
CS/Math 471: Intro. to Scientific Computing
Getting Started with High Performance Computing

Matthew Fricke, PhD

Center for Advanced Research Computing

Table of contents

1. The Center for Advanced Research Computing

2. High Performance Clusters (and Wheeler)

3. Example Problem: Calculate π

1

The Center for Advanced
Research Computing

What is CARC

CARC is the hub of computational research at UNM.
We provide HPC resource and consultation services to UNM
departments.

2

Current Projects

Fluid-dynamics
Genetic analysis and evolutionary tree generation of
turbuculosis, birds, porcupines.
Structural analysis and design of race cars
Flu dynamics simulations
Swarm robotics simulations
Protein docking
Teaching neural networks to control self-driving cars
Electrodynamic simulations for novel materials

3

High Performance Clusters (and
Wheeler)

Multi-Core

Multiple-compute cores on the same ”node”. Almost all computers
you buy today have mutiple cores on one motherboard (dual core
through hex-core desktop computers are common). They have
shared access to main RAM. For example one of the compute nodes
we have on the Taos cluster has 60 cores sharing 3 TB of RAM.

4

Distributed

Clusters with compute nodes that communicate through a network
interface are distributed.

In practice, for most compute clusters you will have a distributed
system of nodes where each node is itself a multi-core computer.

Wheeler Cluster

296 compute nodes
8 cores per node
48 GB RAM per node
total of 2368 CPUs

5

File systems

Home directory. Limited space. Limited speed. Store your code here.
Backed up. Path: ~

Scratch. Fast. Lot’s of space. Not-backed up. Store data that you can
regenerate here.
Path: ~/wheeler_scratch

Temp (on Wheeler these are RAM drives). Very fast but decreases
available RAM. Path: /tmp

6

Example Problem: Calculate π

Serial Calculation ofπ

1∫
0

4
1+x2dx = π

And can be numerically approximated with:
N∑
i=0

4
1+x2i

∆x ≈ π

As ∆x gets smaller and N gets larger the approximation converges on
π

7

Serial Program to Calculateπ

1
1Sung Bae, Ph.D, New Zealand eScience Infrastructure 8

Serial Program to Calculate π

calcPiSerial.py

import time
def Pi(num_steps): # Function to calculate pi

step = 1.0/num_steps
sum = 0
for i in xrange(num_steps):

x = (i+0.5)*step
sum = sum + 4.0/(1.0+x*x)

pi = step * sum
return pi

if __name__ == '__main__': # Main function
start = time.time() # Start timing
num_steps = 10000000
pi=Pi(num_steps)
end = time.time() #Stop timing
If this is the root process print the result
print "Pi=%f␣(calculated␣in␣%f␣secs)" %(pi, end-start)

9

Serial Program to Calculate π

10

Parallel Program to Calculateπ

11

LMod Environment Modules

HPC Systems tend to have a lot of software installed (perhaps
hundreds of programs). We use two “module” environment systems
to keep those programs isolated. Globally installed software is
managed with LMod.

To load the MPI environment enter:

module load openmpi-3.1.1-intel-18.0.2-vde2j7x

Other useful commands:

Find modules: module spider <search string>
List all modules on the system: module avail
List loaded modules: module list
Unload a module: module unload <module name>

12

Anaconda Environment

The anaconda environment system allows you to create your own
personalized software environment.

To create an environment called “wheeler_mpi_py2” that includes
the python packages for numerical computing, scientific computing,
and MPI enter:

module load anaconda to load the anaconda module
conda create --name wheeler_mpi_py2 python=2 mpi4py numpy scipy

Once the python packages have finished installing enter:

source activate wheeler_mpi_py2

13

Parallel Program to Calculateπ

calcPiMPI.py
from mpi4py import MPI
import time

Get MPI variables
comm = MPI.COMM_WORLD # Communication framework
root = 0 # Root process
rank = comm.Get_rank() # Rank of this process
num_procs = comm.Get_size() # Total number of processes

Distributed function to calculate pi
def Pi(num_steps):

step = 1.0/num_steps
sum = 0
for i in xrange(rank, num_steps, num_procs):

x = (i+0.5)*step
sum = sum + 4.0/(1.0+x*x)

mypi = step * sum
pi = comm.reduce(mypi, MPI.SUM, root)
return pi

Main function
if __name__ == '__main__':

start = time.time() # Start timing
num_steps = 10000000
Broadcast number of steps to use to the other processes
comm.bcast(num_steps, root);
pi=Pi(num_steps)
end = time.time() #Stop timing
If this is the root process print the result
if (rank==root): print "Pi=%f␣(calculated␣in␣%f␣secs)" %(pi, end-start) 14

Torque Job Scheduler

Write and compile your code on the wheeler head node. Run your
programs on the compute nodes.

We use the torque system to schedule jobs on the compute nodes.

Some useful scheduler commands:

Show current jobs: qstat -a
Queue information: qstat -q or qgrok
Show jobs of a particular user: qstat -u <username>

Submit a job: qsub <pbs2 script>
Delete a job: qdel <job ID>

2portable batch system

15

PBS Script

calc_pi.pbs

! / bin/bash

#PBS − l nodes = 2 : ppn=8
#PBS − l wal l t ime =00 :05 :00
#PBS −N ca lc_p i
#PBS −S /bin/bash
#PBS − j oe
#PBS −M youremailaddress@unm . edu
#PBS −V

module load openmpi−3.1 .1− i n t e l −18.0.2− vde2 j7x
module load anaconda
source ac t i v a t e wheeler_mpi_py2

mpirun −n $PBS_NP python calcP iMPI . py
16

	The Center for Advanced Research Computing
	High Performance Clusters (and Wheeler)
	Example Problem: Calculate

