our string constant that you 
can’t type on the keyboard. 

– These characters are represented 
special codes called escape sequences. 



Input/Output, revisited 
•  If you want a newline for example: 

– cout << “Prints on line 1\nPrints on line 2”; 
Produces the output: 
Prints on line 1 
Prints on line 2  

•  cout << “Prints on line 1 
   Prints on line 2”; is incorrect.  



Input/Output, revisited 
•  We can also insert commands into the 

stream 
– e.g. cout << flush; tells the stream to add a 

display everything in the stream right away 
without adding a newline. 

– e.g. cout << endl; is the same as flush but it 
adds a newline as well. 

– There are many other commands that we can 
insert into the output stream, they generally 
determine the format of the output. 



Current Assignments 
•  Homework 1 due in 5 days (June 16th) 

 Variables, mathematical and logical operators, 
input/output, and the “if” operator. 
 (After today’s class you should be able to do all the 
problems on Homework 1) 

 
•  Project 1 Due in 12 days (June 23rd) 

 Write a binomial root solver using the 
quadratic equation. 
 (After today’s class you should be able to write this 
program) 



•  How to allocate memory for variables of 
different types. 

•  How to name those variables. 
•  The primitive mathematical operators we 

can apply to those variables. 
•  The order in which operators are applied. 
•  How to print the value of a variable. 
•  How to take a value from the keyboard and 

put it in a variable. 

Last Time 



The Programming Cycle 
•  There are two kinds of programming language: 

– Some languages such as Lisp and Prolog 
 have an interpreter that performs a statement 
as soon as you type it in. With these 
languages you get instant feedback on 
whether the statement you just wrote makes 
any sense or not. 

– Other languages such as Fortran and C++ 
are called compiled languages. They 
separate the process of writing the program, 
compiling it into machine code, and running 
the program into three separate steps.  

 



The Programming Cycle 
•  The programming cycle for C++ consists of four 

main phases. 
1)  Design. Here the algorithm we want the program 

to execute is developed. There are lots of 
different tools we can use in the design phase: 
flow charts, pseudocode, UML being a few 
choices of how we can represent the algorithm or 
“logic flow” of the program. 

2)  “Coding” translating the algorithm into the 
particular syntax of the language we want to use 
to create the program. 



The Programming Cycle 
3)  Compilation. Here the source file we wrote in the 

coding phase is checked for obvious errors by the 
compiler and then translated into machine code. 

4)  Debugging. There are two types of debugging: 
a.  First we resolve any compilation errors. 

Compilation errors are typically the result of 
typos and careless mistakes with syntax. 

b.  Once the program compiles and we run it we 
analyze its behavior to make sure that it does 
what we expected.  



Boolean Operators 

•  Whereas the mathematical operators 
we saw before act on integers and 
floating point numbers boolean 
operators act on true/false values. 

 
•  All boolean operators return a value 

of the type bool which can only take 
on the values “true” or “false.” 

 



Boolean Operators, Comparitors 

•  The primitive boolean operators are: 
•  > greater than,  

 e.g. 5 > 4 returns true 
•  < less than,  

e.g. 5 < 4 returns false 
•  >=, greater than or equal,  

e.g. 5 >= 5 returns true 
•  <=, less than or equal 

 e.g. 5 <= 2 returns false 
 



Boolean Operators, Equality 

•  ==, equality 
 e.g.  5 == 5 returns true 
   5.5 == 4.3 returns false 

•  !=, not equal 
 e.g.  5 != 5 returns false 
   5.5 != 4.3 returns true 

 



Boolean Operators, And 

•  &&, logical “and” 
true && false returns false  
true && true returns true 
false && true returns false 
false && false returns false 

  
 
 



Boolean Operators, Or and Not 

•  ||, logical “or” 
true || false returns true 
true || true returns true 
false || true returns true 
false || false returns false 

•  !, logical “not”, logical negation 
 !true returns false 
 !false, returns true   

 
 



Boolean Operators, Precedence 

•  ! (not) has the highest precedence of any 
operator 

•  Comparators have lower precedence 
than +, and –, * and / 

•  != and == have lower precedence than 
(other) comparators 

•  && has lower precedence than != and 
== 

•  || has lower precedence than && but 
higher precedence than unary operators 
like +=  

 
 



Boolean Operators, Precedence 

•  Expressions within parentheses are 
always evaluated first. 

•  If there are nested sets of parentheses the 
inner most parentheses are evaluated 
first. 

•  You can avoid all precedence issues in 
your own code by always using 
parentheses to force the order of 
evaluation. 

•  You have to know the order when 
reading other people’s code. 

 
 



Boolean Operators, Example 1 

int main 
{ 

 bool x = true, y = false, result = true; 
  
 result = x && y || y;  
 cout << result << endl; 
 return 0; 

}   

0 



Boolean Operators, Example 3 

int main 
{ 

 int x = 6, y = 8, z = -1, w = 14,  
 bool result = false; 
 result = (x + z != w) && !(x > 6) 
 cout << result << endl; 
 return 0; 

}   

1 



Boolean Operators, Example 4 

int main 
{ 

 int x = 6, y = 8, z = -1, w = 14,  
 bool result = false; 
 result = (z == w) || (x <= 6)  
 cout << result << endl; 
 return 0; 

}   

1 



The “if” Control Structure 
•  We would like our programs to be more 

than just calculators we want them to make 
decisions. 

•  Decision making in programming is called 
branching. The program goes down one 
branch if some condition is true and down 
another if that condition is false. 

•  Statements that make decisions about what 
branch of instructions to execute next are 
called control structures. 

•  The most common control structure is the 
“if” statement. 



The “if” Control Structure 
•  The syntax of the if control structure is: 

  
 if ( boolean_expression ) 
 { 
  statements… 
 } 

•  If boolean_expression returns “true” then 
the statements inside the braces are 
executed. If the expression is false then 
those statements are skipped. 



The “if” Control Structure, Example 1 
#include <iostream> 
int main() 
{ 

 int x = 6, y = 12; 
 if ( x > 5 ) 
 { 
  cout << “y = “ << y << endl; 
 } 
 cout << “x = “ << x << endl; 
 return 0; 

} 



The “if” Control Structure, Example 2 
#include <iostream> 
int main() 
{ 

 int x = 6, y = 12; 
 if ( x < 5 ) 
 { 
  cout << “y = “ << y << endl; 
 } 
 cout << “x = “ << x << endl; 
 return 0; 

} 



The “if” Control Structure, Example 2 
#include <iostream> 
int main() 
{ 

 int x = 6, y = 12; 
 if ( x < 5 || y != 15) 
 { 
  cout << “y = “ << y << endl; 
 } 
  cout << “x = “ << y << endl; 
 return 0; 

} 



Lab – Parity Program 
1)  Login to UNIX with SSH 
2)  Start xwin32 
3)  Start emacs 
4)  Open a new file called parity.cpp 
5)  Write a program that takes an integer as input and 

displays “even” if the integer is even and “odd” 
otherwise 

6)  This program will require two “if” statements, 
one for even and one for odd 

7)  x % 2 returns 0 if x is even and 1 if x is odd.  
8)  Compile, debug, and run your program. 


