
John Quince Wofford III

Candidate

Computer Science

Department

This thesis is approved, and it is acceptable in quality and form for publication:

Approved by the Thesis Committee:

Patrick Bridges

Chairperson

G. Matthew Fricke

Member

Patrick Widener

Member

John Patchett

Member

i

Reproducible application platforms for
distributed computing systems

by

John Quince Wofford III

B.S., Interdisciplinary Computing - Physics, U. of Kansas, 2017

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2020

ii

Dedication

To Wes,

who taught me that a complex thing is a series of simple things

strung together with marketing.

iii

Acknowledgments

Thanks to Patrick Bridges and the Scalable Systems Lab for shining a light on
systems research to show me how fun and interesting it can be.

Thanks to John Patchett and Jim Ahrens for meeting with me at SC16 and
for giving me a chance at Los Alamos National Laboratory. Thanks to John and
Jim for giving me the push I needed to pursue a graduate degree. Thanks to Mike
Lang, Linn Collins, Dave Rich, David Rogers, John Patchett and the Department
of Energy for coming together in financial support of this effort. Thanks to the
National Physical Science Consortium for their tuition assistance. Thanks to Andrew
Younge for long discussions on containers and their potential in HPC. Thanks to Ben
Allan, whose insight was crucial to the success of my LDMS integrations. Thanks to
Josh Hursey for clearly (and repeatedly) explaining exactly how Open MPI launches
distributed applications. Thanks to Ivo Jimenez, who allowed me to guide parts of
his workflow management project to suit my needs. Thanks to my lab peers for their
companionship: Pepper Marts, Keira Haskins, Sahba Tashakkori, Soheila Jafari,
Jered Trujillo, and Zeinab Akhavan. Thanks to my committee for their attention
and guidance: Patrick Widener, G. Matthew Fricke, John Patchett and Patrick
Bridges. Thanks to Nick Abel, Scott Levy, and Kurt Ferreira for their thoughts and
direction on the first iterations of this thesis. Thanks to Ryan Grant, Matt Dosanjh,
and Whit Schonbein for their guidance on my defense presentation. Rashid Yousefi,
thank you for sharing your gift for computer science with me and with anyone who
needed it. So many CS students at UNM thrived because of your generosity, and I
want to be sure that you know that.

I would like to thank the UNM Center for Advanced Research Computing and
Texas Advanced Computing Center for providing the HPC resources used in this
work.

Thanks to my Dad, for believing in my abilities and for sharing his passion for
problem solving. I pride myself in providing working solutions to real problems that
people actually have, and that drive comes from him.

Thanks to my Mom, for her good humor. Her tolerance for listening to outlandish
plans brought me comfort during the various career upheavals leading up to this
career, which I love. Being spontaneous and affable is a great joy, and I learned that
from her. I also blame her for forgetting where I put the car keys1.

Finally, thanks to my wife Alicia, who has learned more about computer science
than she might have liked. Alicia, I deeply appreciate that you make an effort to
care about what I care about and engage with my curiosity...even when I’m curious
about kernel abstractions.

1Oh, wait, there they are.

iv

Reproducible application platforms for
distributed computing systems

by

John Quince Wofford III

B.S., Interdisciplinary Computing - Physics, U. of Kansas, 2017

M.S., Computer Science, University of New Mexico, 2025

Abstract

A scientific conclusion requires falsifiable evidence. Results from distributed sys-

tems research are often difficult to reproduce because these systems consist of mul-

tiple nodes, each running independent system software and communicating across

inter-node devices. This work motivates, describes, and demonstrates a reproducible

application platform for distributed computing systems based on a layered, container-

based software stack. This system effectively moves all application software depen-

dencies from the host to a portable container. Each layer represents a particular

functionality of the software stack. The layers are modular and extensible so that

results are not only repeatable, but they can also be built on to produce new re-

sults. This platform was developed to validate the scaling behavior of an application

performance model. It was first run on one HPC system (CARC-Wheeler). It was

modified slightly and then run on a second HPC system (TACC-Stampede2). The

v

reproducible application platform gives researchers more flexibility to use and conve-

niently share custom software stacks, reduces the burden on system administrators

to maintain libraries required for individual research efforts, and eliminates the effort

required to re-use previous work in related experiments.

vi

Contents

List of Figures xi

Glossary xiii

1 Introduction 1

1.1 Reproducible platform goals . 2

1.1.1 Repeatability ∈ reproducibility 2

1.1.2 Application portability and extensibility 4

1.1.3 Re-usability and accessibility 4

1.2 Background . 5

1.2.1 Virtualization . 6

1.2.2 Containers . 8

1.2.3 Communication libraries . 11

1.2.4 Performance monitoring . 11

1.2.5 Scientific workflow managers 14

vii

Contents

1.2.6 Reproducibility and repeatability 14

1.3 Contributions . 15

1.4 Thesis outline . 16

2 Related works 17

2.1 Introduction . 17

2.2 Containers . 18

2.2.1 Container image layering . 19

2.3 System and application sampling . 23

2.4 Experiment workflow managers . 24

2.4.1 Research artifacts . 24

2.4.2 Experiment workflow managers 25

2.4.3 Container-specific workflow managers 25

2.4.4 Machine learning workflow manager 26

2.4.5 Lightweight experiment workflow manager 26

3 Reproducible Application Platform 28

3.1 Introduction . 28

3.2 Platform design . 28

3.2.1 The experiment pipeline and container orchestration system . 29

3.2.2 The distributed container launch 32

viii

Contents

3.2.3 Container image stacks . 33

3.2.4 Development paradigms . 34

3.2.5 Research artifacts . 38

3.3 Platform implementation . 38

3.3.1 Experiment pipeline . 38

3.3.2 Layers of the container image 41

3.3.3 Distributed application launch mechanism 45

3.3.4 Re-using and extending the container image stack for new work 46

4 Platform Evaluation 49

4.1 Introduction . 49

4.2 Evaluating the reproducible application platform 49

4.2.1 Repeatability . 50

4.2.2 Portability . 51

4.2.3 Accessibility . 53

4.2.4 Re-usability . 55

4.2.5 Extensibility . 56

4.3 Reproducing a previous work . 57

4.3.1 The BSP prediction model . 57

4.3.2 Collecting application outputs 58

ix

Contents

4.3.3 Enabling general collective interval measurement with perfor-

mance monitoring tools . 58

5 Conclusion 60

5.1 Summary . 60

5.2 Future work . 61

5.2.1 Using communication library calls as a proxy for application

behavior . 61

5.2.2 HPC job scheduler with layered container base images 61

5.2.3 Pantheon: reproducibility with simpler tools 62

5.2.4 Volunteer computing . 62

5.2.5 Containers over virtual machines 63

References 64

x

List of Figures

1.1 Network performance demonstrates that no single metric can capture

virtualization overhead . 7

1.2 Full virtualization shares network bandwidth efficiently, even under

contention, but is not a holistic performance metric 7

1.3 Containers may perform better under CPU load for some perfor-

mance metrics . 8

3.1 The experiment pipeline can be viewed as a DAG 29

3.2 A typical launch of L1 and L2 on an HPC system 33

3.3 Image stacks build functionality iteratively, reducing time to deploy-

ment . 35

3.4 Image stacks enable efficient experiment re-usability through modu-

larity . 36

3.5 There are two development modes: local development, and deployed

container development. 37

xi

List of Figures

3.6 Local images are pushed to a cloud provider, downloaded to a dis-

tributed computing environment, and then deployed to a host filesys-

tem during experiment pipeline execution. 37

4.1 The Bulk Synchronous Parallel (BSP) application performs similarly

on Wheeler and Stampede2. Intervals between collectives follow sim-

ilar distributions on both systems. 53

4.2 Coupled system and application data shows that the implementa-

tion’s research artifact to explore the state of a system at a particular

stage of an application run. 57

xii

Glossary

ABI compatibility A binary that is ABI compatible with a second binary will run

in place of the second binary without modifications, provided that

necessary shared libraries are present, and similar prerequisites are

fulfilled.

bulk synchronous parallel Bulk synchronous parallel (BSP) applications follow a

design paradigm which consists of data distribution, asynchronous

program execution, and episodic synchrony.

container Containers are a layer of OS abstraction similar to a virtual ma-

chine, but without the flexibility and overhead of full kernel em-

ulation. Container guests share the kernel with the host system.

Linux kernel namespaces enable configurable host sharing, so that

container runtimes may choose how much to share with the host at

the time the container is executed.

DevOps Short for ”Development Operations”. DevOps is a set of prac-

tices that combines software development (Dev) and information-

technology operations (Ops). This is a school of system administra-

tion which seeks to provide software developers with the platform

they need to quickly write and continuously test release software for

a wide range of computing environments.

xiii

Glossary

generalized extreme value theorem Generalized extreme value (GEV) theory is

concerned with statistics of summary statistics, such as distributions

of maximums. This theory is used to describe 10 year flood plains

and the behavior of BSP applications, among other things.

high performance computing (HPC) A distributed computing system that is

shared among users to perform complex computation. The scale of

computation on HPC systems exceeds the ability of a single com-

puter by multiple orders of magnitude through parallelism. Re-

sources are allocated according to scheduling policies in accordance

with user requests and site-specific fairness policies.

input deck The input deck is a set of parameters that will affect a running

application. Problem size, problem shape, and error tolerance are

all examples of things that might be defined in an input deck.

kernel Throughout this document, kernel refers to the core system software

that coordinates a system’s hardware/software interface.

namespace Namespaces are a Linux kernel feature which allow new process ids

to fork with the host operating system cloned. A cloned namespace

is then decoupled from the host, such that similarity is guaranteed

at the point of cloning, and not guaranteed after that point.

reproducibility and repeatability Throughout the course of this thesis, repeatabil-

ity refers to the ability to repeat a scientific result. Reproducibility

refers to the entire process which delivers a repeatable result.

research artifact A research artifact is a clearly defined experimental outcome. Re-

search artifacts can be used as a tangible, falsifiable experiment

outcome.

xiv

Glossary

Software stack A software stack is a set of software required to run an application.

xv

Chapter 1

Introduction

Experimental results must be repeatable in order to be validated and falsifiable. Sci-

entific discovery can not proceed safely without these qualities. Computing systems

have quickly evolving hardware and software landscapes, making experimental vali-

dation difficult. Distributed computing systems additionally suffer from added com-

plexity due to coordination needs and potentially heterogeneous hardware/software

platforms. Because of this, papers are published, systems change, and results are

sometimes taken in good faith or reproduced on newer systems only with considerable

effort.

Science is an iterative process. Although we rely on previous publications as a

foundation for new works, there does not exist a widely used reproducibility plat-

form for distributed computing. Such a platform would allow researchers to literally

reproduce a previous work with very little work, make small changes to the platform,

and produce new results without the need to fully develop their own software stack

and deployment system on a targeted infrastructure.

My thesis is that a reproducible application platform for distributed computing

can be achieved with container technology on high-performance computing plat-

1

Chapter 1. Introduction

forms. This document describes the design, implementation, and evaluation of such

a platform.

1.1 Reproducible platform goals

Through the course of this work, I identified five desirable characteristics for a re-

producibility platform:

• Repeatability: Results can be demonstrated on demand by anyone from a

targeted infrastructure.

• Portability: The system can be modified to run on different systems.

• Extensibility: The system is modular and can consist of multiple dependent

parts.

• Re-usability: Previous work can be re-used in future work.

• Accessibility: The system is easy to use and develop.

This document presents the design and implementation of a new software system for

high-performance computing systems that provides all of the desired reproducibility

features presented in this section.

1.1.1 Repeatability ∈ reproducibility

Repeatability is where reproducibility begins. While experiment validation in the

form of repeatability is an important and active research area [22], reproducibility is

a larger concept. In order for an experiment to be repeatable the researcher must per-

form the same steps to reach the same conclusion. In contrast, when an experiment

2

Chapter 1. Introduction

is reproducible, researchers are able to use the same experiment infrastructure with

slight modifications to produce results that are distinct from the original experiment.

Repeatability is concerned with the ability to repeat a previous result. Reproducibil-

ity is concerned with the ability to reproduce the stages of an experiment in a way

that allows extending the state of the art. Repeatability focuses on demonstrating

provenance for a claim. Reproducibility extends the repeatability goal. It makes the

procedures which generated those results immediately accessible for future work.

Reproducible results need context. Experiments must establish a context and

control for nuisance variables. The context of a distributed computing experiment

includes:

• The hardware of multiple potentially heterogenous computers

• The software running on those computers

• The devices and algorithms which allow the computers to communicate with

each other

• The algorithms which govern the behavior of an application of interest

• Power delivery to the system

• and so on...

Reproducibility for distributed computing Distributed computing systems

are often a shared resource, and the software available on these systems is constantly

evolving. System administrators do their best to provide relevant software packages

and libraries to distributed system users. Module loading systems allow system

administrators to prepare loadable sets of packages. Researchers working in these

3

Chapter 1. Introduction

shared environments build new and highly customized software against these system-

provided modules, but lack the ability to share this environment easily with others.

These problems are further complicated when a software system must be tested on a

different distributed computing system, which may be running an entirely different

operating system. Consequently, papers in this field are either taken in good faith,

or reproduced only with considerable effort.

1.1.2 Application portability and extensibility

Reproducing distributed computing results is generally impractical due to a lack of

tools. Each time a distributed computing paper is published and we seek to take

advantage of its methods, a researcher must first reproduce the software stack on a

system they have access to. The utility of previous work is improved when someone

can immediately take that previous work to another system, use it near-verbatim,

and make iterative changes toward new research goals. The scientific impact of a

result will be magnified when researchers can take the same software system deployed

to validate a publication, and deploy it on a new system, with modifications that

improve the state of the art.

1.1.3 Re-usability and accessibility

Module loading systems allow software developers to select from a list of available

software. These modules are curated by system administrators. Module loading

systems provide a flexible method for users to control their software environment,

but the availability of this common software is not guaranteed forever. Even with a

common software base, reproducing software stacks between different users requires

effort. This system enables users to develop their own software stacks, moving the

burden of software stack maintenance from the distributed system administrator to

4

Chapter 1. Introduction

the distributed system user. If the burden is tolerable, users gain the advantage of

consistently re-usable, modular, software stacks. Users often lack the technical exper-

tise required to manage and share a software stack with loadable modules. However,

most users do have the expertise required to manage a software stack on personal

computing environments. The ideal system can be developed on personal computers,

where software stacks are managed intuitively with package managers, and system

resource constraints such as time-sharing and compute cost are less important. The

ideal system can be deployed on distributed computers. It must be easy to tweak

and test these systems. The system must achieve the same flexibility as a module

loading system, without the same complexity. If it is not easy to iterate on previous

results, the system will not be used.

1.2 Background

The reproducible application platform brings together and extends three areas of

distributed computing research: user-defined software stacks, distributed software

orchestration, and distributed application performance monitoring. In Section 1.2.1

I discuss virtualization, which enables portable user defined software stacks. In Sec-

tion 1.2.2, I discuss how containers safely provide user defined software stacks for

shared systems. In Section 1.2.3, I discuss how modern communication libraries or-

chestrate jobs on HPC systems. In Section 1.2.4, I discuss performance monitoring

and why it is commonly useful in computer systems research. Section 1.2.5 dis-

cusses how experiment workflow managers attempt to bring all of these components

together.

5

Chapter 1. Introduction

1.2.1 Virtualization

Virtualization provides software portability across platforms and flexibility to run

independently from the host environment [8] [29] [37]. Often virtualization requires

some compute overhead to achieve this.

Virtualization is useful for creating portable and flexible software stacks but is

complex to implement. The lowest level interface that the operating system interacts

with is the kernel. That is to say that the kernel interface is the closest interface

to the hardware that the operating system communicates with. The kernel is an

abstraction layer which makes process management and scheduling easier for OS

developers. When the system is more general, a single command may translate to

multiple machine architectures. This reduces the amount of work required to interact

with a system form a programming perspective. However, that improved generality

increases implementation complexity for the virtualization system. This generality

is also a potential source of overhead. Virtual machines implement an abstraction

on top of the host kernel. Not only do virtual machines emulate the kernel itself,

but they often emulate hardware which the virtual kernel runs on. This layered set

of abstractions is common on a fully virtualized system.

While fully virtualized systems make portability goals more achievable, the applica-

tion runtime may incur substantial overhead for some tasks. I performed some tests

to independently verify the overhead of several virtualization techniques considered

through this thesis work. In particular, I tested bandwidth and latency from a com-

puter connected to the UNM gigabit network and the CARC-Wheeler headnode. I

compared this baseline (native) performance with several of the virtualization tech-

niques I considered for the reproducible application platform. Figure 1.1 shows the

network overhead for Singularity, Docker, and KVM (a full virtualization technique).

6

Chapter 1. Introduction

Figure 1.1: Network performance demonstrates that no single metric can capture
virtualization overhead

(a) Bandwidth performance is similar
across virtualization technologies

(b) Latency performance differs across virtual-
ization technologies

As this figure shows, virtualization overhead is not always noticeable for every met-

ric. Network bandwidth is relatively unaffected by virtualization (Figure 1.1a, 1.2),

but latency overhead is significant (Figure 1.1b).

Figure 1.2: Full virtualization shares network bandwidth efficiently, even under con-
tention, but is not a holistic performance metric

7

Chapter 1. Introduction

Figure 1.3: Containers may perform better under CPU load for some performance
metrics

Although no studies to date have shown precisely why, containers may even im-

prove device performance under CPU load as shown in Figure 1.3 and as noted in

[14] and anecdotally elsewhere.

1.2.2 Containers

Containers are a form of virtualization and allow users to develop a software stack

which is independent of the operating system that they run on without the over-

head of full system virtualization. They are widely used in industry, where soft-

ware developers need to test their work on multiple platforms with limited hardware

availability. However, containers are most commonly used in data centers or dis-

tributed systems where software developers and administrators run trusted software

with privileged access. Docker [35] is a container solution which is popular when

running trusted software from privileged accounts. Docker is not popular on high

performance distributed systems because the systems are shared, users do not have

privileged accounts, and Docker may introduce some performance overhead.

8

Chapter 1. Introduction

Research software is inherently experimental and potentially confidential. In

order to facilitate fair sharing of resources, some limits on privileged access are re-

quired. Several container runtimes exist which are suitable for untrusted workloads.

HPC-friendly container runtimes include: Singularity [33], CharlieCloud [41], and

Shifter [28]. Each of these solutions provide custom software stack safely. Char-

lieCloud uses a Linux kernel feature called “namespaces” to clone the state of the

host system and make changes which only affect the running container. Shifter uses

a whitelist of acceptable container images to limit risk, at the cost of total flexibility

for the user. Singularity either uses namespace kernel features like CharlieCloud, or

makes selective use of privileged commands using SETUID runtime binaries. In the

latter case, Singularity allows the user to execute privileged commands but only as

granted by Singularity. Singularity is used in this work and described in detail in

Chapter 2.

Linux namespaces

Containers are a partial virtualization technique that allows custom software stacks

to run on shared computers without privileged access. Running containers will mostly

ignore the host computer’s software configuration and run with a container-provided

software configuration. Specifically, containers allow a user to run a custom software

stack while sharing the host kernel, circumventing the need for costly kernel emula-

tion. Containers are the partial kernel abstraction which inspired the development

of Linux namespaces [16]. Namespaces are a kernel feature that allow a running

program to use parts of the host operating system, while mapping over key function-

ality to run custom software. Namespaces are what give containers the power to run

custom software without the overhead of full virtualization (virtual machines).

9

Chapter 1. Introduction

Full virtualization versus containerization Containers do not require kernel

emulation, and are therefore said to be “partial” virtualization. Since containers do

not require kernel emulation overhead, they match native software performance in

many cases. Namespaces are the key container feature which allow the host kernel

to operate as if it were running in isolation. Namespaces offer better performance,

but are limited when compared to full virtualization. Namespaces force us to share

the host kernel, while full virtualization can run any kernel independent of the host.

However, the kernel changes much less frequently than other system software, so this

limitation is not an overwhelming reason to choose full virtualization over containers

for this work.

Containers can provide a custom software stack without overhead. Today

it is common for containers to be associated with some overhead, but this is only

the case when containers are orchestrated over more complex abstractions, such as

emulated kernels or virtual networks [45] [48]. To clarify how we might run a con-

tainer without overhead, consider the mount namespace. It’s common for containers

to bind paths such as /usr/local over the host using the mount namespace. As

long as this bind mount is located on the same device where the original /usr/local

path exists, why should we expect this use of namespaces to incur overhead?

Containers may or may not operate with overhead. The performance im-

pacts of namespaces are not always obvious. In general, when a layer of indirection

is required some compute power is required to translate from the more general to

the less general. Docker, for instance, uses software IP tables to route packets to

the container, much like full kernel virtualization techniques. Singularity by contrast

shares the network stack with the host, so that an intermediate translation is not

required. Docker’s network services have some overhead, while Singularity does not

(see Figure 1.1b). When designing any experiment pipeline, it’s important to be

10

Chapter 1. Introduction

aware of these sources of potential overhead. The reproducible application platform

avoids network latency overhead by using the Singularity runtime.

1.2.3 Communication libraries

The defining characteristic of any distributed application is the ability to commu-

nicate across physically distinct hardware devices. Communication libraries are de-

signed to handle this problem, but they are not currently designed with container

run-times in mind. The Message Passing Interface (MPI) [47] is a standard that has

been implemented in many different software libraries. MPI specifies the existence of

one or more communication domains: each domain consisting of a master node, and

worker nodes. The master node is responsible for establishing the communication

paths for all communication domains. One such implementation is Open MPI [26],

which is the mechanism I use to coordinate applications across the distributed com-

puter system. I describe how Open MPI is used in Section 3.3.

1.2.4 Performance monitoring

Application performance predictability is a core effort in computer science, and the

empirical study of application performance is often delegated to systems researchers.

Performance monitoring allows a software user to measure and better understand

the behavior of applications and the systems they run on. Measurement tools are

required for someone to study the behavior of the host operating system, container,

workload application, and system hardware. This section describes what a pre-

dictable application is, and performance monitoring tools that enable predictability.

A range of performance monitoring tools is available; timers, tracing, and profiling

techniques are suitable for some prediction models, and these tools are described

below.

11

Chapter 1. Introduction

Application predictability. Application performance predictability is a challeng-

ing, yet consistent goal in computer science. Algorithm behavior is discussed in terms

of math proofs and asymptotic analysis, but in order to predict how an application

might perform on a real shared system, it’s necessary to measure performance char-

acteristics related to the system as whole. A distributed computing system consists

not only of multiple computers, but also the infrastructure which connects them. The

performance of an application depends on how these intermediate devices are being

used by other users on the system. Not all of these subsystems can be controlled by

the user, but some of them can be monitored and measured. The predictable ap-

plication platform will measure as many of these subsystems as possible and attach

them to application data.

The general strategy used to predict application performance is to run an appli-

cation, measure its resource utilization and execution time, and then use this data

as input to statistical or machine learning models. These models project future per-

formance based on historical performance. Application runtime, memory usage, and

disk usage are a few examples of resources we might like to model in practice. An

analyst can not model and project performance without tools to measure it. There

is a trade-off between thorough application monitoring and realistic run-time. The

more resources a computer uses to measure the performance of an application, the

less resources are available for running the application itself. I describe three styles of

performance monitoring below: timers, full application tracing, and sampling. These

three monitoring styles capture the trade-off between monitoring completeness and

accuracy in production.

Timers: realistic performance with very little detail

Timers are the simplest performance measurement tool available. Application per-

formance is determined by the combination of hardware and software running on a

12

Chapter 1. Introduction

system at the time of execution. Application performance can be measured most

simply with a timer. A timer can answer questions related to the relative perfor-

mance of the same application over previous runs. Even when measuring a single

function call, the operating system itself requires resources which will vary during

the execution of that function call. The timer approach is computationally cheap

and it measures performance accurately, but it fails to take into account how time

is spent within that application and on the hardware systems it runs on. Timers

account for system interference such as network congestion, but they do not allow

an analyst to attribute performance to it.

Full application tracing: detailed information with significant performance

overhead

A full application trace completely maps the execution path of an application with

substantial overhead. This overhead makes application runtimes worse than we ex-

pect without monitoring. Full application traces provide a holistic view of code

execution paths. Full traces suffer from exaggerated runtimes and fail to take into

account the state of the system where the app is running.

Sampling: Configurable detail and overhead

Sampling is a configurable performance monitoring tool. In general, sampling refers

to selecting a set of interesting observations, and taking measurements at a config-

urable frequency. If the sampling frequency is set high enough, sampling can be

used to study every function call during the execution of a program. This extreme

captures the same information as the full application trace. In practice, it’s often a

subset of an application that we wish to sample (just the parts we know represent

potential bottlenecks). Likewise, an analysis technique may not require a sampling

13

Chapter 1. Introduction

every function call a program makes, and a lower sampling frequency can be used in

this case.

1.2.5 Scientific workflow managers

Conditional workflow management is a method to organize experiment logic in the

form of directed acyclic graphs (DAGs), and execute the applications that generate a

reproducible result [15]. Workflow managers such as Pegasus extend these conditional

workflow managers for distributed computing systems to handle mapping experiment

tasks to many worker nodes [23].

Research artifacts motivate published claims. The stages of an experiment

are managed by experiment workflow system. Some experiment workflow systems

define “research artifacts” as experiment deliverables [32]. An experiment workflow

produces a clearly defined research artifact. This research artifact is viewed as the

“data of merit” of a particular experimental result. The claims of an experiment

should be falsifiable using solely the research artifact as evidence. Although the

research artifact may be used to demonstrate a previous result, the research artifact

may also be used as evidence for future work or iterative improvements on previous

work.

1.2.6 Reproducibility and repeatability

Throughout the course of this thesis, repeatability refers to the ability to repeat a

scientific result. Reproducibility refers to the process which includes and delivers a

repeatable result. Reproducible computing has been an active research area for the

annual SuperComputing conference [9], where research artifacts have been defined

by Artifact Descriptions (ADs). Artifact Evaluations (AEs) describe the process

14

Chapter 1. Introduction

for auditing an experiment based on the ADs. Reproducibility was the subject of a

2018 SuperComputing workshop, ResCuE-HPC [5], where issues concerning auditing

and validation in distributed computing were raised, resulting in some differentiation

between repeatability and reproducibility, with repeatability being the more specific

and reproducibility being the more general [34] [31] [40].

1.3 Contributions

This thesis describes the following contributions:

• A new system design based on layered containers. Layered containers increase

the portability and reproducibility of high perfomance scientific software.

• A concrete implementation of this design using a combination of Popper,

Docker, Singularity, Open MPI, and totally untrusted container runtimes.

• Examples of portable software stacks which have been constructed using this

approach. Specifically we demonstrate execution of LANL’s VPIC applica-

tion [20] on UNM’s Wheeler cluster using Open MPI and, with slight modifi-

cations, on TACC’s Stampede2 cluster using MVAPICH. Notably, this is one

of the few instances where an Open MPI-based workload has been executed on

a TACC system.

• A demonstration that the described system can be used to reproduce results

such as those previously described by Mondragon [39].

15

Chapter 1. Introduction

1.4 Thesis outline

This chapter has established motivation for a reproducible application platform. It

provided requisite background to understand the material that follows. Finally, it

listed the set of contributions which are to be described in the remainder of this

document. Chapter 2 discusses related works, and areas where this work extends

the state of the art. Chapter 3 describes the design and implementation of my

reproducible application platform. Chapter 4 describes the evaluation of this system

as a reproducible application platform. Chapter 5 offers concluding thoughts, and

future work.

16

Chapter 2

Related works

2.1 Introduction

My reproducible application platform is novel for its use of layered image contain-

ers. The layered image container discretizes functionality into modular components.

System performance monitoring is provided by one of these layers. An experiment

workflow manager coordinates these containers across the distributed computer sys-

tem. This chapter discusses my novel work and how it relates to existing container

solutions, performance monitoring, and experiment workflow managers.

Section 2.2 discusses containers at length, and how containers are used in my

reproducible application platform. Section 2.2.1 explains how Docker image layer-

ing is used in industry, and how image layering can be a useful tool in research

software development. Experiment workflow managers are described in Section 2.4.

Section 2.3 discusses how performance monitoring is done on large HPC systems,

and how incorporating these tools into a container image stack makes them easier to

use.

17

Chapter 2. Related works

2.2 Containers

My reproducible software platform uses containers to provide custom software stacks

on distributed computing platforms, without privileged container runtimes. This

work uses design patterns from industry and applies them to a shared computing

context, where application workloads are not allowed to have root access. The shared

distributed computing context is different than the typical distributed computing

context. Containers run in a privileged mode in industry, they do not run in a

privileged mode in my system. Containers are not necessarily coupled with an ex-

periment model, but they are coupled with an experiment model in my work. When

containers communicate, my containers communicate over high speed network cards

and are capable of executing tasks over these networks. This section describes exam-

ple container technologies, and the features which I have ported to the distributed

computing context with my reproducible application platform.

Example container systems. Docker [35] is a container solution which man-

ages reproducible software stacks for DevOps use-cases, and we utilize some of the

same tools. Shifter [28], Singularity [33], and CharlieCloud [41] are three container

runtimes that can launch Docker containers without granting privileged access to

unauthorized users. Shifter only allows approved images to launch, and ultimately

launches these containers with privileged access. Singularity achieves “rootless” con-

tainer launch using selective setuid functionality, or through a truly unprivileged

user namespace launch. CharlieCloud launches with the user namespace, exclusively.

This work uses Docker for reproducible platform development, and Singularity for

reproducible platform deployment. The way these development modes interact is

discussed in Section 3.2.4 and visually represented in Figure 3.5.

18

Chapter 2. Related works

2.2.1 Container image layering

The primary novel contribution of my reproducible application platform is the layered

container image design. The vocabulary associated with container technology suffers

from overloaded terms. To better describe the container image layering approach,

this section describes terms which are sometimes misunderstood.

Container environment

In general, the word “container” is used to refer to a running container environment.

The container environment shares the host’s kernel. The running container utilizes

namespaces to provide overlays on the host system such that the entire software

stack can operate independently of the host while still utilizing the host kernel for

process management and scheduling. The container environment is the context from

which a reproducible application workload is called.

Container runtime

The container environment is launched by a container runtime. The container run-

time could be Docker, Singularity, CharlieCloud, or something else. The container

runtime is responsible for launching a process within the context of the container

environment. Container runtimes have many optional launch parameters. Container

runtimes can bind filesystem resources into the guest. Container runtimes typically

clone the mount namespace by default, but any other namespaces can be cloned on

execution as well.

19

Chapter 2. Related works

Container image

The term “container image” is a term popularized by Docker. Docker uses the “con-

tainer image” concept to describe a container build and execution plan. Container

images consist of binary blobs. Each blob represents a deviation from a base image.

A common base image is the ISO format OS distribution package, unpacked on some

available filesystem. If we unpack a standard Linux distribution (say, Debian), and

use chroot on the directory, this is much like a container base image with fewer se-

curity guarantees. Going forward, if I use the word image without context, it should

be interpreted to mean Docker container image.

Once a base image layer is established, a new image layer can be built on top of

it. In this example I will demonstrate how image layering works. The purpose of

this new image layer is to create a script in the container’s view of /usr/bin.

wget http://debian.org/my_dist.iso

unpack my_dist.iso /tmp

chroot /tmp

echo "#!/bin/bash; echo hello world;" >/usr/bin/my_script

chmod +x /usr/bin/my_script

exit

The operations performed between chroot and exit would be captured in an image

blob. This blob could be committed back to a container image. Subsequent image

layers will be generated in the same way.

A container image is distinct from the container. Containers are manifestations of

a container runtime executing a container image to produce a container. Images are

not containers, but a container runtime can launch an image. All processes launched

from the context of a container runtime are said to be ”containerized”.

20

Chapter 2. Related works

Dockerfiles

Docker popularized a scripting paradigm with their “Dockerfile”. A Dockerfile con-

sists of a list of commands to apply to a base image. If we were to create a Dockerfile

from the above chroot example, it might look something like this:

FROM: debian/latest

RUN echo "#!/bin/bash; echo hello world;" >/usr/bin/my_script

RUN chmod +x /usr/bin/my_script

There are three parts to this simple pseudo-Dockerfile:

1. FROM indicates the image we base our new image off of.

2. RUN echo... is the first command that will be saved in the form of an image

layer.

3. RUN chmod +x... is the second command that will be saved in the form of an

image layer.

In this case, the base image is debian/latest. This is meant to represent the latest

Debian release, as deployed from some pre-packaged distribution ISO file. The RUN

commands are simply commands to be issued as the image is built. The image will

save each RUN command as a separate blob in the layered container image. It is

possible to run a Docker image interactively, run from the command line to apply

changes to the running container and commit back to the image. Unfortunately,

image layer blobs do not contain the specific commands issued. The blobs can be

replayed over the image, but command history is not clear unless something like

a Dockerfile is used. Hence, this system encourages the use of Dockerfiles for all

software stack build operations.

21

Chapter 2. Related works

Using Docker as a development platform has ease-of-use benefits, and Docker im-

ages are compatible with the HPC-friendly Singularity and Charliecloud container

runtimes. If someone develops from a computer with a Docker daemon installed and

running, they can test new Docker builds without re-building the entire stack from

scratch. Docker will detect which image layers have changed, and only replay com-

mands from that image layer and dependent image layers. This reduces redundant

build procedures, and greatly expedites container development. Further recommen-

dations for developing HPC applications using the container paradigm are discussed

in Section 3.2.4.

Container image stack

The reproducibility benefits of the container image stack come from the ability to

build image plans on top of previous image plans using the FROM keyword described

in the preceding section. This feature makes Docker images composable. Dockerfiles

are typically kept in a git repository, along with any dependency files a program may

require. The Dockerfile itself is used to COPY files into the image recipe in the same

style as the RUN command. There are two files which commonly appear in Dockerfile

definitions:

entrypoint.sh

commands.sh

The entrypoint file establishes environment variables relevant to the container. The

commands.sh file is where the workload application is called. Typically, commands.sh

is called from entrypoint.sh so that the application workload is called from the

context of the container rather than from the context of the host.

The layering techniques described in this section are commonly used by system

administrators to deliver development environments to software engineers, but their

22

Chapter 2. Related works

applications to research software on distributed computers is novel to my work toward

building a reproducible application platform.

2.3 System and application sampling

This work integrates and packages HPC performance monitoring tools as a part

of a reproducible framework. Performance monitoring is necessary for performance

prediction, and performance predictability is a common goal in systems research. I

demonstrate that deploying a performance monitoring system can be simple to use

with my Docker image layering technique.

A wide range of performance monitoring tools have been developed for HPC

including LDMS [10], Tau [43], HPCToolkit [44], Paradyn [36], and Caliper [19].

Each of these systems have strengths and weaknesses, and each could be appropriate

for inclusion in the system described by this thesis.

In my system, the lightweight distributed metric service (LDMS) provides system

and application performance sampling. LDMS has access to any system metric which

is mounted to the filesystem, and can be configured to sample at variable frequencies.

LDMS can also be configured to write files to temporary storage, and read these back

into the sampling infrastructure at the LDMS configuration’s designated sampling

frequency. This capability allows LDMS to wrap application function calls, write

them to a fast filesystem, and report them in the sampled, time-order metric sets

provided by LDMS.

LDMS is typically maintained by system administrators, and access to LDMS

data must be granted on a per-user basis. In my system, LDMS is integrated as a

Docker image layer. Users have total control over system performance sampling, and

23

Chapter 2. Related works

sysadmins don’t need to manage access to metrics, or spend time maintaining these

performance monitoring systems.

This work extends performance monitoring solutions like LDMS [10] by provid-

ing a means to package monitoring functionality in a software stack which is already

demonstrated on a target infrastructure. Real world systems vary widely in their

hardware and software configurations, so placing a pre-configured system like LDMS

with a working set of default configurations is a time-saving feature for both sysad-

mins and for experiment pipeline developers.

2.4 Experiment workflow managers

This work extends the state of the art in experiment workflow management by com-

bining the experiment workflow manager with a layered container image launch, and

validating that a research artifact is output which conforms to the artifact descrip-

tion.

2.4.1 Research artifacts

A research artifact is the key deliverable for this reproducible platform. An experi-

ment workflow is not falsifiable without a research artifact. The cTuning Foundation,

and particularly their cKnowledge Project [25], began as an effort to evaluate com-

piler optimizations in a reproducible way. Through practical experience they found

that reproducibility was difficult, and developed a set of research artifact criteria

called the Extended Artifact Description Guide [24]. This is relevant to my work,

because I’ve used the concept of research artifacts in the validation stage of my

experiment pipeline. This work focuses on generating the research artifact. The

24

Chapter 2. Related works

reproducibilty platform specifies the processes leading up to the generation of a re-

search artifact.

2.4.2 Experiment workflow managers

Experiment workflow management is a persistent and ongoing challenge for dis-

tributed computing systems, as demonstrated by the 14th annual workshop on Work-

flows in Support of Large-Scale Science (WORKS19). Re-usability, extensibility, re-

peatability, and performance monitoring capabilities are all common goals in the work

on experiment workflow management. Tschueter et al. coupled system performance

data with various stages of an application run [46]. This is similar to my work, but

different because I utilize containers to inextricably link the performance monitor-

ing tools and the application. Mitchell et al. discuss emerging features in workflow

management systems [38], and they identified that modern workflow management

systems typically possess either data-driven workflows and task-driven workflows.

This work incorporates a data-driven workflow in the validation stage of the exper-

iment pipeline, where the experiment will fail if the pipeline does not produce a

research artifact. This workflow is task-driven because all of the steps leading up

to the repeatable research artifact are clearly defined and tracked in version control

systems.

2.4.3 Container-specific workflow managers

Containers are currently used in workflow management systems for HPC, as demon-

strated by the popularity of container workshops such as the CANOPIE-HPC [2]

workshop at the 2019 Supercomputing Conference and the Software Sustainability

Institute’s Containers for Docker Containers for Reproducibility in Reproducible Re-

search (C4RR) [3] workshop. While these workshops describe how to use Singularity

25

Chapter 2. Related works

to launch Docker containers safely in the HPC context, most of the publications de-

scribe how to launch containers using the host communication library (bind method),

or by matching the container communication library with the host’s to facilitate dis-

tributed application launch (hybrid model) [4]. This work uses a technique that

isolates the communication library within the container. The two-phase container

runtime launch featured in this work enables the container to provide its own MPI.

This technique is not widely known, and it is based off of personal discussions with

Joshua Hursey at IBM and Scott McMillan at NVIDIA.

2.4.4 Machine learning workflow manager

Experiment workflow management is crucial in machine learning contexts, because

model efficacy is necessarily determined experimentally. There are a wide range of

tools being developed in this space. MLFlow [49] is representative of the general

approach taken.

MLFlow is a machine learning framework which carefully designs inputs and

outputs so that machine learning results can be cataloged for later analysis. This

work is similar to MLFlow because MLFlow clearly defines end-to-end experiment

stages. This work is different because MLFlow does not consider the software stack

as part of their experiment workflow system. The software stack and its properties

are the key contribution of this work.

2.4.5 Lightweight experiment workflow manager

While the experiment workflow system is crucial to the success of this reproducible

application platform, the needs of this system are simple. A lightweight orchestration

framework is sufficient to coordinate software dependency resolution, host/container

26

Chapter 2. Related works

coordination, and batch job scheduling. Popper [32] achieves all needs in a convenient

Python CLI. Popper is used in this work to coordinate the coarse stages of the

experiment. Popper enables reproducible conditional workflow execution, but it

does not include a method to manage modular software stacks with layered image

containers. A Popper experiment can repeat previous work, and it could re-use

previous work with effort. The image layering technique I demonstrate is a separate

and novel contribution from Popper.

27

Chapter 3

Reproducible Application Platform

3.1 Introduction

In this chapter I present an original reproducible application platform design, and an

implementation of that design. The layered container image is novel and a primary

contribution of this work. Layered container images move all application dependen-

cies from the host to the container. The implementation of this design consists of

popular tools used in new ways to demonstrate new was to built scientific workflows.

The implementation demonstrates functionality with simulated HPC workloads and

actual HPC workloads.

3.2 Platform design

The reproducible application platform consists of two major parts:

1. The experiment pipeline and container orchestration system; and

28

Chapter 3. Reproducible Application Platform

Figure 3.1: The experiment pipeline can be viewed as a DAG

2. The container image stack

3.2.1 The experiment pipeline and container orchestration

system

The experiment pipeline is a tool to organize and deploy containers, coordinate shar-

ing between host and container, and synchronize container deployments across nodes.

The container orchestration system is invoked as part of an experiment pipeline.

29

Chapter 3. Reproducible Application Platform

Organize and deploy software stacks

The experiment pipeline is responsible for selecting and deploying software stacks.

The reproducible software stack is defined independently of host configuration. The

experiment pipeline selects a software stack by referencing a particular, cloud hosted

container. The pipeline is tracked using version control. The logical separation be-

tween pipeline and container can be seen in Figure 3.1, where the nodes represented

as circles are considered separately from the node represented as a rectangle. The

nodes represented as circles (experiment pipeline nodes) depend on the node rep-

resented as a rectangle (container image stack), but the container image stack can

operate independently. The ability for the container to operate independently is

an important development feature, as described in the section on accessibility, Sec-

tion 3.2.4. Containerized software stacks are different than the experiment pipeline,

and their design must be considered independently of the pipeline. Each container

image is managed by its own version control. The most fundamental container defi-

nition is a version control repository, which contains a recipe for how the container

is built. Building the container takes time, however, so the definition file referenced

by version control will also have a pre-built image that may be downloaded and

executed to avoid that build time. The version controlled recipe file provides prove-

nance, and the pre-built container offers a fast deployment option if those assurances

aren’t required.

Coordinate sharing between host and container

This system uses containers to isolate software resources so that the containerized

application references containerized dependencies, ignoring the host configuration

almost entirely. The two things a container can not isolate are the kernel and the

host’s job scheduler. Host kernel sharing is an important performance feature. The

30

Chapter 3. Reproducible Application Platform

implications of host kernel sharing are discussed in Section 2.1. The host’s job

scheduler can’t be isolated because this is the component that actually grants the

user permission to run on the individual nodes of the distributed system.

The experiment pipeline is responsible for launching the container image stack

across many nodes. The experiment pipeline is responsible for supplying application

input parameters, and specific output directories that may be unique to each user

or each experiment run. To handle this requirement, the experiment requires an

interface between the host and container which is well defined. The purpose of

this interface is to define which environment variables from the experiment pipeline

(host), should be shared with the deployed image stack (container).

Synchronize container deployments across nodes

The previous section discusses how the experiment pipeline and a single deployed

container image stack operate together. This section describes how containers are

deployed across nodes and synchronized. Containers are downloaded from some

public and trusted source in a binary format. The container binary is unpacked

into a directory somewhere on a host’s mounted filesystem. It is possible to run

a container directly from the binary, without unpacking. However, deploying the

container binary rather than running the binary directly has four advantages:

1. Deployed containers are easier to work on during development phases. This is

discussed more in Section 3.2.4.

2. Totally unprivileged container launch (no SUID) requires a deployed container

image.

3. Binary container launch consumes memory unnecessarily. When launching a

container from a binary, the entire binary is loaded into system RAM during

31

Chapter 3. Reproducible Application Platform

runtime, for each container launch on that node. If multiple processes need to

use the container during an experiment run, then deploying the image stack

is more memory efficient because the container files are deployed on a read-

only filesystem mount point. Multiple containers can launch from the same

deployed container. Running binaries directly will load all container image

files into memory, one per instance.

4. In order to coordinate the host with the container, the container files must

be edited at runtime to account for the host configuration. This is crucial for

container orchestration, as discussed later in Section 3.3.1.

This section has described how containers are synchronized across a computing en-

vironment. Distributed application launch is discussed in the Section 3.2.2.

3.2.2 The distributed container launch

One of the design goals of this system is to encapsulate the container environment,

so that the only host software dependency is the container runtime itself. In this

case, I use Popper to manage our experiment pipelines. Popper is a Python tool

with a CLI that can be invoked with a simple popper run experiment command.

This is technically a dependency, though we could achieve similar results through

bash scripting alone. Popper is discussed more in Section 1.1.1, Section 3.3, and

Chapter 2. In order to achieve my host isolation goal, a communication library is

used to interface with the host scheduler and establish communication paths between

nodes that will run the distributed application. See Section 1.2.3 for background on

communication libraries. I use a layered container runtime launch strategy to isolate

the container from the host. The container runtime launch occurs in two phases: the

L1 container launch and the L2 container launch. This technique deploys the same

32

Chapter 3. Reproducible Application Platform

Figure 3.2: A typical launch of L1 and L2 on an HPC system

container, twice. This method does not require two separate, deployed container

environments, but it does require two separate container runtime launches.

The L1 container

The layer 1 container (L1) is launched on a master node using the host-provided con-

tainer runtime. Consequently, the container environment must contain a container

runtime which is application binary interface compatible with the host system.

The L2 container

The layer 2 container (L2) is launched from the container environment. This requires

that the container has a container runtime somewhere in it’s software stack. To

repeat the point made regarding L1, the container’s container runtime must be ABI

compatible with the host’s container runtime. A communication library from the

deployed container image stack is launched in L2 to establish connections to worker

processes. The host’s communication libraries are effectively circumvented.

3.2.3 Container image stacks

As described in Section 2.2.1, there are two files which commonly appear in Dockerfile

definitions, and I’ve added a env.sh for this system’s design:

33

Chapter 3. Reproducible Application Platform

entrypoint.sh # Container environment definition

commands.sh # Workload run script

env.sh # New with the reproducible

application platform for

distributed systems.

The purpose of env.sh is to selectively communicate host environment informa-

tion to the container. After the container image is deployed, this host/environment

sharing script must be copied somewhere into the deployed image stack. Finally,

env.sh must be referenced in the container environment file, entrypoint.sh, so that

the container runtime will fail immediately if host/container environment sharing is

undefined. This design places a strict requirement for host/environment sharing,

which is a core requirement for any isolated running environment operating on a

distributed system.

3.2.4 Development paradigms

Deployed, layered image stacks make development tasks easy in several ways:

Convenience and cost efficiency

Developing software stacks on distributed computing systems can cost money. Con-

tainers allow us to do most development work on a local computer, where compute

time is not charged to a cost account. Working locally also means that a connection

to the distributed computer isn’t required to make progress on a project.

34

Chapter 3. Reproducible Application Platform

Figure 3.3: Image stacks build functionality iteratively, reducing time to deployment

Re-usability

The layered image approach discretizes the functionality of a software stack. Each

layer defines its own interface to utilize functionality built into that layer. The re-

quired interface consists of: a container environment script, a host/container sharing

script, and a command script. The command script demonstrates useful functionality

at that layer.

Development modes expedite project delivery

Container development can happen iteratively and quickly, without needing a full

software stack re-deployed for minor changes. I’ve identified two development modes

which have been useful in expediting my work in building and testing reproducible

experiment pipelines for distributed computers (see Figure 3.5):

1. Local development mode: Occurs on a local computer.

2. Deployed development mode: Occurs on the distributed computer, at the

filesystem mount where a container is deployed.

35

Chapter 3. Reproducible Application Platform

Figure 3.4: Image stacks enable efficient experiment re-usability through modularity

Local development mode is useful when a connection to the target infrastructure

is unavailable or when compute time is expensive. Local development happens on

a local computer using a container editor (Docker). Deployed development mode is

useful when troubleshooting a particular application, and greatly reduces the time

to make and test changes, as seen in Figure 3.6. Deployed development takes place

on the target infrastructure, where containerized scripts can be edited and re-run,

either with the help of the experiment pipeline or without. The container image can

execute in a standalone mode for quick tests. Without deployed development mode,

even a simple container run "echo hello world" command would require that

the entire, potentially hour-long process depicted in Figure 3.6 take place.

36

Chapter 3. Reproducible Application Platform

Figure 3.5: There are two development modes: local development, and deployed
container development.

Figure 3.6: Local images are pushed to a cloud provider, downloaded to a distributed
computing environment, and then deployed to a host filesystem during experiment
pipeline execution.

37

Chapter 3. Reproducible Application Platform

3.2.5 Research artifacts

As discussed in Section 1.1.1, reproducibility is a larger concept than repeatability.

The reproducible pipeline must produce evidence, but because it’s goals are more

general than repeatability, another metric of success is required. In this design,

every reproducible application platform is required to output a research artifact. The

research artifact is data which has been sufficiently processed to enable validation.

The research artifact does not necessarily validate a particular result, but a result

should be falsifiable based on the research artifact alone.

3.3 Platform implementation

The previous section describes attributes I identified as important for reproducible

application platforms on distributed computers. This section discusses the details

of an implementation of these design principles. Figure 3.1 illustrates the high-level

structure of the platform described in this section.

3.3.1 Experiment pipeline

In this section I will discuss a particular experiment pipeline, and how the pipeline

framework generalizes to other experimental needs. I am using a python tool, Pop-

per [32], to manage the experiment pipeline. Popper uses a Github workflow syn-

tax configuration file called main.workflow. This file is JSON format, and defines

a directed acyclic graph (DAG). The DAG represents experiment logic. Experi-

ment stages may be defined with parallel dependencies, but a sequential experiment

pipeline was sufficient for this work.

38

Chapter 3. Reproducible Application Platform

My pipeline consists of three sequential stages: setup, run, and validate. These

stages are discussed in detail below:

setup

The purpose of the setup stage is to define an input deck for the application being

studied and to synchronize a container with the host.

Define input parameters. The first step an experiment pipeline user must per-

form is to edit the host/container environment sharing script, env.sh. A

pipeline user is someone who understands the high-level function of the soft-

ware stack but lacks knowledge of its detailed implementation. A pipeline user

might want to change experiment parameters to study output research arti-

facts, for instance. The env.sh script that a pipeline user can modify is found

in the root of the experiment pipeline directory. In env.sh, we specify paths

to the container runtime, paths to output directories and application workload

input parameters (such as how many nodes and processors to use for a par-

allel application run). After the host/container env.sh script is defined, the

pipeline can be executed, beginning with the setup stage.

Pull and deploy a container image. The setup stage begins by pulling a valid

container image from Dockerhub, using Singularity. The container downloads

as a SquashFS binary file. The container is then unpacked in the container

image directory specified by env.sh.

Communicate host environment to deployed container. Once the container

is downloaded and unpacked, env.sh is copied from the experiment pipeline

to the container itself. In an effort to safeguard a container against launching

without knowledge of its host environment, the first thing the container does

in its entrypoint file is attempt to call env.sh. If env.sh does not exist,

39

Chapter 3. Reproducible Application Platform

the container will fail before any real work is done. This ensures that some

information is shared between the container and the system it is running on.

Once the container is unpacked and the environment shared, the setup stage is

complete. For a refresher on entrypoint files, see Related Works Section 2.2.1.

A note on more thorough provenance. Although the pipeline saves time when

pulling an image directly from Dockerhub, full provenance is achieved by build-

ing from the Dockerfile image recipes hosted on Github. As described in Sec-

tion 3.2.1, container images are defined in version control separately from the

experiment pipeline. In this implementation, a GitHub repository exists for

each container. There is a branch for each container which is named to match

the experiment pipeline it is paired with (carc-wheeler and tacc-stampede2).

run

The run stage is responsible for running the application workload. The run stage

makes requests to a job scheduler. This pipeline runs on Wheeler with the

PBS/Torque scheduler and it runs on Stampede2 with the SLURM scheduler. Git

version control allows a pipeline user to swap between a carc-wheeler and a

tacc-stampede2 branch, which makes the appropriate changes to the run script.

Run parameters which affect job launch and runtime behavior were set in the env.sh

file, described in the setup section.

validate

The validation stage is generally used to say something about the hypothesis an

experiment is designed to test. Research artifacts are used to formalize this need

without strictly enforcing any particular result. A research artifact is used as evi-

dence toward some experimental goal. In this pipeline, I wanted to couple system

40

Chapter 3. Reproducible Application Platform

performance data with application data. I use a Pandas dataframe to achieve this,

which is essentially an array with self-describing metadata attached. During the

validation stage of the pipleline, a python script takes the JSON format application

output, and merges it with CSV format LDMS data. The application state is coupled

with the system state, so we can investigate the state of the system at a particular

stage of the application’s execution.

In order to make sure these dataframes can be generated, additional software was

added to the container image stack for analysis. Although it’s common to expect

some flavor of Python to be available on systems, I decided to add these dependencies

to the container so that the pipeline is well encapsulated against potential versioning

issues that might prevent dataframe generation, causing the entire pipeline to fail at

the last stage.

3.3.2 Layers of the container image

This section describes particular layers of the container image used in this work.

Base image layer The image container stack was tested on systems where Centos7

was the host operating system. The base image layer for the container stack

is Centos7. Centos is an open source Linux distribution that is notable for its

use on many clusters. The base image distribution was chosen to match the

host operating system.

Communication layer The first image layer developed specifically for this work is

called docker_base. The image recipe is hosted on Github and may be down-

loaded from https://github.com/unm-carc/docker base. In this git repo, and

all associated git repos, there is a branch associated with each target infras-

tructure. The relevant branches are carc-wheeler and tacc-stampede2. The

41

https://github.com/unm-carc/docker_base

Chapter 3. Reproducible Application Platform

image recipe includes a Dockerfile, and Spack environment files. Spack [27] is a

tool designed to build software from source trees on demand. This allows Spack

users to have greater control over build parameters for software dependencies.

Spack will, by default, build all source dependencies from scratch which can

take a long time. Spack gives greater control over packages at the expense

of build time. We may not always need packages to be built from a specific

source tree version, or a Spack package maybe broken or unavailable. To tell

Spack to rely on the host to provide certain system packages (such as openssl),

we define a packages.yaml file. So long as the package exists in the host

operating system before Spack launches, Spack will simply rely on the host

versions of these dependencies rather than trying to build them from scratch.

The Spack environment is a set of software packages and their build options.

You can formally define a spack environment in a spack.yaml file. This file is

where we select build parameters for the communication library that the im-

age stack will use, OpenMPI version 3.1.4. There is a minor difference between

the carc-wheeler branch and the tacc-stampede2 branch. The Stampede2

branch builds OpenMPI with the Slurm plugin, which is required for commu-

nicating with the scheduler on that system. Similar functionality is provided

on Wheeler by passing the hostfile around to all nodes.

Monitoring layer The Lightweight Distributed Metric Service (LDMS) provides a

practical means to measure the time between collective intervals during the exe-

cution of a bulk synchronous parallel program. LDMS works in the client/server

paradigm, with system samplers acting as clients, and one or more system ag-

gregators working as the server. Samplers are configured to “watch” specific

files mounted on the filesystem at a given interval, such as /proc/meminfo. It

is possible to sample inside or outside of the container. The host has a view

into the container, but the container does not have a view of the host unless

specifically granted by container runtime parameters. LDMS will transform

42

Chapter 3. Reproducible Application Platform

the data within these files, /proc/meminfo for example, to conform to a reg-

ular schema. The LDMS aggregators are also configured with an independent

sampling rate and set of metrics to sample. The aggregator pulls data from

the samplers at that interval, and either writes the data to the filesystem or

submits it to a queueing system (such as RabbitMQ [42]). This system uses a

single aggregator node, pulling from every sampler in 2 second intervals, and

writing data to CSV in a pipeline-configured logging directory. LDMS samplers

are configured to read data in 1 second intervals from:

• /proc/meminfo

• /proc/stat

• /proc/interrupts

• Special counter files located in /dev/shm

In his dissertation and in a subsequent publication [30], Izadpanah extends

LDMS to include MPI sampler functionality. He builds this into the frame-

work by generating wrappers for MPI function calls. When an LDMS sampler

starts up, it begins writing to files in /dev/shm. Every sampling interval, the

aggregator reads these counter files in the same way as it does /proc/meminfo.

LDMS as a pod service Container ochestration frameworks like Kuber-

netes [18] and Podman [7] use the term pod-service to describe services that

must run as separate PIDs alongside a workload application. LDMS runs as a

daemon on each sampler node, and the aggregator runs as a separate service on

the master node. These daemons must be coordinated with the workload. The

aggregator and each sampler are launched as a standalone container process

before the workload runs. Samplers are killed after the application workload

completes, and the aggregator is finally killed by the last stage of the experi-

ment pipeline.

43

Chapter 3. Reproducible Application Platform

Convenient scripts for launching these pod services are referenced in the entry-

point.sh file at this image layer. The entrypoint file also, critically, defines the

LD_PRELOAD_LIBRARY environment variable which is used to wrap and count

MPI calls.

Workload application layer The workload application is a bulk synchronous par-

allel application simulator. A bulk synchronous parallel application is any

program that can be broken down into periods of parallelism with cycles of

synchronization. Mondragon et al. show that under certain conditions, appli-

cation run-time can be predicted at scales previously untested [39].

The performance model If the time between communication collectives can be

represented as an IID random variable, then this is a special class of BSP pro-

gram. In this special case, the time between collectives can be determined by

the maximum run-time of participating worker nodes. According to General-

ized Extreme Value theory (GEV), we don’t need to know the distribution of

the IID random variable between collectives in order to model the maximum

of these samples. So long as the random variable has some distribution, we can

use GEV to predict maximums, given sufficient sample size.

The stages of the simulator program include:

1. Start the application on the master node, using MPI

2. Worker nodes launch. All nodes generate a sample from the same random

variable. The RV’s available are: Gaussian, exponential, Pareto, uniform,

constant.

3. Each worker node sleeps for the time generated by step 2.

4. A cycle completes with an MPI barrier collective. We measure the sleep

time of each worker node, including the sleep time of the maximum node.

44

Chapter 3. Reproducible Application Platform

3.3.3 Distributed application launch mechanism

The application has been tested in the past outside of this experimental pipeline, and

outside of the container context. Making the app work in this context is original work.

The application is launched via the commands.sh file, from the L2 container context.

Output paths are specified in the env.sh script, which establish shared paths between

host and container. The LD_PRELOAD_PATH from the LDMS entrypoint.sh file is

carried over from the LDMS layer. Finally, the communication library must be

considered to successfully execute a multijob launch.

Launching containers in parallel with OpenMPI The mechanisms use to

launch an MPI workload are dependent on the MPI implementation. In one popular

implementation, OpenMPI, when mpirun is called, a connection is established to the

participating worker nodes, and a service daemon (orted) is launched along with a

list of OpenMPI derived arguments. These arguments establish what hardware is

used for communication, among other launch configuration details. Ordinarily, the

host system will search system paths for orted. Since our container provides its

own communication library, relying on system orted would break our distributed

container environment.

OpenMPI provides a shim that allows us to launch a script rather than the

orted available in the host system path. The environment variable that must be

set is OMPI_MCA_orted_launch_agent. This environment variable is set to refer to

a script in commands.sh, just before the L2 mpirun command.

When mpirun is invoked, the launching process is already in the contianer envi-

ronment, so no further action is required on the MPI master node. However, before

OpenMPI sets up communication on the worker nodes, orted must launch from the

container. The script that does this, in this case, is called ompi_launch.sh:

45

Chapter 3. Reproducible Application Platform

module load singularity

singularity run bsp_prototype orted $@

Note that the L1 container launches with by loading the host module directly, in

a Bash script. All the worker nodes launch using communication library mechanisms,

which load a host provided singularity module and then start a service daemon from

the context of the container. This is the reason why it’s important to match container

runtimes between the host and the container.

When singularity invokes the run command, entrypoint.sh is invoked. To re-

iterate, the entrypoint script is used to set up the environment for the container. The

name of the container image here is bsp_prototype. The next argument, orted, falls

through a case statement in the entrypoint script until it matches orted, and then

launches orted from the container context.

That is to say, the OMPI launch script quickly transitions form the L1 context

to the L2 context, with crucial orted command line parameters passed along with

the $@ call in the entrypoint.

3.3.4 Re-using and extending the container image stack for

new work

Each layer of the container image stack is described by a set of scripts: a Dockerfile,

a container environment definition file, a host/container environment definition file,

and a command file.

46

Chapter 3. Reproducible Application Platform

Dockerfile

The Dockerfile begins with a FROM statement. This is the layer that serves as the

base of a new image. It consists of scripts which modify the software stack, and

concludes with defining an ENTRYPOINT and CMD. These refer to a container

environment definition file and a command file, respectively. When re-using a layer

of the image stack, the Dockerfile should be edited to suit the needs of your new

layer. If you’re extending the image stack, a new Dockerfile should be created using

a previous layer as a template.

The entrypoint file

The container definition file (typically entrypoint.sh) defines environment variables

that pertain to the container. This could include PATH environment setting, or other

global variable that are important to your application. When re-using a layer of

the image container the entrypoint file can be modified to suit your needs. When

extending a layer of the image file, you should consider the container environment

definition file in the layer immediately beneath the new layer. Make sure the new

entrypoint file persists global variables that ensure the functionality of the software

stack beneath the new layer, and add new variables for your layer as needed.

The env file

The env.sh file is used to define the elements of the host configuration that must

persist to the container. This includes output directories and application input pa-

rameters. The rules for modifying and extending the verb—env.sh— file are the

same as the entrypoint file.

47

Chapter 3. Reproducible Application Platform

The command file

The command file, typically commands.sh defines useful functionality at a given

layer. This functionality may be as simple as a call to ”bash” so that the container

can be used interactively, or it may be a script that does something more complex.

You can define your command file without consideration for previous image layers,

because the command file is responsible for executing the tasks that your image stack

is designed to provide. It does not matter what previous layers have done. The only

command file that matters is the one on the top of the stack.

48

Chapter 4

Platform Evaluation

4.1 Introduction

In this Chapter, I evaluate the implementation of my reproducible application plat-

form. Section 1.1.1 describes how repeatability is a more specific goal than repro-

ducibility. Repeatability is important to validate results and previous work. Repro-

ducibility is a broader goal to reproduce previously published works while re-using

that work and eliminating the need for re-implementation. Consequently, evaluating

this reproducible application platform will be considered in five parts: repeatability,

portability, accessibility, re-usability, and extensibility.

4.2 Evaluating the reproducible application plat-

form

The evaluation criteria for this reproducible application platform are:

49

Chapter 4. Platform Evaluation

• Repeatability: Results can be demonstrated on demand.

• Portability: The system can be modified to run on different systems.

• Accessibility: The system is easy to use and develop.

• Re-usability: Previous work can be re-used in future work.

• Extensibility: The system is modular and can consist of multiple dependent

parts.

The system will be evaluated based on these goals.

4.2.1 Repeatability

This platform guarantees repeatability for a specific infrastructure. For the first

experiment pipeline, if results are previously published, pipeline outcomes may not

agree with previous research outcomes if the state of the system and experiment

design was not documented. However, in the future, this pipeline will guarantee

that a user can run the same experiment on the same system to generate a research

artifact. Repeatability is not necessarily confirmation of the research outcome. It is

confirmation that a repeatable process exists to produce a tangible research artifact.

The research artifact is evidence that may be interpreted and discussed regarding

published claims.

Research artifacts

A research artifact is a summary that may involve figures, statistics, or other data

products which serve as evidence of a research conclusion. While distributed appli-

cation performance will differ based on the hardware and system state over multiple

50

Chapter 4. Platform Evaluation

runs, a research artifact is always produced. The research artifact is designed to be

a link between the hypothesis and an evidence-based conclusion.

This pipeline has been run by multiple users on CARC’s Wheeler system. In all

cases, a Pandas dataframe is output. The Pandas Dataframe is the research artifact.

Based on these evaluation criteria, the reproducible application platform meets this

repeatability design goal.

4.2.2 Portability

Portability refers to the ability to take an experiment, modify it slightly or not at

all, and run it on a new system. A portable experiment may yield interesting new

data with very little work by the researcher. This section discusses how my design

serves the portability goals outlined in the introduction. It describes safety concerns

particular to shared distributed computers, and how Singularity mitigates that risk.

Finally, it explains how portability was demonstrated in my implementation.

Docker and Singularity

Docker enables local container development, and Singularity deploys and runs the

container on a distributed computer. Docker’s image development platform allows

a pipeline developer to work on a local computer which can be very helpful when

troubleshooting build parameters and small-scale run-time functions.

Singularity as an unprivileged container runtime

Some shared infrastratructures, such as HPC systems, do not allow users to have

access to privileged commands (root access). Local development using Docker image

layering does utilize a privileged account, and this design assumes the user has a

51

Chapter 4. Platform Evaluation

privileged account locally. Once the image is built and subsequently hosted, however,

Singularity pulls those images from a cloud-based host, deploys to a filesystem may

then run applications in an unprivileged mode using the User namespace described

in Section 2.1.

Portable communication systems for distributed computers

The container image stack coordinates its own launch using a 2-phase, layered con-

tainer runtime launch. The communication layer of the image stack is job scheduler

aware, through build parameters chosen in the communication layer Dockerfile. MPI

implementation built into its communication layer. Since the container encapsulates

the communication libraries needed to run a distributed application, the dependen-

cies for the distributed application are fully isolated. The only dependency and

requirement is that the host container runtime matches a container runtime present

within the container. This encapsulation provides application communication porta-

bility across platforms, despite the communication libraries a host system might

support.

Evaluating portability of the implementation

I demonstrate portability by compiling and executing a simulated BSP workload

through an experiment pipeline deployed on both CARC-Wheeler and

TACC-Stampede2. The container was first successfully interfaced with Torque/PBS

scheduler on the Wheeler cluster. I successfully ported the container to Stampede2,

which uses the Slurm scheduler. This port was achieved with a simple change to the

Open MPI build stage. I changed the Dockerfile of the communication layer to port

the image stack from Wheeler to Stampede2. After changing this file, I rebuilt the

entire image stack and deployed on Stampede2. The approximate time to convert

52

Chapter 4. Platform Evaluation

Figure 4.1: The Bulk Synchronous Parallel (BSP) application performs similarly on
Wheeler and Stampede2. Intervals between collectives follow similar distributions
on both systems.

this experiment from Wheeler to TACC was 15 minutes. The build procedure was

unattended and finished in about 2 hours. This success is proof that the system meets

my portability goals. Notably, the container used Open MPI as the communication

library on TACC, which demonstrates that this system can operate without being

constrained by communication libraries on the host (MVAPICH2).

I collected samples at various scales with the same experiment pipelines, and

validated that research artifacts (Pandas dataframes) were produced. I performed a

set of experiments on both Wheeler and Stampede2 at the following scales: 1, 10,

20, 30, 45. The application outputs on both platforms are compared in Figure 4.2.

4.2.3 Accessibility

Accessibility refers to ease-of-use. The solution should be easy to develop, and it

should be easy to use. This approach makes development and usage easier by clearly

defining experiment stages and stage interfaces. Usage is made easier by utilizing

tools which are either self contained, or automate dependency resolutions.

53

Chapter 4. Platform Evaluation

Clearly defined workflows

Experiment workflows can be represented as directed acyclic graphs (DAGs). These

workflows are executed with a lightweight orchestration framework, Popper. A single

popper run command will execute all stages of the DAG (see Figure 3.1). The setup

stage of the DAG satisfies dependencies, the run stage runs the workload application,

and the validation stage prepares the research artifact.

The DAG abstraction makes experiment design tasks clear and therefore eas-

ier to implement. Popper makes experiment execution easy by issuing two simple

git clone and popper run commands.

Freedom to work locally

A user begins developing the container image on a local computer with Docker.

Docker provides an interactive command like which is very similar to the Linux

command line. Saving the state of a Docker image is accomplished through issuing

the docker commit command. These Docker images can be edited on the local

computer, such that an active connection to the remote resource is not required for

much of experiment pipeline development process.

Flexibility to work remotely, offline

A user may edit the deployed container on the distributed system, as appropri-

ate. The user then deploys a Docker container image onto the filesystem with a

singularity pull or scp command. The deployed container image is now mounted

on the filesystem, where all files are visible. The experiment pipeline will execute

them the next time it runs.

54

Chapter 4. Platform Evaluation

Together, the experiment pipeline DAG makes the coarse grain experiment logic

easy to understand for an experiment workflow user and the multiple develop-

ment modes make the pipeline easy to use for experiment workflow developers.

4.2.4 Re-usability

Re-usability is the ability to take an existing work and modify it for new purposes.

I consider each added feature in the software stack a potentially re-usability feature.

The design is modular, so that any layer can be swapped out for a different layer

while leaving intact the layers above and below it. As shown in the Section 2.2.1,

this modularity is achieved through the use of Docker image layers and git-tracked

Dockerfile definitions. This platform achieves re-usability, as demonstrated when I

successfully ported an experiment pipeline from the Torque/PBS scheduler (CARC-

Wheeler) to a SLURM scheduler (TACC-Stampede2). The change was a simple

Open MPI build option added to the image stack at the communication layer.

Later, I replaced the application workload, a BSP simulator, with a real parallel

application, VPIC [21] [1]. In doing so, I demonstrated that all the benefits of the

underlying image stack were available to the new application. LDMS sampled data

for VPIC, just as it had with the BSP simulator. It took less than 15 minutes to

implement this change.

Evaluating the re-usability of the implementation

In order to swap communication layer of the image from a Torque/PBS-aware build

of Open MPI to a Slurm-aware build of Open MPI, I modified the Dockerfile call to

build Open MPI. I included the --with-slurm build parameter.

55

Chapter 4. Platform Evaluation

In order to swap the application layer of the image from the BSP simulator app

to the VPIC app, I copied the Dockerfile from the BSP app, and removed the lines

associated with building that BSP app. I added a line to clone the VPIC application

into the container image. VPIC is unusual in that it builds the application with

its input deck at runtime, so the app was not built from source in the Dockerfile

definition. I also had to persist the entrypoint.sh file for the VPIC layer, because

this file contains references to the LD_PRELOAD library that allows LDMS to count

Open MPI function calls. I defined a new commands.sh file which calls Bash. I

executed the container stack interactively on two nodes, and ran one of the sample

VPIC input decks on those two nodes. I validated that the program terminated

successfully, generated expected outputs. I also validated that LDMS was sampling

the system and MPI calls over the execution of that sample input deck.

By swapping the communication layer, I demonstrate that higher levels of the

image stack are re-usable. Swapping the workload application layer demonstrates

that the lower levels of an image stack are re-usable.

4.2.5 Extensibility

Extensibility is related to re-usability, but refers to the ability to build added func-

tionality into a software stack while leveraging previous work. Original image stack

prototypes ran the workload application itself. Later, I added a system sampling

layer with LDMS built-in. I extended the software stack with new functionality,

demonstrating that this solution satisfies the extensibility design requirement.

Evaluating the extensibility of the the implementation

After extending the image stack to include LDMS, I ran the experiment pipeline to

produce a research artifact. I show an example of coupled application and system

56

Chapter 4. Platform Evaluation

Figure 4.2: Coupled system and application data shows that the implementation’s
research artifact to explore the state of a system at a particular stage of an application
run.

performance in Figure 4.2. The application state is reflected by the rank and interval

labels on the x axis. The system’s state is reflected by the pgfree metric on the y axis.

The pgfree metric is just one of 897 other available performance and application

metrics in the research artifact.

4.3 Reproducing a previous work

This section demonstrates that the platform fulfills these design goals by reproducing

a published result. In this case, I implemented a software stack and experiment

pipeline to evaluate claims based on an application performance predictability model.

4.3.1 The BSP prediction model

The model is valid for all bulk synchronous parallel (BSP) applications. The model

takes time between collective intervals as inputs, and predicts application run-time

at previously untested scales. To evaluate this model, a BSP simulator was produced

57

Chapter 4. Platform Evaluation

by Mondragon et al. [39]. The BSP simulator draws a series of random numbers

from a configurable random variable distribution, and runs in parallel on as many

nodes as there are random numbers. Each node is instructed to sleep and then an

MPI Barrier is called. The time when the MPI_Barrier call returns is recorded, and

a new iteration of the work simulator begins. This goes on for as many iterations as

the user specifies.

4.3.2 Collecting application outputs

The BSP simulator was developed explicitly for the purpose of evaluating the ap-

plication run-time prediction model, and so the time between barriers is measured

and written to an output file in JSON format. The simulator application outputs in-

clude: the random variable distribution from which sleep times are drawn, the shape

parameters for that distribution, the number of times a collective interval should

be performed, the name of the node performing a barrier call, the requested time

between intervals, and the actual time between intervals.

4.3.3 Enabling general collective interval measurement with

performance monitoring tools

In real applications, however, the time between barriers would more likely need to be

inferred somehow. The monitoring software in this work, LDMS, counts the calls to

all Open MPI calls at a configurable interval on the order of seconds. LDMS jointly

collects system state and application state information. The validation stage of the

pipeline couples the state of the simulator program to the period between interval

start and stop tags. The BSP simulator establishes a ground truth for the collective

interval, and communication library data from LDMS can be used to approximate

58

Chapter 4. Platform Evaluation

the collective intervals. The analysis required to estimate those collective intervals

with Open MPI counters is future work, and described in Section 5.2.1.

59

Chapter 5

Conclusion

The goal of my thesis-work was to build a reproducible application platform for

distributed computing that allows platform users to validate and re-use previous

work to build new work. In this chapter, I present a summary of my contributions

and explore future work.

5.1 Summary

In evaluating my thesis, I considered what attributes a useful reproducible application

platform would have and designed a reproducible application platform with those

attributes. I implemented the reproducible application platform based on those

design goals. I introduced a novel layered container approach that makes scientific

results easier to repeat, and easier to re-purpose for future work. Finally, I evaluated

the reproducible application platform based on my design goals.

60

Chapter 5. Conclusion

5.2 Future work

There are many future directions that will extend this reproducibility platform, some

which are direct extensions of the current work and others could more broadly im-

prove the way HPC systems are managed.

5.2.1 Using communication library calls as a proxy for ap-

plication behavior

In this work, I measured application outputs, system state information, and Open

MPI function counters and sent them all to the research artifact. One analysis

goal I did not get to was using the Open MPI call counters to estimate time between

collective intervals. A naive approach would watch the calls to MPI_Barrier and add

the sampling intervals every time the counter is incremented. A more sophisticated

approach would also look at calls like All_Gather and blocking receives.

5.2.2 HPC job scheduler with layered container base images

Modern job schedulers run on HPC systems that run a particular operating system.

Software is installed and managed by system administrators on a base image. Base

image software may be supplemented with module loading systems. The module

loading system is also managed by system administrators. In the future, it is pos-

sible for HPC centers to run a bare-bones host operating system and build a base

software stack as a layered image container. Users of the system can download this

container image to their local computer, swap layers, add layers, and finally upload

the image to a remote host. This model greatly simplifies sharing software stacks

61

Chapter 5. Conclusion

with collaborators. This will greatly reduce the burden on system administrators,

and allow users more control over their computing environment.

5.2.3 Pantheon: reproducibility with simpler tools

Not all reproducibility efforts are containerized. Pantheon [6] is a new project at

Los Alamos National Laboratory with many of the same reproducibility goals men-

tioned here, but the pipelines are achieved through BASH scripting and Git version

control alone. The focus of Pantheon is to create reproducible experiment platforms

with a small set of simple tools. Pantheon grew out of the Cinema Database [11]

project, and has been designed and implemented in parallel to this work. Pantheon

experiment pipelines always produce a research artifact in the form of a Cinema

Database [11]. Pantheon currently operates by automatically building software into

loadable modules, rather than by providing pre-built software stacks through con-

tainers. Pantheon is part of the Exascale Computing Project (ECP), and work will

continue over the duration of that project.

5.2.4 Volunteer computing

With the success of projects liked Folding@Home [17] and SETI@Home [13], any-

one with a computer can and may choose to volunteer spare cycles to solve specific

scientific problems. Projects like the Berkeley Open Infrastructure for Network Com-

puting (BOINC) [12], are building out the communication required for large scale

distributed computing science. Using something like the layered container approach

with BOINC may allow consumer devices to run arbitrary applications rather than

applications which are developed in one-off software development efforts. The conse-

quence of this would enable generic HPC research on a volunteer system. A scheduler

62

Chapter 5. Conclusion

in the cloud could coordinate these applications across a volunteer network, enabling

“citizen scientists” to contributed to generic HPC research tasks.

5.2.5 Containers over virtual machines

Another potential direction for flexible software stacks could take advantage of emer-

gent full virtualization technologies with container technology overlaid. As mentioned

in the Section 1.2.2, not all virtualization overheads are problematic. Increasingly,

applications are bottlenecked at accelerators (GPU’s, NICs) rather than at the pro-

cessor. In these cases, the overhead required to run an emulated kernel is less im-

portant. Features like SR-IOV can safely “pass through” PCI bus devices to the

virtualized guest, providing near-native device performance for the guest. In this

configuration, multiple virtual machines could be running multiple kernels, and users

can still define their own software stacks using the layared container approach. In

this design, sysadmins would manage a set of virtual machines and a base container

image that runs on any of them.

63

References

[1] lanl/vpic: Vector Particle-In-Cell (VPIC) Project. https://github.com/lanl/
vpic, 2015.

[2] CANOPIE HPC Workshop - Containers and New Orchestration Paradigms for
Isolated Environments in HPC. https://www.canopie-hpc.org/, 2017.

[3] Docker Containers for Reproducible Research. https://www.software.ac.uk/
c4rr, 2017.

[4] Singularity and MPI Applications. https://sylabs.io/guides/3.4/

user-guide/mpi.html, 2017.

[5] ResCuE-HPC 2018 Program. https://rescue-hpc.org/program2018.html,
2018 (accessed April 20, 2020).

[6] Pantheon Science — Reproducible Workflows for Extreme Scale Science. https:
//pantheonscience.github.io/, 2019.

[7] Podman. podman.io, 2019.

[8] VMWare - Official Site. https://www.vmware.com/, 2019.

[9] Reproducibility Initiative - SC19. https://sc19.supercomputing.org/

submit/reproducibility-initiative/, 2019 (accessed April 20, 2020).

[10] Agelastos, A., Allan, B., Brandt, J., Cassella, P., Enos, J., Ful-
lop, J., Gentile, A., Monk, S., Naksinehaboon, N., Ogden, J., Ra-
jan, M., Showerman, M., Stevenson, J., Taerat, N., and Tucker,
T. The Lightweight Distributed Metric Service: A Scalable Infrastructure for
Continuous Monitoring of Large Scale Computing Systems and Applications.
In SC ’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Nov 2014), pp. 154–165.

64

https://github.com/lanl/vpic
https://github.com/lanl/vpic
https://www.canopie-hpc.org/
https://www.software.ac.uk/c4rr
https://www.software.ac.uk/c4rr
https://sylabs.io/guides/3.4/user-guide/mpi.html
https://sylabs.io/guides/3.4/user-guide/mpi.html
https://rescue-hpc.org/program2018.html
https://pantheonscience.github.io/
https://pantheonscience.github.io/
podman.io
https://www.vmware.com/
https://sc19.supercomputing.org/submit/reproducibility-initiative/
https://sc19.supercomputing.org/submit/reproducibility-initiative/

References

[11] Ahrens, J., Jourdain, S., OLeary, P., Patchett, J., Rogers, D. H.,
and Petersen, M. An image-based approach to extreme scale in situ visual-
ization and analysis. In SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (2014), IEEE,
pp. 424–434.

[12] Anderson, D. P. BOINC: A system for public-resource computing and stor-
age. In Fifth IEEE/ACM international workshop on grid computing (2004),
IEEE, pp. 4–10.

[13] Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., and
Werthimer, D. SETI@ home: an experiment in public-resource computing.
Communications of the ACM 45, 11 (2002), 56–61.

[14] Arango, C., Dernat, R., and Sanabria, J. Performance evaluation of
container-based virtualization for high performance computing environments.
arXiv preprint arXiv:1709.10140 (2017).

[15] Bahsi, E. M., Ceyhan, E., and Kosar, T. Conditional workflow manage-
ment: A survey and analysis. Scientific Programming 15, 4 (2007), 283–297.

[16] Banga, G., Druschel, P., and Mogul, J. C. Resource containers: A new
facility for resource management in server systems. In OSDI (1999), vol. 99,
pp. 45–58.

[17] Beberg, A. L., Ensign, D. L., Jayachandran, G., Khaliq, S., and
Pande, V. S. Folding@ home: Lessons from eight years of volunteer distributed
computing. In 2009 IEEE International Symposium on Parallel & Distributed
Processing (2009), IEEE, pp. 1–8.

[18] Bernstein, D. Containers and cloud: From lxc to docker to kubernetes. IEEE
Cloud Computing 1, 3 (2014), 81–84.

[19] Boehme, D., Gamblin, T., Beckingsale, D., Bremer, P.-T., Gimenez,
A., LeGendre, M., Pearce, O., and Schulz, M. Caliper: performance
introspection for HPC software stacks. In SC’16: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (2016), IEEE, pp. 550–560.

[20] Bowers, K. J., Albright, B., Yin, L., Bergen, B., and Kwan, T. Ultra-
high performance three-dimensional electromagnetic relativistic kinetic plasma
simulation. Physics of Plasmas 15, 5 (2008), 055703.

65

References

[21] Bowers, K. J., Albright, B. J., Bergen, B., Yin, L., Barker, K. J.,
and Kerbyson, D. J. 0.374 Pflop/s trillion-particle kinetic modeling of
laser plasma interaction on Roadrunner. In SC’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing (2008), IEEE, pp. 1–11.

[22] Collberg, C., and Proebsting, T. A. Repeatability in computer systems
research. Communications of the ACM 59, 3 (2016), 62–69.

[23] Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil,
S., Su, M.-H., Vahi, K., and Livny, M. Pegasus: Mapping scientific work-
flows onto the grid. In European Across Grids Conference (2004), Springer,
pp. 11–20.

[24] Fursin, G., Childers, B., Heroux, M., and Taufer, M. Extended
Submission Guide: artifact appendix. https://ctuning.org/ae/submission_
extra.html, 2015.

[25] Fursin, G., Lokhmotov, A., and Plowman, E. Collective knowledge:
towards r&d sustainability. In 2016 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE) (2016), IEEE, pp. 864–869.

[26] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J.,
Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine,
A., et al. Open MPI: Goals, concept, and design of a next generation MPI im-
plementation. In European Parallel Virtual Machine/Message Passing Interface
Users’ Group Meeting (2004), Springer, pp. 97–104.

[27] Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody,
A., de Supinski, B. R., and Futral, S. The Spack package manager:
bringing order to HPC software chaos. In SC’15: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (2015), IEEE, pp. 1–12.

[28] Gerhardt, L., Bhimji, W., Fasel, M., Porter, J., Mustafa, M., Ja-
cobsen, D., Tsulaia, V., and Canon, S. Shifter: Containers for hpc. In
J. Phys. Conf. Ser. (2017), vol. 898, p. 082021.

[29] Habib, I. Virtualization with kvm. Linux Journal 2008, 166 (2008), 8.

[30] Izadpanah, R., Allan, B. A., Dechev, D., and Brandt, J. Production
Application Performance Data Streaming for System Monitoring. ACM Trans.
Model. Perform. Eval. Comput. Syst. 4, 2 (Apr. 2019), 8:1–8:25.

66

https://ctuning.org/ae/submission_extra.html
https://ctuning.org/ae/submission_extra.html

References

[31] Jimenez, I., and Maltzahn, C. Spotting Black Swans With Ease: The Case
for a Practical Reproducibility Platform, 2018.

[32] Jimenez, I., Sevilla, M., Watkins, N., Maltzahn, C., Lofstead, J.,
Mohror, K., Arpaci-Dusseau, A., and Arpaci-Dusseau, R. The pop-
per convention: Making reproducible systems evaluation practical. In 2017
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (2017), IEEE, pp. 1561–1570.

[33] Kurtzer, G. M., Sochat, V., and Bauer, M. W. Singularity: Scientific
containers for mobility of compute. PloS one 12, 5 (2017).

[34] Mercier, M., Faure, A., and Richard, O. Considering the Development
Workflow to Achieve Reproducibility with Variation.

[35] Merkel, D. Docker: Lightweight Linux Containers for Consistent Develop-
ment and Deployment. Linux J. 2014, 239 (Mar. 2014).

[36] Miller, B. P., Callaghan, M. D., Cargille, J. M., Hollingsworth,
J. K., Irvin, R. B., Karavanic, K. L., Kunchithapadam, K., and
Newhall, T. The Paradyn parallel performance measurement tool. Com-
puter 28, 11 (1995), 37–46.

[37] Miller, K., and Pegah, M. Virtualization: virtually at the desktop. In
Proceedings of the 35th annual ACM SIGUCCS fall conference (2007), pp. 255–
260.

[38] Mitchell, R., Pottier, L., Jacobs, S., da Silva, R. F., Rynge, M.,
Vahi, K., and Deelman, E. Exploration of Workflow Management Systems
Emerging Features from Users Perspectives. In 2019 IEEE International Con-
ference on Big Data (Big Data) (2019), IEEE, pp. 4537–4544.

[39] Mondragon, O. H., Bridges, P. G., Levy, S., Ferreira, K. B., and
Widener, P. Understanding performance interference in next-generation HPC
systems. In SC’16: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (2016), IEEE, pp. 384–
395.

[40] Oliveira, L., Wilkinson, D., Mosse, D., and Childers, B. R. Support-
ing thorough artifact evaluation with occam.

[41] Priedhorsky, R., and Randles, T. Charliecloud: Unprivileged containers
for user-defined software stacks in hpc. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis
(2017), pp. 1–10.

67

References

[42] Rostanski, M., Grochla, K., and Seman, A. Evaluation of highly avail-
able and fault-tolerant middleware clustered architectures using RabbitMQ. In
2014 federated conference on computer science and information systems (2014),
IEEE, pp. 879–884.

[43] Shende, S. S., and Malony, A. D. The TAU parallel performance system.
The International Journal of High Performance Computing Applications 20, 2
(2006), 287–311.

[44] Tallent, N., Mellor-Crummey, J., Adhianto, L., Fagan, M., and
Krentel, M. HPCToolkit: performance tools for scientific computing. In Jour-
nal of Physics: Conference Series (2008), vol. 125, IOP Publishing, p. 012088.

[45] Torrez, A., Randles, T., and Priedhorsky, R. HPC container runtimes
have minimal or no performance impact. In 2019 IEEE/ACM International
Workshop on Containers and New Orchestration Paradigms for Isolated Envi-
ronments in HPC (CANOPIE-HPC) (2019), IEEE, pp. 37–42.

[46] Tschueter, R., Herold, C., Williams, W., Knespel, M., and We-
ber, M. A Top-Down Performance Analysis Methodology for Workflows:
Tracking Performance Issues from Overview to Individual Operations. In 2019
IEEE/ACM Workflows in Support of Large-Scale Science (WORKS) (2019),
IEEE, pp. 21–30.

[47] Walker, D. W., and Dongarra, J. J. MPI: a standard message passing
interface. Supercomputer 12 (1996), 56–68.

[48] Younge, A. J., Pedretti, K., Grant, R. E., and Brightwell, R. A
tale of two systems: Using containers to deploy HPC applications on supercom-
puters and clouds. In 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom) (2017), IEEE, pp. 74–81.

[49] Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Kon-
winski, A., Murching, S., Nykodym, T., Ogilvie, P., Parkhe, M.,
et al. Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data
Eng. Bull. 41, 4 (2018), 39–45.

68

	List of Figures
	Glossary
	Introduction
	Reproducible platform goals
	Repeatability reproducibility
	Application portability and extensibility
	Re-usability and accessibility

	Background
	Virtualization
	Containers
	Communication libraries
	Performance monitoring
	Scientific workflow managers
	Reproducibility and repeatability

	Contributions
	Thesis outline

	Related works
	Introduction
	Containers
	Container image layering

	System and application sampling
	Experiment workflow managers
	Research artifacts
	Experiment workflow managers
	Container-specific workflow managers
	Machine learning workflow manager
	Lightweight experiment workflow manager

	Reproducible Application Platform
	Introduction
	Platform design
	The experiment pipeline and container orchestration system
	The distributed container launch
	Container image stacks
	Development paradigms
	Research artifacts

	Platform implementation
	Experiment pipeline
	Layers of the container image
	Distributed application launch mechanism
	Re-using and extending the container image stack for new work

	Platform Evaluation
	Introduction
	Evaluating the reproducible application platform
	Repeatability
	Portability
	Accessibility
	Re-usability
	Extensibility

	Reproducing a previous work
	The BSP prediction model
	Collecting application outputs
	Enabling general collective interval measurement with performance monitoring tools

	Conclusion
	Summary
	Future work
	Using communication library calls as a proxy for application behavior
	HPC job scheduler with layered container base images
	Pantheon: reproducibility with simpler tools
	Volunteer computing
	Containers over virtual machines

	References

