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ABSTRACT

Complex systems are difficult to study because of their many interacting parts,

emergent phenomena, and feedback loops. These systems underpin all life on

Earth. We need improved tools for seeking an understanding of them. This body

of research presents my investigations into data-driven methods for understand-

ing complex systems, including my invention of a novel causal discovery meta-

algorithm for space-time gridded data. I demonstrated machine learning feature

importance and causal discovery capabilities for comparing simulated and ob-

served climate data. I developed a new benchmark for modeling space-time dy-

namics of locally driven phenomena and examined a prominent causal discovery

algorithm. Finding that contemporary causal discovery struggles with the high-

dimensionality of space-time gridded data, I developed Causal Space-Time Stencil

Learning (CaStLe), a causal discovery meta-algorithm for recovering the space-

time evolution of advective phenomena. Finally, I extended CaStLe to recover

multivariate space-time dynamics. This research enhances scientists’ capabilities

to explore and understand complex systems in our universe.
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7.1 Schematic overview of the key elements of CaStLe and the process

followed in its application to Mount Pinatubo’s eruption of strato-

spheric aerosols. Beginning with Earth system model output, Step

1. is to collect stratospheric wind and aerosol data. Step 2. is to

apply our novel CaStLe meta-algorithm to the aerosol data to obtain

a causal graph describing the space-time evolution of the aerosols.

Finally, we use the wind fields to help validate the causal graph re-

sults in Step 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
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7.2 Illustration of CaStLe (Algorithm 1) as applied to space-time data

on a 4×4 grid. Step A (§7.6.3): for every interior grid cell, its 3×3

(Moore) neighborhood is selected. (Note, all four 4×4 grids in the

second panel are identical.) Step B (§7.6.3): Data are represented in

a reduced coordinate space obtained by appending time series from

each neighborhood according to its position relative to the neighbor-

hood’s center. Step C (§7.6.3): during the Parent Identification Phase

(PIP), a causal discovery algorithm is used to estimate the parents of

the center time series; the resulting graph forms the causal stencil.

Step D (§7.6.3): the estimated stencil is expanded to its equivalent

representation in the original space. Note that each time chunk (col-

ored intervals in the center panel) in the reduced space corresponds

to an interior grid cell of the original data, and that each edge in the

final causal graph reflects to a stencil edge learned during the PIP.

See §7.6.3 for details. . . . . . . . . . . . . . . . . . . . . . . . . . 187
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7.3 Application of CaStLe-PC-Stable to HSW-V simulation of the 1991

Mt. Pinatubo eruption. The stencils estimated by CaStLe (white)

capture the underlying high-altitude wind fields (green) using only

satellite-measured AOD, with near perfect accuracy in high aerosol

regions (red-orange). Autodependencies are shown with black nodes

where grid cells cause themselves, and gray nodes where there is

no autodependence. All links represent a six hour time lag, the

time resolution of the HSW-V dataset. On longer horizons (bottom

row), CaStLe is able to recover equatorial wind currents as far away

as South America, half-way around the world from Mt. Pinatubo

(white triangle). CaStLe accurately identifies the prevailing west-

erly atmospheric winds because it was able to identify the space-

time dependence between neighboring grid cells. Additional details

are given in Section 7.7. . . . . . . . . . . . . . . . . . . . . . . . 215

xviii



7.4 Causal maps inferred from the PC algorithm applied naively to all

grid cells and CaStLe’s equivalent results immediately to the west

of Mt. Pinatubo; a 35× 35 grid between −20.00◦ to 50.00◦N and

55.00◦ to 125.00◦E in a 8.5 day span after the eruption. All links

represent a six hour time lag, the time resolution of the HSW-V

dataset. As expected, PC struggled with the high dimensionality

and the discovered dependencies do not conform to the ground-truth

understanding that aerosols advected towards the west. It also fails

to identify local dynamics, instead drawing most connections over

great distances. The PC analysis was computed in 729 minutes on

1,600 grid cells, while the CaStLe analysis was computed in 0.46

seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
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7.5 Application of CaStLe-PC-Stable to E3SMv2-SPA simulation of the

1991 Mt. Pinatubo eruption. The stencils estimated by CaStLe

(white) capture the underlying high-altitude wind fields (green) us-

ing only total aerosol optical depth (AOD). Autodependencies are

shown with black nodes where grid cells cause themselves, and gray

nodes where there is no autodependence. All links represent a one

day time lag, the time resolution of the E3SMv2-SPA dataset. The

heatmap depicts AOD from any source at 50 hPa. The top panel

depicts learning from the first 20 days after eruption, which began

on day 15. The bottom panel depicts learning approx 6 months af-

ter the eruption over a 20-day time period. In the more challenging

setting of the fully-coupled E3SMv2-SPA model, our results in the

first weeks are still generally consistent with those in HSW-V pre-

sented in Section 7.7.1, showing that CaStLe is largely robust to

greater complexity. In the bottom panel, the aerosols and winds are

in a different regime. CaStLe stencils are still consistent in the trop-

ics and now begin to recover dynamics pushing aerosols northwards

above central Asia and southwards through western North America.

A more complex model and smaller block sizes illustrate more nu-

anced dynamics, and there is more to learn from these, however, we

leave deeper atmospheric dynamics analysis to future work. . . . . . 217
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7.6 Comparison of CaStLed and non-CaStLed causal discovery approaches

on linear-Gaussian dynamics, including Granger causality or FullCI

(orange), PC (green), PCMCI (red), and DYNOTEARS (purple), as

well as a statistical model of the data generating process (blue) pre-

sented with both MCC and F1 metrics. In the low-sample size regime

(T=10, left) CaStLed approaches can accurately recover the under-

lying causal graph, with performance increasing on larger grid sizes

(solid lines); by contrast, non-CaStLed approaches are unable to per-

form better than mere chance (dashed lines). Even a model based on

the underlying data generating process (Sparse VAR, blue) is signifi-

cantly outperformed by its CaStLed counterpart. In the high-sample

size regime (T=150, right), non-CaStLe approaches have improved

performance but still compare unfavorably with their CaStLed coun-

terparts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
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D1 Application of CaStLe-PC to advection estimation from non-linear

PDE dynamics. In the left panel, the first three columns depict real-

izations of Burgers’ equation under different advection-to-diffusion

regimes; the fourth column depicts the causal stencil identified by

CaStLe-PC; and the final column compares the estimated advection

angle with the true advection angle. The right panel depicts the accu-

racy of CaStLe-PC under various signal-to-noise conditions. Each

combination of advection and diffusion rates were tested with 500

angles sampled uniformly from [0◦,360◦). In low-diffusion (high

SNR) scenarios, CaStLe-PC can identify the underlying advection

clearly (top row of left panel and yellow-green columns in right

panel). By contrast, in low-advection (low SNR) scenarios, CaStLe-

PC struggles to accurately identify the underlying advective dynam-

ics (bottom row of left panel and blue bars in right panel). Even

in highly diffusive scenarios, CaStLe-PC is able to accurately esti-

mate the underlying advection when it is sufficiently strong (around

M/c≥ 20) as shown in the middle row of the left panel. Additional

details are given in D. . . . . . . . . . . . . . . . . . . . . . . . . . 241
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F1 PCA study of Burgers’ equation solution (θ = 45◦, M = 6, c =

0.05). Four empirical orthogonal functions (EOFs) capture≈91% of

variance, with spatial patterns (left) and temporal evolution (right).

The bottom panels show explained variance distribution and PCMCI

causal graph, which fails to accurately represent the known direc-

tional advection process in the underlying PDE, highlighting limita-

tions of this approach for local causal structures in space-time systems.246

F2 PCA-Varimax study of Burgers’ equation solution (θ = 45◦, M =

6, c = 0.05). Four empirical orthogonal functions (EOFs) capture

≈91% of variance, with spatial patterns (left) and temporal evolution

(right). The bottom panels show explained variance distribution and

PCMCI causal graph, which fails to accurately represent the known

directional advection process in the underlying PDE, highlighting

limitations of this approach for local causal structures in space-time

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
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F3 PCA study of the HSW-V dataset, in the time interval 21 days post-

eruption. Four empirical orthogonal functions (EOFs) capture≈85%

of variance, with spatial patterns (left) and temporal evolution (right).

The bottom panels show explained variance distribution and PCMCI

causal graph, which fails to accurately represent the known direc-

tional advection process in the underlying system, highlighting limi-

tations of this approach for local causal structures in space-time sys-

tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

F4 PCA-Varimax study of the HSW-V dataset, in the time interval 21

days post-eruption. Four empirical orthogonal functions (EOFs)

capture ≈85% of variance, with spatial patterns (left) and tempo-

ral evolution (right). Since varimax rotation does not preserve the
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1 Introduction

The principal function of science is to explore and explain our universe. To

fulfill this charge, scientists seek to answer the questions of ’how?’ and ’why?’

In this pursuit, we strive to expand human knowledge, improve the well-being

of all life, and develop practical applications that transform our world. Complex

systems are fundamental to science because they represent the intricate reality of

our world. By their nature, complex systems are difficult to study because of their

many interacting parts, emergent phenomena, feedback loops, and tipping points.

While many complex systems underpin life on Earth, our tools for studying them

are limited.

This dissertation investigates the state of the art in data-driven structure learn-

ing methodologies for explaining and understanding complex systems, particularly

for space-time Earth systems. As I use it in this work, structure learning is a class

of methods that identify underlying dynamics, or structure, from data. In Part I,

I outline the basics of the structure learning task and study how machine learning

feature importance and causal discovery can be used to estimate structure in the

Earth system.

Finding that the state-of-the-art primarily tackles global-scale emergent struc-

tures, Part II focuses on identifying local-scale structures in gridded datasets. This
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work begins with benchmarking causal discovery algorithms for learning grid-level

space-time dynamics. It corroborates that causal discovery algorithms struggle

with datasets containing hundreds of thousands of grid cells, each with several

orders of magnitude fewer observations in time. This imbalance is one aspect of

the curse of dimensionality (Bellman, 1957; Bühlmann and Geer, 2011), where

many variables relative to sample size limits conventional statistical methods and

renders many forms of inference, including causal discovery, unreliable without

dimensionality reduction.

To resolve that challenge, I developed a novel method, Causal Space-Time Sten-

cil Learning (CaStLe), that significantly improves the performance and efficiency

of causal discovery in local space-time dynamics. It does so via two parts: (i) the

Locally Encoded Neighborhood Structure (LENS) reorganizes the given data such

that the high-dimensionality of gridded data is eliminated and the sample com-

plexity of the underlying grid-level structure is maximized; and (ii) the Parent-

Identification Phase (PIP), which selectively applies causal discovery to minimize

the search space while side-stepping spatial confounding. The initial implementa-

tion of CaStLe was univariate, in that it could only identify the space-time struc-

ture of a single quantity of interest. This work concludes with extending CaStLe to

Multivariate Causal Space-Time Stencil Learning (M-CaStLe), which adapts the

LENS and PIP to capture space-time structure between multiple quantities of in-

terest.
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1.1 The Pursuit of Causal Discovery

The scientific method provides consistent rigor to answer the ’how?’ and ’why?’

questions. With it, we design experiments, collect data on what we observe, and

determine what we can learn from those data. Causal inference is the process

of answering these questions and determining when such an answer is attainable.

Pearl and Mackenzie (2018a) suggest that causal inference is conducted via three

operations, which he calls the Ladder of Causation:

rung one: seeing (observing and collecting information)

rung two: doing (intervention and experimentation)

rung three: imagining alternatives (counterfactual analysis)

Causal discovery is an algorithmic methodology for finding causal hypotheses and

eliminating spurious correlations in data, grounded in strict assumptions that repre-

sent domain expertise. Machine learning is typically classified as rung one, seeing;

it produces observational distributions from which predictions of future states can

be made. Causal graph discovery is rung two, doing; it produces interventional

distributions in the form of causal models. These can be used to reason about the

effects of intervention. Finally, structural causal models and digital twins are ex-

amples of rung three, because they enable one to reason about the implications of

alternative scenarios. (Peters et al., 2017)

Statistical and machine learning are standard toolsets to quantify and predict
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relationships when only observational (non-manipulated) data is available. Statis-

tics can describe data and inform us of the underlying distribution, but it generally

defers further inference (Pearl and Mackenzie, 2018a). Correlated relationships

between variables are bidirectional and often ambiguous. Since correlation does

not imply causation, one can only make stronger inferences with stronger assump-

tions.

Machine learning models capture patterns rather than learn to understand under-

lying mechanisms by computing statistics and fitting functions that separate data.

The algorithms learn functions that map input to output, predicting a probabilistic

distribution. Its primary goal is to model the given data to predict the classification

or future values, i.e., regression. Machine learning has proven to be an informative

and useful tool, but prediction is only correlation and, thus, also does not imply

causation. The nascent field of explainable machine learning is bearing fruit in

some domains. However, it is also limited to descriptive statistics and correlated

information. Using explainable machine learning for elucidating the dynamics in

a system may be a promising starting point towards finding causality when ground

truth is nebulous. Later, in Chapter 3, I will discuss an analysis with random forest

feature importance (Nichol et al., 2021).

The most reliable, though still imperfect, method of estimating causal rela-

tionships is with the randomized control trial (RCT) framework. In conducting

an RCT, scientists make tacit assumptions called identifiability conditions: the

causal Markov condition, ignorability/exchangeability, positivity/overlap, no in-
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terference, and consistency. Ideal RCTs meet these assumptions by design; how-

ever, errors or biases, such as selection bias, may break identifiability. Hernán and

Robins (2020) explain the remaining assumptions for causal inference in detail. I

define the causal assumptions important for causal discovery in Section 1.3.1.

RCTs are a powerful tool, but they are not feasible in many cases, such as when

randomizing treatment is unethical, impossible, or too expensive or inconvenient.

One such example is the Earth science domain. In geophysics, many natural events

are impossible to conduct ourselves, i.e., we cannot make an earthquake occur. In

other fields, such as atmospheric science, we cannot ethically intervene randomly

without fully understanding the downstream impacts of each intervention, e.g.,

stratospheric aerosol injection for solar radiation management. We have one Earth,

and we cannot afford to disrupt it carelessly.

In some cases where RCTs are infeasible, we can conduct observational stud-

ies with frameworks like the target trial (Rubin, 1974; Robins, 1986; Dorn, 1953;

Feinstein, 1970; Dawid, 2000). However, this relies upon enough sampling to mea-

sure a representative distribution of possible outcomes, posing another challenge

for causal inference in Earth sciences: we can only observe one instance of the

possible outcomes of the Earth’s dynamics. One solution may lie in simulations,

and numerical Earth system models (ESMs) are an ongoing research area. How-

ever, their complexity makes models imperfect, computationally expensive, and

challenging to evaluate.

Founded on principles from path analysis (Wright, 1921), contemporary causal
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discovery is developing into a rigorous mathematical framework, primarily due to

work by Rubin (1974); Spirtes, Glymour, and Scheines (1993); Pearl (1995a); Pe-

ters, Janzing, and Schlkopf (2017). This framework can mathematically describe

the causal questions asked, counterfactuals, interventions, relevant variables to

measure, and potential answers to the causal questions. In the past two decades, al-

gorithms have been designed to leverage this framework for reconstructing causal

graphs or, interchangeably, causal networks. We can compute statistical relation-

ships and make strict assumptions with observational data and the true underly-

ing causal structure to reconstruct the causal structure that generated the observed

data. These assumptions are also known as the identifiability conditions in causal

inference. Algorithmically reconstructing causal graphs is called causal discovery,

causal network learning, or causal learning.

1.2 Statistical Learning

Peters et al. (2017, p.46) write that “formally, learning causal models is substan-

tially different from the [statistical] learning scenario because it aims at inferring

a model that describes the behavior of the system under interventions and not just

observations taken from the same distribution. Therefore, there is no straightfor-

ward way to adopt arguments from statistical learning theory, to obtain a learning

theory for causal relations.” Statistical machine learning generally aims to learn a

function that fits given data, and we hope it can extrapolate from unseen data. Ex-

plainability tools, either derived directly from the model (e.g., decision trees and
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random forest Gini importance) or many models trained on permuted data, funda-

mentally describe the models alone, rather than the true underlying dynamics in

the data.

Tautologically, if the goal is to identify and learn about the dynamics in a sys-

tem, then causality is fundamentally the only way to reason about those dynamics.

As Pearl and Mackenzie (2018a) state, contemporary machine learning fundamen-

tally cannot consider the causality in a system because it lacks a language for

causality, i.e., counterfactuals and interventions. While we hope a trained model

has learned some true underlying function in the data’s generating process, it is

causally unverifiable. Showing that a model consistently handles new data well in-

creases the confidence that the model has generalized the true causal process, but

the error in a model is merely a correlated observation; it does not verify causality.

1.2.1 Explainability in Machine Learning

The black-box nature of most machine learning models poses a big challenge for

interpreting and validating their results. Trustworthy machine learning and fair-

ness in machine learning efforts have turned to uncertainty quantification and ex-

plainability methods to validate further, and to understand how and why a particu-

lar model has been fit. Some machine learning methods have an inherent explain-

ability, such as decision trees and random forests (Breiman, 2001; Nembrini et al.,

2018). Because these models are built iteratively, Gini impurity, the probability of

misclassifying an observation, is computed for every node split in the trees. Gini
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impurities can be aggregated after learning to produce a Gini importance, or fea-

ture importance, for each feature. These importance values measure how much

each feature contributed to reducing the model’s error on average.

Other machine learning models must use ad hoc and post hoc methods to mea-

sure the importance of features for model learning. Examples include Shapley

values (Lundberg and Lee, 2017), Locally Interpretable Model-Agnostic Explana-

tions (LIME) (Krishnapuram et al., 2016), SHapley Additive exPlanations (SHAP)

(Lundberg and Lee, 2017), and DeepLIFT (Shrikumar et al., 2017). Shapley val-

ues, LIME, and SHAP, are model agnostic methods, so they can be applied to sup-

port vector machines, random forests, neural networks, etc. DeepLIFT is a mem-

ber of a class of methods specifically for neural networks. All of these function by

measuring the contribution of each feature to the model or a specific prediction.

They train many models and vary whether each feature is included by permuting

each feature.

Explainability may illuminate causality with respect to the model, but it cannot

illuminate causality within the studied system. That is evident because explainabil-

ity methods make no assumptions about the system itself, nor the data observed.

The methods and the models have no way of knowing whether the data and fea-

tures are representative of the system. They are only aware of the models and data

given. Because of this, inferences from these will always fail to rise above making

purely associational observations of the given data.

In general, it is acceptable that explainability methods fail to elucidate causality
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within a system because they make no claims beyond a rigorous attempt at ex-

plaining the given model. To these methods, the generating process is not what

created the input data but the model itself. They fundamentally address a different

question from causal discovery.

1.2.2 Bayesian Networks

Judea Pearl wrote in his book, The Book of Why, that he initially made the same

mistake as many philosophers and economists, and that I would suggest is made

by many in machine learning now: putting probability first and causality second

(Pearl and Mackenzie, 2018a, p.50). He thought that uncertainty was the most

important thing missing from artificial intelligence and insisted that uncertainty be

represented by probabilities. With that in mind, he developed Bayesian networks

to reason under uncertainty.

Bayesian networks encode conditional probabilities between events. Given that

we observe certain probabilities of events, Bayesian networks can compute the

likelihood of other events or whether certain facts are true or false. This computa-

tion is called belief propagation.

Pearl says that while Bayesian networks are still popular for reasoning under

uncertainty, they fail to accomplish what he was after: identifying and quantify-

ing causality. Bayesian networks fail to climb beyond rung one in his Ladder of

Causation. He says, “Bayesian networks inhabit a world where all questions are re-

ducible to probabilities, or degrees of association between variables...” (Pearl and
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Mackenzie, 2018a, p.51). Pearl solved this problem after putting aside Bayesian

networks to develop structural causal models (SCM) and the Do notation which

provide a mathematical language for writing down what we know and what we

want to know. His Do-Calculus (Pearl, 2012) enables us to compute counterfactual

and interventional distributions from observational data, as opposed to probabilis-

tic distributions alone.

Bayesian networks are quite similar to causal networks, however. Pearl (1995b)

and Pearl and Mackenzie (2018a) write about how to transition from a Bayesian

network to a causal network in. Bayesian networks’ probabilistic and belief prop-

agation properties are still valid in causal networks. The main difference is in how

they are constructed. Bayesian networks are a graphical form of conditional prob-

ability tables.

A causal network changes the language of the relationships between nodes; the

meaning of their construction and interpretation change. Rather than a relationship

between nodes indicating that they probabilistically coincide, in a causal network,

it indicates which node another node “’listens’ to before choosing its value,” (Pearl

and Mackenzie, 2018a, p.129). The listening analogy describes the causal assump-

tions, i.e., the knowledge one has of the system. A missing link between nodes de-

notes that the two are independent in both Bayesian networks and causal networks.

Though, in a causal network, a missing link may also indicate two nodes are in-

directly independent. As Pearl notes, this implies that causal assumptions cannot

be made-up and can be falsified against the observed data. Pearl’s transition from
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Bayesian networks to causal networks coincided with the work of Spirtes and Gly-

mour’s (1991) development of causal discovery, which is the reconstruction of the

causal network from observational data.

1.3 Causal Network Learning

In this work, I will focus on conditional independence-based causal network learn-

ing1 (Spirtes et al., 1993; Runge et al., 2019a) for reconstructing causal graphs.

Time series adaptations are well suited for the stochastic, highly autocorrelated,

and high-dimensional data in Earth science (Runge, 2018a; Runge et al., 2019a).

Other forms of causal discovery include nonlinear state-space methods (Arnhold

et al., 1999; Sugihara et al., 2012), and structural causal models (Spirtes and Zhang,

2016a; Peters et al., 2017).

1.3.1 Definitions, Notations, and Key Causal Assumptions

Causal Graphs

For a multivariate time series X, X i denotes the time series of the ith variable,

X i
t−τ denotes the time series lagged by τ time steps, and X−t = (Xt−1,Xt−2, ...) are

lagged time series of X, representing its temporal parents.

A causal graph, or a causal network, is a directed acyclic graph (DAG) or

partially-directed acyclic graph (PDAG) that encodes the causal structure between

variables in a system. Using DAGs to represent causal relationships is credited to
1Causal network learning is also known as “causal discovery,” “causal graph discovery,” and “structure learning,”

and I will use these terms interchangeably throughout this dissertation.
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Pearl (1995a, 1998). A causal time series graph adapts the causal DAG to incorpo-

rate time lags. Each variable has a node for the original, present time t, and every

time lag, t− τ . This is theoretically an infinite graph, but in practice, we truncate

the graph to a maximum time lag, τmax.

A link between variables in a causal graph, G, marks a dependence between

two variables. Variables X i
t−τ and X j

t are connected by a lag-specific directed link,

X i
t−τ → X j

t ∈ G for τ > 0, if and only if

X i
t−τ�

�⊥⊥X j
t | (X−t \{X i

t−τ}), (1.1)

where �
�⊥⊥ denotes statistical dependence (⊥⊥ would denote independence). Thus,

Equation 1.1 can be read as “X j
t is dependent on X i

t−τ , conditional on [X−t , ex-

cluding the set {X i
t−τ}].” Autodependencies are links where i = j. Links from X i

t

to X j
t are called contemporaneous links. Some algorithms represent these with an

undirected edge in the graph, others can use collider rules to possibly orient these

(Runge, 2020; Spirtes et al., 1993).

The parents of a node, X i
t , in G, are mathematically written as

P(X i
t ) = {Xk

t−τ : Xk ∈ X,τ > 0,Xk
t−τ → X i

t }. (1.2)

D-separation

Independence between nodes within a graph is called d-separation, for directed-

separation, or sometimes just separation. It tells us where and when association
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can flow, or be measured, between two nodes. If two nodes are not d-separated,

then their data will be correlated. This is an important property for interpreting

graphs, but with the assumptions detailed in the following section, we can infer the

graph from measured dependencies in data.

To explain d-separation, we first need to explain how association flows between

variables in a causal graph. The rules of d-separation operate on the three main

components in a causal DAG: the chain, (X → Y → Z → ...) and (... ← X ←

Y ← Z); the fork, (X ← Y → Z); and the collider or V-structure, (X → Y ← Z).

In chains and forks, association flows between all variables. For the chains/fork

example above, X�
�⊥⊥Y�

�⊥⊥Z. Note that the two chains and the fork all have the

same independence relationships. This set of independence relationships represent

a Markov equivalence class of causal graphs.

Dependence is transitive, so we also have that X�
�⊥⊥Z. In colliders, association

flows only between the parents (i.e., X and Z here) and the child (i.e., Y ) node.

Thus, in the collider example above, X ⊥⊥ Z, but X�
�⊥⊥Z and Z�

�⊥⊥Y .

When we condition on variables, we say they are blocking variables because

they may block the flow of association. When a variable is conditioned on, or

blocked, in chains and forks, they no longer allow the flow of association between

the variables. In this way, we can “close” chains and forks. In the case of the

chains and fork above, if we condition on Y , then Y is blocked, and we get the

dependence relation X ⊥⊥ Z | Y . On the other hand, when the child node in a col-

lider is conditioned upon, we have the opposite; colliders “open,” and association
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flows between parents. In the example above, when we condition on Y , we get the

relationship X�
�⊥⊥Z | Y .

From this, the definition of d-separation is as follows:

Nodes X and Y are d-separated given a conditioning set S, with X ,Y ̸∈ S, if and

only if all paths between X and Y are blocked, denoted

X ▷◁ Y | S, (1.3)

where S may be empty. D-separation applies to the children of nodes as well. If Z

in the collider above had a child node, W , then Z and W would be d-separated just

as X and Z are d-separated.

Causal Assumptions

Like many statistical machine learning approaches, causal discovery has specific

assumptions, some that depend on the algorithm and the data. In addition, there are

three untestable assumptions and require domain expertise to safely assume: the

causal Markov condition, faithfulness, and causal sufficiency. These assumptions

represent the domain expertise required to infer beyond mere statistical inference

to answer causal questions. They are summarized below, and are detailed further in

Runge (2018a), which includes clear examples for each assumption that illustrate

how algorithms can infer incorrect links when assumptions are not met.

The causal Markov condition is necessary for all independence-based meth-

ods. It states that if and only if the joint distribution of a time series process, X,
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with the true causal graph G,

X−t \PYt ▷◁ Yt |PYt =⇒ X−t \PYt ⊥⊥ Yt |PYt , (1.4)

for all Yt ∈ Xt , with parents PYt . Essentially, this states that d-separation in the

graph implies independence in the data. The contraposition is implied:

X−t \PYt�
�⊥⊥Yt |PYt =⇒ X−t \PYt ̸▷◁ Yt |PYt (1.5)

The faithfulness assumption guarantees that the graph contains all conditional

independence relationships that the causal Markov condition implies. A causal

graph is faithful if and only if for the joint distribution of a time series process, X,

with the true causal graph G, for all disjoint subsets of nodes Y,Z,S⊂ G

XY ⊥⊥ XZ | XS =⇒ Y ▷◁ Z | S. (1.6)

This states that d-separation is implied by independence. The contraposition is

also implied,

Y ̸▷◁ Z | S =⇒ XY�
�⊥⊥XZ | XS. (1.7)

Causal sufficiency is often the more difficult to assume in open and complex

systems. It assumes that all common causes of two or more variables are included

in the analysis. Formally, a set of variables, S, is causally sufficient for a process,

X, if and only if every common cause, or parent, of any two or more variables in

W , is included in W , or has some value for all units in the population.
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In this work, we are primarily interested in time series data and time-lagged

relationships, and these methods require the time-order assumption: that the past

causes the future, causality cannot travel faster than the speed of light, and that the

future cannot cause effects in the past. Depending on the algorithm, assumptions

for stationarity and dependency type are necessary. Glymour et al. (2019) argue

that assuming nonstationarity may be allowed in some cases and could even be

leveraged as more information. However, as Runge (2018a) notes, stationarity

may be indicative of a confounding variable that violates causal sufficiency.

1.3.2 Consistency

Consistency is an important trait of a causal discovery algorithm. If an algorithm

is consistent, it has been proven to converge to the true causal graph in the limit

of infinite sample sizes. Each algorithm will be defined in part by a set of causal

assumptions that are integral to the proof. A common set of those assumptions are

described in Section 1.3.1.

Some algorithms, such as conditional independence-based approaches, require

additional statistical assumptions. For example, conditional independence-based

algorithms testing with a non-parametric regression independence test will need to

assume that the function estimator converges correctly, that the noise in the model

is additive and independent, and that the unconditional independence test of the

residuals converges.

Universal consistency is defined for iterative causal algorithms (Runge, 2018a):
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Denoted by Ĝn, the estimated graph of some causal estimator from a sample of dis-

tribution P, with sample size n, and by the true causal graph G. A causal estimator

is said to be universally consistent if Ĝn converges in probability to G for every

distribution P,

lim
n→∞

Pr(Ĝn ̸= G) = 0. (1.8)

This says that the probability of misestimating the true graph becomes arbitrarily

small for large sample sizes for any distribution P.

Universal consistency is weaker than uniform consistency, which “bounds the

error probability as a function of the sample size, giving a rate of convergence”

(Runge, 2018a). For a merely universally consistent algorithm, the sample size re-

quired for a given error threshold will be different for each distribution, P. Runge

(2018a) notes that uniformly consistent conditional independence-based algorithms

can only exist under additional assumptions.

1.3.3 Validation and Falsifiability

As discussed by Runge et al. (2019b), method development in causal discovery

requires benchmark datasets with ground truth causal structures. CauseMe.net is a

website the authors have made for collecting benchmarking datasets for validating

causal discovery algorithms. Ground truth for those data sets must come from ex-

pert knowledge or randomized experiments. Observational causal networks can be

falsified with experimental results. Unfortunately, much of the motivation to use

causal discovery is in cases where experimental results do not exist, when random-
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ized control trials are infeasible. When expert knowledge of a causal structure and

experimental results do not exist, causal models must be validated by validating

each of the causal assumptions made by the algorithm. Since causal discovery al-

gorithms can be proven to be consistent, as defined in Section 1.3.2, validating the

assumptions can show that the resulting causal network is asymptotically correct

to infinitely large sample sizes.

Peters et al. (2017, p.120) also discuss the falsifiability of causal models. They

state that traditional machine learning algorithms build probabilistic models, struc-

tural causal models can be used for counterfactual models, and causal graphical

models can be used for interventional models. They write that two models are

equivalent if their corresponding predictions agree. Likewise, we can falsify a

probabilistic or interventional model if the corresponding distributions disagree

with the observed data. In the case of traditional machine learning, this is com-

monly computed with validation datasets to ensure that prediction distributions

agree with unseen data. In the case of interventional, causal graphical models, if

a model correctly predicts the observational distribution but fails to predict the in-

terventional distribution, from a randomized trial, for example, then the model is

falsified. Peters et al. (2017, p.120) state that falsifying counterfactual models is

difficult in general.
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1.3.4 Time Series Causal Discovery

Temporal information is critical to inferring the Earth system’s dynamics because

the Earth system is a temporal process. Many causal discovery methods imply

the inherent temporal aspects of causality without representing it explicitly. Peters

et al. (2017, p.10) note that although it is sometimes said that causality discus-

sions must account for time, usually time is not necessary to discuss the effect of

interventions. They write that both statistical learning and causal learning can be

thought of as “abstractions of an underlying more accurate physical model that de-

scribes reality more fully.” This is quite obviously true for numerical Earth system

models in which differential equations define the dynamics of hundreds of quanti-

ties around the globe. It is even more so for the natural system that Earth system

models attempt to estimate.

Peters et al. (2017, p.26) note that “an event can only influence events lying in

its light cone, since no signal can travel faster than the speed of light in a vacuum.”

That is, physics explicitly excludes causation from the future to the past. They ex-

plain that although this is true, it is widely believed that microscopic and quantum

mechanical systems are invertible. They say that the asymmetry of time-order is

less critical for describing a causal relationship than the asymmetry of the infor-

mation carried causal function between events. This is why time is not included in

descriptions of physical laws, such as F = m×a. However, the time-order asym-

metry is sometimes essential for inferring the direction of causal dependence from
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data alone (Runge, 2018a).

The consequence of discarding time-order asymmetries in data is that tempo-

ral information for interpreting dependence relationships is lost and cannot inform

inference. If no other asymmetry is captured in the data, then we need temporal in-

formation to elucidate. Some systems, such as climatological processes, are often

best summarized in data by time series. Rather than a set of independent samples, a

summary in time is necessary to describe Earth system dynamics accurately. Con-

ditional independence-based causal discovery is flexible enough to be adapted for

time series input (Runge et al., 2019a).

Many causal discovery algorithms are designed for independent and identically

distributed samples. The causal graph can include temporally lagged variables to

capture temporal relationships between variables. Each node is multiplied into

nodes for each time step. Theoretically, this creates an infinitely large time series

graph, which each variable, X , is represented as many nodes, {Xt ,Xt−1,Xt−2,Xt−3, ...}.

In practice, we limit the number of lags to a time step that is large enough to cap-

ture the theoretical temporal dependence between the variables of interest.

1.4 Earth Science Challenges

A critical problem in Earth science is identifying the causal pathways from an in-

tervening Earth system event, such as a wildfire, volcanic eruption, or atmospheric

injection, to the many impacts on climate, weather, ecology, and human livelihoods

in various places on Earth. Causal pathways are paths through a graph of nodes
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representing various climate impacts or quantities of interest. There is a critical

need for analyses that trace the causal path from an intervention, through medi-

ating effects, to impacts that affect life, economic systems, natural resources, and

more.

Climate interventions of interest include anthropogenic climate change and nat-

ural and artificial stratospheric aerosol injection (SAI). Volcanoes are an occasional

source of natural interventions in the climate, injecting teragrams of gases into the

stratosphere (Guo et al., 2004a); though eruptions of that magnitude are rare, only

occurring every 50 to 100 years. Artificial SAI events are manufactured efforts

to change climate regionally or globally. Examples include geoengineering ideas,

such as reducing global mean temperatures with sulfuric gas injection. A related

example is weather interventions, such as China’s rain-making effort, Sky River

(Gimeno et al., 2014; Wang et al., 2018), which attempts to bring more rain to a

historically arid region. Understanding the downstream impacts of these interven-

tions is vital for evaluating the risks of geoengineering and predicting the impact

on neighboring regions.

Reconstructing the causal space-time pathways from intervention to impact will

provide critical insights to understand intentional and unintentional interventions.

If the global community decides to attempt geoengineering to mitigate climate

change impacts, experiments may start small and localized. We need tools to un-

derstand the effects of the experiments. If another country decides to implement

geoengineering for itself, perhaps at the expense of its neighbors’ moisture, then
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causal analysis will be critical for understanding those impacts.

Many Earth science problems, particularly those considering a relatively short

time window, are very data-sparse. Measurement frequency can vary depending

on the variable, quality needs, and equipment. Sometimes daily or sub-daily ob-

servations are available, but not for very far into the past, often weekly or monthly

data is most abundant. The dataset may contain hundreds of variables on millions

of grid cells. Frequently, one may want to understand the interdependence of a few

variables in several hundred positions with an order of magnitude fewer observa-

tions per variable/position pair. This presents a high-dimensional problem, posing

poor statistical power and high sample complexity for statistical methods.

1.4.1 Earth Science Data

Earth system data is obtained from several different sources, such as station mea-

surements, satellites, data-fused reanalysis products, and Earth system model out-

put. The data is multimodal and can have a large variety of spatial and temporal

resolutions. Station measurements can poll a quantity very often, but only pro-

vides data for a point in space. Satellites cover large strips of space over the globe,

but measurements can be less frequent, particularly in a specific area of interest,

and still often have missing data due to cloud cover. Reanalysis products combine

station measurements, satellite data, and weather or climate modeling to produce

a hybrid of fused, interpolated data that generally covers all space on the globe.

Reanalysis products and Earth system model output are most convenient be-

22



cause they are spatially complete and temporally consistent, but come with more

assumptions than raw measurements. Spatially, the data from these sources is gen-

erally arranged on a discrete 3D grid. Grids can take many forms, most common

are cubed latitude-longitude grids. Geodesic grids are also used in order to achieve

better geometric regularity between cells. (Ebert-Uphoff and Deng, 2014). Earth

system model output is frequently analyzed on a per-run basis, a per-model basis

with ensembles of runs, or with Coupled Model Intercomparison Project (CMIP)

output. CMIP is a collaboration project that combines output from over 100 mod-

els, sourced from over 50 modeling centers.

The research in this dissertation addresses many of the ideas and challenges

above. It examines the capabilities and limitations of contemporary data-driven

modeling. After identifying a key research gap in grid-level causal discovery, this

work introduces two novel methodologies for causal discovery of local grid-level

dynamics, CaStLe and M-CaStLe, that advance the state-of-the-art in performance

and efficiency. I demonstrate these advances with new benchmarking approaches

and realistic applications in the Earth sciences. The following chapters detail

the path from explainable machine learning for Earth system model evaluation to

causal discovery of Earth system dynamics to novel causal discovery approaches

for gridded space-time data. With these advances, this work contributes to toolsets

for further scientific discovery.
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2 Related Work

The RCT was the first innovation to measure causal effects in experiments di-

rectly. Ronald A. Fisher is credited with first using randomization for experiments

in 1925 (Fisher, 1925; Hall, 2007). Around the same time, Wright (1921) wrote

about using what he called path analysis to evaluate and represent directed sta-

tistical dependencies. According to Pearl and Mackenzie (2018a), path analysis

is a direct ancestor to modern causal inference techniques, though it was not rec-

ognized as such until the 1950s. Splawa-Neyman et al. (1923) were the first to

publish on a potential outcomes framework, providing a notation for causal effects

in a randomized setting (Rubin, 2005).

In the 1970s, Donald Rubin’s potential outcomes framework opened the door

to causal inference in non-randomized observational studies (Rubin, 1974). Po-

tential outcomes try to address the fundamental problem of causal inference: once

treatment is given to an individual, we can no longer observe what could have

occurred had the individual not received treatment. More specifically, as Holland

(1986) writes, “it is impossible to observe the value of Yt(u) and Yc(u) on the same

unit and, therefore, it is impossible to observe the effect of t on u” for potential

outcomes, Y , of treatment, t, and control, c, on the individual unit, u (Holland,

1986). While these quantities cannot be observed or computed, this framework
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allows us to compute other causal quantities based on certain assumptions in non-

randomized studies.

Pearl (2012) added to Rubin’s potential outcomes notation with the do-calculus,

a way of clarifying the notation for describing the change in probability distribu-

tions of a given quantity from doing an intervention on that quantity. In 2000,

Pearl presented the structural causal model (SCM), which is a nonparametric form

of structural equation models (SEM) (Pearl, 2000, 2001). Economists and sociol-

ogists have used SEMs for decades, and they trace their conceptions to Spearson

(Tarka, 2018).

Among many other contributions, Robins (1986) introduced a graphical ap-

proach to causal inference, the finest fully randomized, causally interpretable struc-

ture tree graph. Pearl (1995b) improved on this approach by introducing directed

acyclic graphs (DAGs) from computer science and graph theory to causal infer-

ence. In that work, Pearl shows how independencies can be described in a Bayesian

network graph and how we can similarly represent causal relationships.

2.1 Causal Discovery

Causal discovery, or causal learning, is the pursuit of computing the causal struc-

ture from observational data. It intends to outline when an association is causal

or merely correlated (Peters et al., 2017). Many algorithms do this by detecting

spurious correlations in data, and after making strict assumptions, the causal struc-

ture can be found (Runge et al., 2019b). The necessary assumptions are derived
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from decades of previous causal inference literature. They can be used to prove

consistency, which is the property that an algorithm converges to the true causal

graph in the limit of infinite sample data (Runge, 2018a).

Wiener (1956) published the idea that a variable could be considered causal to

another if the ability to predict the second is improved by including information

about the first. Granger (1969) later published a practical method for computing

on this notion, now known as Granger causality. Typically, Granger causality

refers to linear bivariate analysis using linear regression models (Peters et al., 2017)

or vector autoregressive models (Runge, 2018a). Granger causality has several

limitations, outlined in Peters et al. (2017), including an inability to detect indirect

causes, failure in the presence of deterministic dependencies, a limitation to only

detecting lagged dependencies, and problems with sub-sampled time series (Runge

et al., 2019b).

A nonlinear, multivariate approach to Granger causality is called transfer en-

tropy (Peters et al., 2017; Runge, 2018a; Runge et al., 2019b). Peters et al. (2017)

state that transfer entropy fails in many of the same scenarios as Granger causality.

However, they write, “we emphasize that the qualitative statement about presence

or absence of causal inference in the case of two causally sufficient time series

only fails for a rather artificial scenario, while quantifying the causal influence via

transfer entropy can be problematic also in less artificial scenarios,” (Peters et al.,

2017, p.207).
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2.1.1 Causal Network Learning

In the 1990s, Peter Spirtes, Clark Glymour, and Richard Scheines developed graph-

ical causal discovery, also known as causal network learning (Spirtes et al., 1993).

Spirtes and Glymour invented the PC algorithm, named for their first names (Spirtes

and Glymour, 1991). This algorithmically attempts to reconstruct the causal struc-

ture from observational data. The main underlying idea stems from Reichenbach’s

Common Cause Principle (Reichenbach, 1956): that if two variables are statisti-

cally dependent, there must be a causal relationship between the two or a third

common driver of the two.

The full description and pseudocode for PC can be found in Spirtes et al. (1993),

and I will provide a brief outline here. It begins with a fully connected graph in

which each node is assigned a variable. To leverage Reichenbach’s principle, PC

iteratively tests each pair of variables, X and Y , for independence, conditioned on

a set of one or more variables, Z, denoted X ⊥⊥ Y | Z, while dependence would

be denoted X�
�⊥⊥Y . If two variables are conditionally independent, their link is

removed. This first phase results in an undirected skeleton graph. In short, the

second and third phases use rule sets to orient edges based on principles of how

association flows between nodes in a graph. See d-separation, detailed here in

Section 1.3.1 and in Spirtes et al. (1993). To accurately estimate causal effects, PC

relies on strict assumptions, including faithfulness, the causal Markov condition,

and causal sufficiency.
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Causal sufficiency is one of the more challenging and commonly violated as-

sumptions in causal inference. Spirtes, Glymour, and Scheines’ fast causal infer-

ence algorithm (FCI) does not require the causal sufficiency assumption (Spirtes

et al., 1993). This algorithm does not require the causal sufficiency assumption

and, as a consequence, will only produce a Markov equivalence class of partially

directed acyclic graphs. The consistency of PC and FCI is shown in Spirtes et al.

(1993).

Runge et al. (2019a) published an adaptation to the PC algorithm called PC

momentary conditional independence (PCMCI). PCMCI is specifically written for

reconstructing lagged-causal time-series graphs (Runge, 2018a). This two-phase

algorithm first uses a modified PC algorithm adapted for time series, called PC1,

which attempts to construct a sparse partially directed graph. In the second phase,

momentary conditional independence (MCI) is computed for each connected vari-

able pair to reduce the graph further to converge on the estimated causal graph.

MCI conditions on both the parents of a given variable, X , as well as the lagged,

or time-shifted, parents of X .

Each phase of PCMCI serves a specific purpose in identifying the causal struc-

ture. PC1 removes irrelevant conditions of each variable via iterative conditional

independence tests. PC1 tests only the condition subset with the largest associa-

tion instead of testing all possible combinations like PC (Runge, 2018a). The MCI

phase then controls the relatively high false-positive rate for highly interdependent

time series. Conditioning on lagged parents of each variable controls for highly
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autocorrelated time series data and makes MCI an estimator of causal strength.

Both PC1 and MCI can be implemented with any conditional independence test.

Tests for linear models, nonlinear additive noise models, and nonparametric mod-

els exist (Peters et al., 2017; Runge, 2018a; Runge et al., 2019b).

Runge (2018a); Runge et al. (2019a) show empirical results from tests on syn-

thetic data to benchmark PCMCI against several other algorithms, including PC,

FCI, convergent cross-mapping, LiNGAM (Shimizu et al., 2006), and Granger-

causality. They show that PCMCI performs best or above average in terms of high

true positive rates and low false positive rates on time series data in several tests

with dynamical noise, autocorrelation, and high dimensionality. After identifying

the graph, PCMCI was also able to compute true causal effects well (Runge et al.,

2019a).

The PC, FCI, and PCMCI algorithms are examples of causal discovery’s con-

ditional independence (CI) based causal network learning pillar. These are highly

adaptable algorithms because they can be implemented with any conditional inde-

pendence test. Choosing the correct one depends on specific assumptions about

the data and the functional form of the dependencies within. These range from

the linear partial correlation test, nonparametric residual-based tests for nonlinear

dependencies with additive Gaussian noise (Ramsey, 2014; Runge et al., 2019a),

kernel-based approaches (Zhang et al., 2011a), information-theoretic conditional

mutual information (Runge, 2018b), and neural networks (Sen et al., 2017).
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2.1.2 Structural Causal Models

Because Granger causality and many causal network learning algorithms require a

time delay between cause and effect, they cannot easily determine contemporane-

ous dependencies (Runge et al., 2019b). Contemporaneous dependencies primarily

exist when causation occurs faster than the available time-sampling interval. SCMs

typically ignore the time-order of causal dynamics; instead, they operate on the as-

sumption that the past is already coded into covariates (Peters et al., 2017). They

can estimate contemporaneous effects because they make additional assumptions

about the functional forms between dependencies (Runge et al., 2019b).

As SEM’s causal-descendant, SCMs are used to model nonlinear causal rela-

tionships and require added assumptions for correct estimation (Peters et al., 2017).

These allow for the estimation of direct and indirect causal effect, a quantitative

estimate of causal strength, without further assumptions on the functional forms

interdependencies or distribution of error terms in the data (Tarka, 2018). Peters

et al. (2017) overview SCMs in the bivariate and multivariate cases. They describe

SCMs’ uses for causal discovery and applications to machine learning. Despite

their advantages, SCMs have not yet been applied to Earth system sciences (Runge

et al., 2019b).
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2.2 Attribution in Climate Science

While the climate science literature does not broadly use causal discovery or causal

inference techniques explicitly, a primary interest in climate science is detecting

and attributing changes in our climate. Detection and attribution have precise def-

initions in climate science. Detecting a signal change requires demonstrating that

the observed signal differs in a statistically significant way from natural variabil-

ity. Detection does not imply an attribution of that change. Attribution requires

(1) showing that an observed signal is unlikely in natural variability, (2) consistent

with estimated changes to the signal given anthropogenic and natural forcing, and

(3) not consistent with alternative, plausible explanations of the observed signal

(Houghton et al., 2001).

In 1996, Klaus Hasselmann published one of the first attempts to quantitatively

attribute climate changes (Hasselmann, 1997). Until then, there was mounting evi-

dence that global warming could be attributed to anthropogenic forcing, but it was

largely qualitative or circumstantial. He provides a multi-pattern fingerprinting

framework for statistically attributing climate signals.

Hasselmann states that for the attribution problem, further hypotheses regard-

ing the cause of a detected change need to be considered. This demonstrates the

counterfactual theory required for causal inference (Pearl and Mackenzie, 2018a).

He further writes that an obstacle for quantitative signal-to-noise analyses is that

they require information on the space-time structure of the predicted climate signal
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and the climate variability. This implies the same expert provided causal structural

knowledge that Runge, Pearl, Peters, and others suggest is critical for effective

causal inference (Runge et al., 2019b; Pearl and Mackenzie, 2018a; Peters et al.,

2017). He then describes an idea similar to causal sufficiency: “A discrimination

between competing forcing mechanisms can clearly be meaningfully attempted

only if all candidate mechanisms and their associated climate change signals are

specified.”

Finally, because of the finite nature of real data, Hasselmann states that it can

never be ruled out that there may be other overlooked forcing mechanisms that

would generate the observed signal. The consequences of this fact are “unequiv-

ocal attribution is achieved only in the hypothetical infinite-sequence limit ... We

must, therefore, restrict ourselves in principal to a statistical definition of attribu-

tion that applies only in the limited sense of establishing a ranking within a given

finite set of candidate forcing mechanisms.” This essentially iterates the same lim-

itations of finite data in causal discovery (see consistency in Section 2.1), detailed

by Runge (2018a) and Peters et al. (2017) and described in Section 2.3.1.

2.3 Causal Discovery for Earth Systems Science

Causal discovery has been applied to Earth systems science several times recently.

Runge et al. (2019b) cite several papers in which Granger causality, causal net-

work learning algorithms, and nonlinear state-space methods have been applied

to climate science problems. Causal network learning applications are relatively
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recent and primarily focused on climate science (Ebert-Uphoff and Deng, 2012;

Kaufman et al., 2020; Kretschmer et al., 2016; Nowack et al., 2020a; Runge et al.,

2014). These will be detailed further in Section 2.4.

Runge et al. (2015a) present a framework for identifying gateways, mediators,

and causal effects in Earth systems. First, they use varimax-rotated principal com-

ponent analysis on gridded sea-level pressure data to identify localized areas of

variability, such as the El Niño Southern Oscillation and the Quasi-biennial Oscil-

lation climate modes, as described in Vejmelka et al. (2014). With those, they can

project the original data onto the selected components to create a time series signal

for the given quantity in several regions. They then use the regions as nodes in their

time series causal discovery algorithm, which identifies the causal relationship be-

tween nodes and removes spurious associations found in the data. With that, they

are able to identify teleconnections between climate modes and sea level pressure

components. Beyond that, they use their established causal networks to compute

causal effect metrics for how much a component impacts others in the space-time

system.

Runge et al. (2019b) give an overview of causal discovery methods for Earth

systems science problems. They identify several classes of causal discovery meth-

ods suited for several classes of problems. The classes of problems they list are

causal hypothesis testing, complex network analysis, analysis of the causes of ex-

treme events, and causal model comparisons. They also provide examples of these

methods used to solve various space-time problems, including an Arctic climate
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problem, an ecology problem, and a cardiology problem. They discuss the many

challenges in applying causal discovery to Earth systems science, from method-

ological to data to computational and statistical challenges. These are discussed in

detail in 2.3.1. Finally, they present future research directions for causal discovery

and call for more scientists to work on using causal discovery to solve the chal-

lenges in Earth systems science.

Eyring et al. (2019) published a perspective paper on climate model evaluation

tools. In it, they say that better tools are required to effectively evaluate the quality

of climate models. Climate models are our primary means of studying and ex-

perimenting with climate dynamics, and understanding how well they perform is

critical to that research. They say, “other promising diagnostic developments on

the horizon that should be further advanced include studies that assess responses to

perturbations rather than mean climate, and the application of innovative data sci-

ence methods in Earth system science such as neural networks, machine learning-

based anomaly detection techniques, graphical models and causal discovery.”

2.3.1 Specific Application Challenges

Runge et al. (2019b) overview the process, data, and computational and statistical

challenges faced in applying causal discovery to Earth sciences. The following is

a recapitulation of the relevant challenges in that overview.
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Process Challenges

The time-dependent processes in Earth systems give rise to strong autocorrela-

tion and time delays for processes to act on one another. Nonlinearities and

state-dependencies and synergies make selecting an estimation method critical.

The wrong method may struggle to disentangle the autocorrelation and internal

dynamics and thus fail to achieve the correct causal structure. Various geoscience

time series may be acting on different time scales, which can be separated to

incorporate and interpret different relationships. Many statistical methods make

assumptions about the noise distribution in the data. Many methods assume ad-

ditive Gaussian noise, but nonlinear and model-free solutions exist (Peters et al.,

2017; Runge, 2018a; Runge et al., 2019b). Processes with heavy tails and extreme

outliers may violate linearity and normality assumptions.

Data Challenges

Climate data is space-time, meaning it is measured and computed on a 3-dimensional

grid over the Earth’s land, oceans, and atmosphere. Hundreds of individual quan-

tities can be collected, leading to a very high-dimensional problem. Extracting

features from this data can be a big challenge.

Observational data is incomplete; some processes cannot be adequately mea-

sured and quantified. It comes from satellite and station measurements and can

include several forms of measurement error, such as measurement noise, instru-

mental biases, and missing data. Often, observational data comes in the form of
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reanalysis data. Reanalysis is a data assimilation effort to fill data gaps and mean-

ingfully represent quantities of interest via observed data and model output. Fi-

nally, satellite measurements only date to 1979, so observational time series are

often short. If problems with the observational data are directly related to the pro-

cesses of interest, then selection bias may be a problem.

Simulation data is vast. Although its spatial resolution is generally smaller than

observational data, it is typically 0.5 degrees to 1.0 degrees latitude and longitude.

The temporal resolution and timescales of simulations are often higher than obser-

vational datasets. They can span hundreds of years and include hourly data.

Because of the high-dimensional and complex data, variable extraction is dif-

ficult. Time series variables need to be extracted from space-time data; some-

times, feature construction techniques are necessary to form causally relevant fea-

tures. To do this, fingerprinting (Hasselmann, 1997) and dimensionality reduction

techniques (Vejmelka et al., 2014), such as empirical orthogonal functions (EOF)1

(Hannachi et al., 2007) and varimax-rotated principal component analysis (PCA)

(Hannachi et al., 2007), are often necessary. Additionally, these features should be

interpretable, representing physical processes in the system.

Often, causal drivers cannot be measured, which leads to latent, or unob-

served, variables in the analysis. The absence of common causes, or a variable

that causes two or more other variables, can lead to spurious links detected in

the causal discovery algorithm. Runge notes that failing to account for important
1The climate community refers to principal components as EOFs.
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drivers, such as anthropogenic climate forcings, may render time series stationary.

Like latent variables, subsampling is when a time series is too infrequently

sampled. If the causal mechanism acts on a smaller time scale than measured, the

mechanism may not be detectable. On the other hand, Time-aggregation may

reduce the data size and algorithm’s computational complexity, but it can make

relationships appear contemporaneous or cyclic.

Computational and Statistical Challenges

Sample size and dimensionality is an issue for the scalability and time complex-

ity of many causal discovery methods. While many methods are proven to be

correct in the limit of unlimited data by consistency, they are typically relatively

slow, some polynomially and some cubically (Runge et al., 2019b). The oppo-

site problem is more likely in observational climate science because, as mentioned

earlier, the observed record is still short. When sample sizes are too small, causal

relationships may not be reliably estimated. In the case of PC and related meth-

ods, conditional independence tests may produce incorrect results, and orientation

rules may contradict each other if sample sizes are too small. If dimensionality is

high and the sample size is small, conditional independence tests may be under-

powered. Lastly, uncertainty quantification, which includes statistical test uncer-

tainties and data measurement uncertainties, is an ongoing research challenge for

causal inference.
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Rejoinder to the Challenges

Most of these challenges discussed are also challenges for traditional correlation,

regression, and machine learning methods. However, interpretation of those re-

mains nebulous and often leads to incorrect conclusions. The assumptions made

by causal inference and causal discovery merely require subject matter expertise;

they encode the domain knowledge to infer causal dependencies and reject spuri-

ous association from observational data. Likewise, it is a mistake to embark on

traditional statistical and machine learning endeavors without subject matter ex-

pertise because of the propensity to mishandle data and make spurious inferences.

Because of these factors, Runge et al. (2019b) note that there is “no strong reason

to avoid adoption and exploration of modern causal inference techniques.”

It seems clear that climate attribution, described in Section 2.2, and causal dis-

covery are fundamentally equivalent endeavors, from intent to results and limita-

tions. Given that both are approached correctly, they are equally valid in assert-

ing the causal dependence between climatological processes. This further iterates

Runge’s assertion that there is no reason to avoid the exploration of modern causal

inference for learning about the Earth’s climate.

2.3.2 Recent Efforts to Overcome Application Challenges

As described above, one of the challenges in statistical and causal inference in

climate science is the amount of data available. It is common for observational and

simulated datasets to be available on a coarse temporal resolution, such as monthly.
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When we seek to discover causal dependencies that occur on a finer resolution

than measured, we may only find contemporaneous or undirected dependencies.

In fact, one of the basic assumptions of the PC, FCI, and PCMCI algorithms is

no instantaneous effects (Spirtes et al., 1993; Peters et al., 2017; Runge, 2018a).

That is, no two variables may act on one another instantly or, practically speaking,

within one observed timestep.

To detect contemporaneous links, rather than assume they do not exist, Runge

published an adapted version of his PCMCI algorithm, which he calls PCMCI+

(Runge, 2020). Runge notes that autocorrelation is key to increasing contempo-

raneous link orientation recall. PCMCI+ also “improves the reliability of CI tests

by optimizing the choice of conditioning sets and yields much higher recall, well-

controlled false positives, and faster runtime than the original PC algorithm for

highly autocorrelated time series.” Empirically, it maintains performance for time

series with low autocorrelation.

Similar to FCI, Runge’s Latent PCMCI (LPCMCI) is an implementation of

PCMCI to handle the case in which causal sufficiency cannot be assumed, when

latent variables exist (Gerhardus and Runge, 2020). This algorithm is tolerant

of latent variables while possibly illuminating their existence. Tolerating latent

confounding is critical in many open systems in which it is impossible to observe

and account for all confounding. The downside of these methods is that they can

only estimate the causal structure up to a Markov equivalence class.
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2.4 Applications of Causal Network Discovery for Climate Sci-

ence

Ebert-Uphoff and Deng (2012) may have been the first to apply causal networks to

climate science in 2012. They cite inspiration from seminal papers from Tsonis and

Roebber (2004) and Tsonis et al. (2006) for their initial work on correlated climate

teleconnections, and from Pearl and Mackenzie (2018a) and Spirtes et al. (1993),

for their causal discovery work. Ebert-Uphoff and Deng apply the PC algorithm

to 500 millibars geopotential height at individual grid cell locations. Geopotential

height is the height above sea level of a specific pressure level in a specific location,

adjusted for the variations in gravity due to changes in latitude.

Ebert-Uphoff and Deng’s work is similar to previous work identifying corre-

lated teleconnections by creating a network of dependencies between grid cells on

the globe of one variable. Their contribution is to apply causal inference to those

teleconnections, removing spurious relationships and identifying a causal network.

There are a couple of limitations to their approach. Without including a time series

implementation of the PC algorithm, their method treats each day’s observation as

an independent sample rather than a time-dependent process. They also use neigh-

boring grid cells in the network, possibly violating independence assumptions in

the conditional independence tests. Major modes of climate variability may not

be adequately captured in single grid cells either, so a weaker signal may lead to

undetected links. Still, grid cell level nodes may increase the total captured spatial
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variability because spatial aggregation and dimensionality reduction techniques

can reduce variance.

Kretschmer et al. (2016) applied causal discovery to detect causal effects in

Arctic midlatitude winter circulation. They apply a version of the PC algorithm

adapted for time series and use seven different variables in the Arctic. They are

regional ice, ocean, and atmospheric quantities. They aggregated daily data into

monthly means because they were specifically looking for processes acting on a

monthly scale. Finally, they used weighted spatial averaging to convert the data

into 1-dimensional time series. They validated their findings by careful analysis of

the variable selections. They selected variables from work conducted in previous

Arctic climatological studies and included proxies for some unmeasurable com-

plex phenomena.

Nowack et al. (2020a) used PCMCI to evaluate how similar climate model runs

were to observed dynamics. Specifically, they developed graphs depicting how

sea level pressure in 50 regions on the globe relates to each other region. In the

correlation setting, a relation between variables across space on the globe is called

a teleconnection. They discovered causal graphs for 20 models in the Coupled

Model Intercomparison Project Phase 5 (CMIP5). Each model was represented by

several simulation runs, each used to generate their own graph. They used the F1

score to measure the similarity between graphs.

Using spatial sea level pressure data, Nowack et al. (2020a) detected 50 regions

of interest using a common technique in climate science. First, PCA identified
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the first 100 orthogonal components. Then, they use the varimax rotation algo-

rithm, which has been found to increase the interpretability of components and

localize them in space. They note, “principal components without rotation con-

secutively maximize variance and therefore often mix contributions of physically

defined modes such as the El Niño Southern Oscillation, Pacific Decadal Oscil-

lation, or the North Atlantic Oscillation, whose time-behavior is not orthogonal,

making patterns more difficult to interpret.”

Finally, they select 50 of the 100 components based on spatial separability and

frequency spectra. Resulting are 50 discrete regions with high variability and in-

dependent patterns. They used the 50 components for each node in the causal

discovery analysis. Lastly, they note that “the selection of components defining

the network nodes will typically be guided by expert knowledge in conjunction

with dimension reduction techniques.”

Tibau et al. (2022) built on the dimensionality reduction approach, augmenting

it to output grid-cell-level networks. They specifically delineate mode-level (di-

mensionality reduction or cell aggregation) and grid-level causal discovery. Their

augmentation is called Mapped-PCMCI, which first applies dimensionality reduc-

tion, then computes a mode-level causal network with PCMCI, and finally maps

the grid cells within the modes to each other using the network previously con-

structed. Their resulting network consists of edges between grid cells, but the

method assumes that cells within modes are fully connected, i.e., each cell is de-

pendent on all of its neighbors. In contrast, our work specifically seeks inter-cell
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spatial relationships. Finally, they also describe the failure of a traditional causal

discovery approach for grid-cell-level data, “[if] we apply PCMCI directly at the

grid-level, the low power of this high-dimensional and redundant estimation prob-

lem (see Section 2.2.2) leads to most links being missing.”

Recently, a new tradition, causal representation learning, developed out of ma-

chine learning to leverage causal reasoning for their models (Schölkopf et al.,

2021). While still a developing field, it shows particular promise for estimating

relationships in the presence of latent confounding. Boussard et al. (2023) and

Brouillard et al. (2024) developed the Causal Discovery with Single-parent De-

coding (CDSD) algorithm within the causal representation learning framework and

applied it to the climate science field. CDSD performs well in high-dimensional

data settings but through a different mechanism. It performs dimensionality reduc-

tion by learning latent variables and enforcing a “single-parent” constraint where

each grid cell belongs to exactly one latent factor. This naturally clusters grid cells

into coherent, often contiguous regions and enables the discovery of causal rela-

tionships between these larger-scale patterns. In contrast to grid-level structure

learning, CDSD identifies broader teleconnection pathways between regional cli-

mate modes. Thus, CDSD abstracts to a higher level by mapping the native grid

space to an identifiable latent representation before performing causal discovery.

Several studies have addressed local-scale phenomena. Pfleiderer et al. (2020)

applied causal discovery to identify precursors to seasonal hurricane frequency.

They utilized the precursors to inform a predictive model. Polkova et al. (2021)
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identified local drivers of marine cold-air outbreaks in the Barents Sea. These

demonstrate that existing causal discovery approaches can be valuable for seasonal

and sub-seasonal phenomena. However, both marginalized large regions prior to

analysis, reducing the space’s dimensionality, and did not evaluate the space-time

evolution of phenomena nor grid-level dynamics.

There are some examples of causal discovery algorithms leveraging spatial in-

formation. Zhu et al. (2016) developed pg-Causality that applies space-time pat-

tern mining and a Gaussian Bayesian Network to seek local dependencies in the

space-time propagation of air quality data. Sheth et al. (2022) developed STCD

for understanding hydrological systems. They constrained the discovery of spatial

structures by only allowing higher elevation nodes to be parents of lower elevation

nodes because water follows the gravity gradient. While both cleverly use mined

or known spatial structure to inform their causal discovery, they are both limited

to use in sparse point-measured data from static base stations rather than gridded

data. Further, these methods enforce constraints as filtering mechanisms. Neither

address the scalability challenges in high-dimensional gridded data.

Parallel Approaches in Neuroscience: Causal Discovery for High-Dimensional Spatial-Temporal

Data

Other scientific domains face similar challenges with high-dimensional space-time

data. Neuroscience, for example, needs to study mechanisms in brain interactions,

and fMRI images may contain thousands to millions of pixels. The anatomy of

the brain also exhibits locality constraints. Ramsey (2014) made computational
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optimizations to the Greedy Equivalence Search algorithm, including sparsity con-

straints and limiting the distance of potential parents, to recover graphs with mil-

lions of nodes. Saetia et al. (2021) marginalized regions of interest in the brain

using spatial averaging and then applied the PCMCI algorithm to construct causal

graphs. There is a common interest in recovering graphs of high-dimensional grid-

level data throughout the sciences. Developing more tools that enhance the esti-

mation and interpretability of causal graphs in these spaces will help advance our

understanding of space-time structures across the sciences.

What is clear from prior work is that grid-level analyses are challenging, both

statistically and computationally, due to how many grid cell dependencies need

to be estimated, the enormous number of observations needed, and the redundant

information content of nearby cells.

45



Part I

Foundations of Structure Learning for

Earth Systems

46



3 Machine Learning Feature Analysis Illu-

minates Disparity Between E3SM Climate

Models and Observed Climate Change

3.1 Publication Notes

Citation: Nichol, J. Jake, et al. “Machine learning feature analysis illuminates

disparity between Energy Exascale Earth System Model (E3SM) (E3SM Project,

2018) climate models and observed climate change.” Journal of Computational

and Applied Mathematics, vol. 395, 2021, p. 113451.

Publication date: October 2021

Publisher: Journal of Computational and Applied Mathematics

Formatting: The original published text has been preserved as much as possible

while still adhering to the formatting requirements of this dissertation.

Data and Software Availability: The paper is available at https://www.osti.

gov/biblio/1782577.

Funding: This work is supported by Sandia Earth Science Investment Area Labo-

ratory Directed Research and Development funding. Sandia National Laboratories

is a multimission laboratory managed and operated by National Technology and

47

https://www.osti.gov/biblio/1782577
https://www.osti.gov/biblio/1782577


Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-NA-0003525.

3.2 Abstract

In September of 2020, Arctic sea ice extent was the second-lowest on record. State

of the art climate prediction uses Earth system models (ESMs), driven by systems

of differential equations representing the laws of physics. Previously, these models

have tended to underestimate Arctic sea ice loss. The issue is grave because accu-

rate modeling is critical for economic, ecological, and geopolitical planning. We

use machine learning techniques, including random forest regression and Gini im-

portance, to show that the Energy Exascale Earth System Model (E3SM) (E3SM

Project, 2018) relies too heavily on just one of the ten chosen climatological quan-

tities to predict September sea ice averages. Furthermore, E3SM gives too much

importance to six of those quantities when compared to observed data. Identifying

the features that climate models incorrectly rely on should allow climatologists to

improve prediction accuracy.

3.3 Introduction

We have observed dramatic declines in Arctic sea ice since the advent of satellite

imaging (Stroeve and Notz, 2018). This change is of critical importance to global

economic, social, political, and ecological landscapes, not least because of the
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opening of new navigable sea routes and the impact on wildlife (Arc, 2019; Smith

and Stephenson, 2013). As an essential component of the Earth’s climate, sea ice

loss drives the positive feedback between surface albedo and Arctic warming and

may contribute to changes in ocean circulation and mid-latitude weather (Goosse

et al., 2018; Sevellec et al., 2017; Cohen et al., 2018; Cvijanovic et al., 2017).

Earth system models (ESMs) provide state of the art simulations of the global

climate. They include general circulation and thermodynamic models for ocean

and atmosphere, and models for land, sea ice, and land ice processes. Collect-

ing an ensemble of parameterized ESM runs produces a distribution of forecasts

that provide bounds on predictions. Simulations of Arctic sea ice in these models

include complex interactions between the ice, ocean, and atmosphere. However,

limitations in ESMs, such as the inability to resolve critical small-scale processes,

can lead to biases when compared to observations. It is, therefore, critical to iden-

tify sources of bias.

Previous generations of ESMs have, on average, underestimated the rate of sea

ice loss in the Arctic (Rosenblum and Eisenman, 2017). This is apparent in data

from the Coupled Model Intercomparison Project (CMIP), which includes sim-

ulation results from a broad array of ESMs from modeling centers around the

globe. CMIP phases mark improvements in the state of the art. The extent of

sea ice loss has been a consistent problem, first identified in phase 3 (Meehl et al.,

2007; Stroeve et al., 2007). By phase 5 (CMIP5), overall model bias had improved

(Taylor Karl E., Stouffer Ronald J., 2012). However, Rosenblum and Eisenman

49



(Rosenblum and Eisenman, 2017), in an analysis of 118 simulation runs from 40

CMIP5 simulations, found that 89% of CMIP5 model runs underpredicted the rate

at which sea ice extent is lost (km2/decade) by more than a standard deviation; and

2014 loss by an average of 2 million km2. The disagreement with observation may

imply that ESMs’ parameters are not well-tuned. Stroeve et al. (Stroeve et al.,

2007) suggest this discrepancy is due to missing key causal mechanisms or repre-

sent a misunderstanding of underlying physical processes.

The Energy Exascale Earth System Model (E3SM) (E3SM Project, 2018), de-

veloped by the United States Department of Energy (DOE), is included in phase

6 (CMIP6) (Eyring et al., 2016) (March 2019). E3SM is a new state of the sci-

ence climate modeling and prediction project. In CMIP5 and E3SM, the rates of

pan-Arctic sea ice change are similar to observation before 1996 but deviate from

observation afterward. In CMIP5’s case, the rate of loss is less than observed

(Rosenblum and Eisenman, 2017), while E3SM’s is greater than observed (Sec-

tion 3.5.1: Data). These differences in sea ice loss rates lead to inaccurate long

term predictions about absolute sea ice extent in the Arctic. To our knowledge, our

work is the first mechanistic analysis of E3SM accuracy.

We use random forest regression (RFR) (Breiman, 2001) and Gini importance

(Nembrini et al., 2018) to determine which E3SM features drive climate predic-

tions. We perform an identical study of historical observations to identify the fea-

tures that are most influential on prediction of actual sea ice loss. By comparing

the two, we determined that E3SM relies too heavily on some features, to the detri-
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ment of others, resulting in a divergence from observation. This work elucidates

differences in sea ice response between observational data and E3SM simulations

and can help improve sea ice prediction.

3.4 Related Work

Stroeve et al. (Stroeve et al., 2012) analyze the agreement between simulated Arc-

tic models, CMIP3 and CMIP5, and observed data. They report that while phase 5

models are an improvement over phase 3 they consistently overestimate forecasted

ice extent in the Arctic. The authors suggest that modeling may be improved by in-

cluding more complex mechanisms such as sea ice albedo parameterization, thick-

ness distributions, and melt ponds.

Rosenblum and Eisenman (Rosenblum and Eisenman, 2017) examined CMIP5’s

sea ice extent predictions in the Arctic and found overprediction of sea ice ex-

tent. Correcting the models required an increase in warming well above observed

rates, leading the authors to conclude that the current methods were systematically

flawed.

Ionita et al. (Ionita et al., 2018) presented a method for using multiple linear

regression to predict the September sea ice extent minimums in the pan-Arctic

region and the East Siberian Sea. Notably, they used step-wise regression because

it may highlight the underlying coupled physical mechanisms between factors. For

the pan-Arctic region, their model was able to predict sea ice extent anomalies for

May, June, and July fairly accurately (reporting r-values between 0.84 and 0.9).
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Although they found a “skillful” model could be built from their list of Arctic

features, they did not analyze the relative importance of those features for their

models.

Reid and Tarantino used support vector regression (SVR) to predict the Arctic

sea ice extent (Reid and Tarantino, 2014). SVRs were able to construct predictive

models, but they only considered sea ice extent as a predictor and could not ana-

lyze any other features for their importance. They chose SVRs because they are

successful in predicting complex dynamical systems such as climate. The authors

reported the comparative results of tuning the SVR, and compared them to CMIP5

ensembles but not to observation.

3.5 Data and Methods

Our methods were able to account for discrepancies in climate simulations and

observations. Like multiple linear regression and its associated term-weights, ran-

dom forests are a machine learning method that is wholly transparent (Breiman,

2001), unlike many other so-called “black box” methods, such as SVRs. We used

RFRs and their corresponding Gini importance measure to determine how much

influence each input feature has on E3SM predictions. With those tools, we ana-

lyzed each feature’s impact on historical sea ice extent and used that information

to highlight discrepancies with E3SM.
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3.5.1 Data

Our machine learning (ML) models used monthly averages of June, July, and Au-

gust data from the atmosphere, ocean, and sea ice to predict September sea ice

extent for a given year. Results from observational and reanalysis data products

are then compared against results from five ensemble members of the E3SM his-

torical dataset. The features our ML models are trained on are a subset of physical

quantities simulated by E3SM in the Arctic. We chose these features because they

match observable features in nature and that we hypothesized would be good pre-

dictors of sea ice loss. Each feature of each dataset is a time series beginning with

the start of the satellite era in 1979 and ending with the last year of available E3SM

output, 2014.

The observational data included monthly sea ice extent computed from gridded,

daily, passive-microwave satellite observations of sea ice concentration provided

by the National Snow & Ice Data Center (NSIDC) (Peng et al., 2013). Sea ice

concentration is a percentage value of ice in each grid cell, and sea ice extent

(SIE) is computed as the total area of cells containing more than 15% ice. Sea ice

volume reanalysis data were provided by the Pan-Arctic Ice Ocean Modeling and

Assimilation System (PIOMAS) (Schweiger et al., 2011). Atmospheric data (total

cloud cover percentage (CLT), downward longwave flux at surface (FLWS), pres-

sure at the surface (PS), near-surface specific humidity (SSH), temperature at the

surface (TS), wind u component/zonal (uwind), and wind v component/meridional

53



(vwind)) were from an atmosphere reanalysis provided by the National Centers

for Environmental Prediction (NCEP) (NOAA et al., 2019a). Sea surface temper-

ature (SST) was provided by the National Oceanic and Atmospheric Administra-

tion (NOAA) (NOAA et al., 2019b). For each of the atmospheric data variables, as

well as SST, monthly Arctic area averages were computed from the global gridded

fields.

We used the DOE’s E3SM for climate simulation data in this work (E3SM

Project, 2018; Golaz et al., 2019). E3SM version 1 was a fork of the community

Earth system model (Kay et al., 2015), which was a part of the CMIP5 collection

analyzed by Rosenblum and Eisenman (Rosenblum and Eisenman, 2017). E3SM

is a global model comprised of submodels for land, atmosphere, land ice, sea ice,

oceans, and rivers. Specifically, we used data from E3SM’s historical ensembles

1-5 at one-degree global resolution.

E3SM published five historical ensemble runs to offer a distribution of fore-

casts. The runs were initialized from different years of a 500-year pre-industrial

control simulation. The historical runs start in 1850, running for 165 years to 2014.

The final 36 years, 1979 to 2014, were used in our analysis to match the years of

observed data. Small differences in each run’s initial conditions can significantly

impact long-term results, though average behavior between runs is expected to be

consistent.

Table 3.1 summarizes the observed features we collected; an excerpt of June

values is included. Each feature is a time series of the feature’s mean in a given
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Table 3.1: Training Features and June Data Excerpt: total cloud cover percentage (CLT), down-
ward longwave flux at surface (FLWS), pressure at the surface (PS), sea ice extent (SIE), sea ice
volume (SIV), near-surface specific humidity (SSH), sea surface temperature (SST), temperature
at the surface (TS), wind u component/zonal (uwind), and wind v component/meridional (vwind).
Values listed are means over the pan-Arctic grid for each day of the month, rounded to two-decimal
places for display only.

June Sept.
CLT FLWS PS SIE SIV SSH SST TS uwind uwind SIE

Year (%) (W/m2) (Pa) (106km2) (106km3) (mg/kg) (◦C) (◦C) (m/s) (m/s) (106km2)
1979 42.08 256.56 97930.00 12.53 29.79 4.31 0.56 273.46 0.94 0.48 5.90
1980 40.89 259.51 97901.00 12.20 29.15 4.44 0.68 274.67 0.99 0.47 6.83
1981 40.47 258.13 98098 12.43 26.82 4.27 0.65 274.27 0.06 0.06 6.40

...
...

...
...

...
...

...
...

...
...

...
...

2012 40.36 271.60 98105.00 10.67 16.00 5.12 1.39 277.28 −0.03 −0.06 3.55
2013 40.66 266.93 97989.00 11.36 17.54 4.98 1.26 276.50 0.93 0.42 5.27
2014 39.84 263.94 98.19 11.03 17.68 4.72 1.47 275.67 0.00 0.04 5.38

month from 1979 to 2014. Values in the time series are an area-sum over the

pan-Arctic oceanic region. Each feature’s monthly data is a mean of every Arctic

sample in the given month, resulting in a single value per month. Generally, the

observational and reanalysis datasets have similar magnitudes to the simulation

data. However, for CLT, the NCEP reanalysis is significantly lower than the E3SM

data. This is a known bias in the NCEP reanalysis data, and future work could

investigate feature analyses of alternative reanalysis datasets (Zib et al., 2012).

The data used in this work is publicly available on the E3SM website. The

five historical ensemble runs were retrieved from the v1 one-degree data CMIP6

release. To disambiguate them from our machine learning models and observed

data, we will refer to E3SM’s historical ensembles 1-5 as simulations 1-5, simula-

tion runs, or simply E3SM runs for the remainder of this paper. Figure 3.1 shows

a comparison of the observed and simulation datasets evaluated in this work.
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Figure 3.1: Comparison of observed, pan-Arctic mean September sea ice extent with predictions
from E3SM’s historical ensembles 1-5. The mean of E3SM simulations is shown with 95% confi-
dence interval (shaded).

3.5.2 Random Forests

We found that linear models performed poorly on our data. For this work, we

used RFR models because they are relatively simple, intuitive models that can

learn nonlinear relationships between features. As a part of their training, the

decision trees in random forests generate Gini impurity measures. These measures

are aggregated after training to determine the Gini importance of each feature. In

our case, we computed importance as the total reduction in mean absolute error

(MAE) caused by each feature.

RFR is an ensemble learning technique, similar to a combination of bootstrap
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aggregation (bagging (Breiman, 1996)) and decision tree regression. Bagging is a

method to combine the knowledge of many naive estimators, or trees in our case,

by providing a subset of the full sample set to each estimator. The result is the av-

erage of many noisy, but unbiased, estimators, reducing overall variance. Random

forests improve the bagging method by choosing random subsets of the feature set

for each node split in every tree (Banfield et al., 2007). The number of random

features each node considers, and when to split are tuned hyper-parameters. The

final forest’s estimate is the average prediction from the random trees.

For N trees, T1, ...,TN , random forest regression prediction is computed as fol-

lows:

RF(N) =
1
N

N

∑
n=1

Tn(x)

given the training sample, x.

The random forest implementation we used was the random forest regressor

from Python’s sci-kit learn package (Pedregosa et al., 2011). The implementation

uses a perturb and combine technique (Breiman, 1998a) made for tree regressors.

Perturb and combine reduces test set error by introducing a diverse set of regres-

sors via randomized regressor construction. For the rest of the data analysis, we

used Python’s Numpy package (Van Der Walt et al., 2011). We utilized Python’s

Seaborn package (Waskom and the seaborn development team, 2020) for data vi-

sualization.
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3.5.3 Pre-Processing

To prepare the data for training, we split it into training and testing years. Our goal

was not to develop predictive models for next year’s sea ice extent. We were more

interested in finding models that have learned the data well that we then used for

feature analysis. Thus, we split the training and testing data randomly.

Because some years are easier to forecast than others, we should model every

combination of training and testing years. For 36 total years and 18 testing years,

we computed
(36

18

)
= 9075135300.00 total combinations of training and testing

years. Since it is infeasible to train that many models and evaluate each feature’s

importance, we used this standard method to compute a sample size:

(z-score)2×σ × (1−σ)

e2

with a z-score computed with 95% confidence, e = 5% margin of error, and stan-

dard deviation σ , which yielded 385 sample sets on which to train and test our

models. We illustrate with 18 testing years because it is the maximum value of
(36

X

)
,X ∈ [1,36].

Decision trees, and thus random forests, are scale-invariant (Breiman et al.,

1984). This means that although our data varies greatly in scale between, for ex-

ample, sea ice extent, in millions of km2, and wind speeds, less than 1.00 m/s, the

models’ accuracy is unaffected. This is an advantage over many other ML models,

and we can leave the data generally untouched. However, random forests extrap-
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olate poorly for data outside of their training’s minimum and maximum values

(Hengl et al., 2018). This presented a problem for our analysis of the dataset be-

cause, as shown in Figure 3.1, the latter third of the data has values generally lower

than any in the first two thirds. We detrended training and testing data separately to

mitigate that problem by forcing the data to have a zero mean. After training and

fitting our models, we retrended the data and the model’s predictions to evaluate

their error.

3.5.4 Model Training and Hyper-Parameter Tuning

Finally, we trained RFR models on the data the training splits provided. Note that

the trees in our forests were allowed to grow until all leaves were pure, even if they

contained a single sample. Decision trees are often pruned to reduce overfitting,

but Breiman (Breiman, 1998b) suggests letting trees grow fully in random forests

to boost accuracy and increase ensemble diversity. Banfield et al. (Banfield et al.,

2003, 2007) also discuss ensemble size in random forests and conclude that many

more trees are necessary than are typically used. Ensemble size is an important

hyper-parameter to tune because the number of trees in the forest directly impacts

the possible feature sets the forest can explore, and too many trees can reduce a ran-

dom forest’s performance while also sacrificing run-time. Our forests comprised

250 decision trees. The number of trees was determined empirically. Forests of

size 10, 50, 100, 250, 500, and 1000 trees were evaluated and their performance

was measured on the basis of the test R2 (average R2) and average test anomaly
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correlation coefficient (ACC), which are detailed in Section 3.5.6. We found that

250 tree models maximized R2 and ACC. Lastly, the trees in each forest used mean

squared error as their nodes’ splitting criterion.

3.5.5 Feature Importance Measurement

We used Gini importance because of the non-linearities in climate data; in partic-

ular, Gini importance is not susceptible to data multicollinearities. Given that all

of our features come from the same complex system, it would be difficult to elim-

inate features by simple correlation measures. In standard usage, Gini importance

is normalized to compare relative importance within a single dataset. We chose to

preserve the absolute importance values, letting us compare across datasets.

We also considered drop-column and permutation importance methods (Breiman,

2001). However, we found them to be unsuitable because they are highly suscep-

tible to multicollinearity. Because many physical processes are directly acting on

each other, Arctic features are inherently correlated, and any leave-one-out impor-

tance method will highlight that correlation. We found that the correlation leads

these methods to attribute more importance to the least correlated feature, and it

becomes difficult to glean meaningful insights.
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3.5.6 Model Evaluation

We used the R2 (coefficient of determination) from the Nash-Sutcliffe efficiency

definition, given by:

R2(ŷ,y) = 1− ∑(y− ŷ)2

∑(y− y)2 ,

where y are the true values, ŷ are the predicted values, and y is the mean of y. This

definition has a range of (− inf,1] where 1 is the best possible score.

In addition to R2, we evaluated model performance with average MAE (MAE)

and ACC. Again, average here means the mean value measured in 385 models with

random training and testing year splits. Since MAE is in millions of km2, we took

the Sea Ice Outlook’s 2019 season report (Bhatt et al., 2020) as a baseline. This

report includes several different types of data-driven models and presents one-year

forecasts. These should have less error than ours, given how many more years we

forecasted at once. With the exception of a few outliers between 2008 and 2019,

sea ice forecast error was between −0.4 and 0.6 million km2.

ACC is the Pearson’s correlation coefficient (r-value) of sea ice extent anoma-

lies. A time series’ anomaly is a measure of the data’s deviation from its climatol-

ogy. In our case, the climatology is the mean value of the true values the models

are attempting to forecast. This function is defined by:

ACC(ŷ,y) =
∑ [(ŷ− y)(y− y)]

M×σŷ×σy

where y are the true values, ŷ are the predicted values, M is the number of samples
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Figure 3.2: June feature importance. Standard box-and-whisker plot (McGill et al., 1978) of val-
ues for 13 predictions generated by 385 models. The average R2, anomaly correlation coefficient
(ACC), and mean absolute error (MAE) are displayed in the gray boxes. The blue line in each
dataset is the mean importance of a random variable in each feature set.

in y and ŷ, y is the mean or climatology of y, σŷ is the standard deviation of the

predicted values, and σy is the standard deviation of the true values.

3.6 Results

Our goal is to learn the importance of climate features on the predictions made

by E3SM and compare that to the actual importance of those features on observed

sea ice extent. We found that was best accomplished by training RFRs on 23

uniformly randomly chosen years and testing with the remaining 13. Our perfor-

mance measure was based on the mean of R2 scores among datasets for the June
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Figure 3.3: July feature importance. Standard box-and-whisker plot (McGill et al., 1978) of val-
ues for 13 predictions generated by 385 models. The average R2, anomaly correlation coefficient
(ACC), and mean absolute error (MAE) are displayed in the gray boxes. The blue line in each
dataset is the mean importance of a random variable in each feature set.

input data. This train-test-split resulted in maximum and minimum R2 scores of

0.88 and 0.77, respectively, yielding a measure of 0.83. R2 denotes the average R2

of the 385 models.

We replicated our analysis for each month between June and August, predicting

September SIE. Each subsequent month generates less error. Within each dataset,

each feature’s relative importance changes. Some features’ importance is corre-

lated with the progression of months, while others appear to change randomly.

Figure 3.2 shows June’s feature importance values. The average train and test

error values indicate that the models generally learn the data well. The blue line

shows the mean feature importance of a random variable included in each model’s
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feature set. The random variable indicates a lower bound on importance; any fea-

ture with an importance value near this line has virtually no importance. We found

that adding a random variable decreases individual model performance, but the ef-

fect is minimized when taking the mean over every model.

There are some similarities between each dataset. They share the same list of

six important features, though their order and magnitudes differ. sea ice volume

(SIV) is consistently the most important, though the degree of absolute importance

varies. SIV, TS, SSH, SIE, FLWS, and SST are important in each dataset. The

datasets, except for simulation 3, share the same list of unimportant features as

well. These are CLT, PS, uwind, and vwind. One apparent exception is June’s PS

in Figure 3.2: simulation 3; however, excluding PS from the training data, results

in a negligible difference in R2 (0.7681 vs. 0.7682).

July features, shown in Figure 3.3, predicted as well or better than June in each

of our error metrics; simulation 3 had the lowest R2, 0.78, and simulation 2 had the

highest, 0.88. The same features were important in July as in June, but the relative

importance values changed. June’s sea ice extent became more important in the

observed dataset, surpassing the importance of SIV. SSH became less important in

the observed dataset, too, settling just above the random variable. SSH remained

as important in the simulation datasets.

The most dramatic change in importance occurs in August. These results are in

Figure 3.4. Error was significantly better with simulations 3 and 4 having the min-

imum R2, 0.87, and simulations 1 and 2 having the maximum, 0.91. In August, sea
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Figure 3.4: August feature importance. Standard box-and-whisker plot (McGill et al., 1978) of
values for 13 predictions generated by 385 models. The average R2, anomaly correlation coefficient
(ACC), and mean absolute error (MAE) are displayed in the gray boxes. The blue line in each
dataset is the mean importance of a random variable in each feature set.

ice extent was always the most important. The importance values of the remaining

features generally changed very little throughout datasets.

3.7 Discussion

We found that our RFR ML models were able to accurately learn each of the

datasets. After examining the Gini importances computed within each model, we

discovered some key differences in how each dataset relates to September pan-

Arctic sea ice extent.

A problem with our dataset is that the satellite record only goes back to 1979.

65



One solution is to adapt the models to forecast sea ice extent continuously through-

out each year. This is in line with Reid and Tarantino’s approach (Reid and

Tarantino, 2014) (see Section 3.4), but with random forests instead of support

vector machines and including many features instead of only sea ice extent. The

models would train on the full year of data and see 432 data points rather than

36 in the time series. Several observed features are measured more frequently than

monthly, some every few hours of every day, so a means to incorporate inconsistent

sampling resolutions of features should be investigated to leverage all of the data

available. Another solution could be to use a surrogate model to generate more

data that is similar to the first 15 years of observed data, which have a much flat-

ter trend. The surrogate model would let the new data agree with what the model

learns about input features.

The combined error metrics and general consistency of results between each

dataset suggests that our models have learned the data well, and the feature analysis

can identify key patterns. It is meaningful that the same six features are considered

important across datasets and input-months. Since our analysis is of the pan-Arctic

region, it is possible that the set of unimportant features would be more important

in specific subregions of the Arctic.

Though the most important feature in June and August is consistent between

simulation and observation, the absolute importance differs markedly. One clear

pattern is that June shows an acute reliance on sea ice volume for both observa-

tions and simulations. By August the reliance is traded for sea ice extent. This

66



finding is consistent with earlier studies evaluating sea ice predictability using lag-

correlation analyses with ESM ensemble data (Ordonez et al., 2018; Blanchard-

Wrigglesworth et al., 2011).

Although the observed and simulated data share patterns, there is a clear dif-

ference between them. In July, simulations and observed data do not agree on the

most important feature. In June, July, and August, simulated data relies too heavily

on almost all the important features. In each dataset, importance values diminish

for the remaining features in June and July, and their distributions overlap more

than they did in June, but the observed dataset still shows the least importance in

FLWS, SSH, TS, and SST.

Interestingly, simulations 1 and 2 forecasted with the highest R2 each input

month, and simulations 3 and 4 had the lowest R2 in each input month. Simula-

tions 1 and 2 have the lowest MAE and highest ACC among the simulation runs,

and 3 and 4 have the highest MAE and lowest ACC among the simulations runs.

Although the differences are small, these consistencies may indicate some com-

monality between these simulation runs.

Our ML models performed better on the observed data than on the simulations

as measured by MAE and ACC, but is not reflected in R2. That suggests that the

mean value, or the trend after retrending, was very predictable, but its intervari-

ability, which R2 explains, was less predictable. The likely explanation is in the

difference in the complexity of the systems. Observed features of the continuous

Earth system are artificially discretized. In any complex system, intervariability is
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difficult to forecast. However, because we chose largely relevant features as pre-

dictors, we could capture the macro-level patterns, as evidenced by the macro-level

error measures: MAE and ACC.

3.8 Conclusions

We demonstrated that random forest regression and the associated Gini importance

measure can provide insight into why ESMs incorrectly estimate sea ice extent

in recent decades. We found a discrepancy in the feature importance between

observed and simulation datasets. In particular, the discrepancy between E3SM

and observation appear to be due to an over-reliance on June sea ice extent and

August sea ice volume. The order of feature importance was also different between

E3SM and observation, and the ordering was not consistent within E3SM ensemble

members. In all cases, E3SM over-relies on six features compared to observed

data. Machine learning allows us to fill the gaps in the underlying physics of

ESMs, providing a metric for Stroeve et al.’s (Stroeve et al., 2012) hypothesis that

ESMs are missing complex relations and causal mechanisms.

In the future, we can evaluate more features that can be measured or constructed

in each dataset. An analysis, including all months of the year in each model will be

elucidating as well. Sea ice extent is measured daily via satellite imagery. We can

understand how each dataset explains sea ice extent at a higher resolution every

month of the year.

We can repeat our analysis on other regions, including Antarctica, where there
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are also problematic disagreements with observations (Rosenblum and Eisenman,

2017). An analysis like this of other climate models could be insightful too. It

would be particularly interesting to compare simulations in which there few to

no correlated features. That would allow for variations on the analysis, such as

more modeling approaches, which require linearly independent features, and more

feature analysis methods, such as drop-column importance, which would otherwise

struggle with multicollinearities.

Further insight could be gained by repeating our analysis with a machine learn-

ing method other than RFR, however the following methods have their own chal-

lenges. Most neural network models would need more observed data than is avail-

able to converge. We found that multiple linear regression cannot learn the data

well because the relationships between features are nonlinear. Reid and Tarantino

(Reid and Tarantino, 2014) found that SVR can forecast the data well, but it is

unclear what the best feature analysis method would be.

Given the discoveries in this paper, we can run experiments with E3SM to de-

termine how reducing feature disagreements between the observed and simulation

datasets impact E3SM’s forecasts. That process may not yield results for several

reasons, including that E3SM’s real feature set is large and complex, focusing anal-

ysis on the Arctic region is too restricting to estimate the effects of the global Earth

model, or our ML models are too limited by small datasets. Despite these chal-

lenges, our results can potentially guide climate modelers as they develop the next

generation of ESMs.
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4.2 Abstract

We plan to use nascent data-driven causal discovery methods to find and compare

causal relationships in observed data and climate model output. We will look at ten

different features in the Arctic climate collected from public databases and from

the Energy Exascale Earth System Model (E3SM). In identifying and comparing

the resulting causal networks, we hope to find important differences between ob-

served causal relationships and those in climate models. With these, climate mod-

eling experts will be able to improve the coupling and parameterization of E3SM

and other climate models.

4.3 Introduction

Climate models are critical to our understanding of climate change. We believe

there is an opportunity to apply causal inference methods to these models to im-

prove predictions. We can understand the quality of a model by comparing it with

observations of the natural phenomena being simulated. From there, we can make

the necessary improvements to the model, but where to start? Currently models are

developed using a trial and error approach, in which a model is designed and pa-

rameterized and the resulting accuracy is observed. For computationally expensive

models this approach quickly becomes inefficient. We propose to investigate the

causal relationships between features and their weights to better target reparam-
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eterization and feature selection efforts. We propose to focus on the pan-Arctic

region because we previously studied Earth system model (ESM) prediction dis-

crepancies there (Nichol et al., 2021). The Arctic climate, though important in

itself, also has global climate implications.

In Runge et al. (2019c), a recent review of causal methods, they argue that

causal discovery is well-suited to improving climate models. Nowack et al. (2020b)

provide an example analysis of a global climate model. This work proposes to

build these publications, by extending this nascent field to Energy Exascale Earth

System Model (E3SM) (E3SM Project, 2018) and a including multiple feature

analysis.

In contrast to methods based in statistical correlations, causal inference tells us

why systems behave the way they do. Discovering the underlying causal structure

in data and then comparing those structures from observed and simulated datasets

will give us a richer understanding of the differences between the data sources.

Commonly, causal effects are determined and quantified by interventionist ex-

periments, usually in randomized trials. Because of the magnitude, complexity,

and uniqueness of the Earth’s climate, there are significant feasibility and ethi-

cal problems with controlling and intervening in the climate for experimentation.

For this reason, climate science is largely studied with coupled numerical models.

Each model encapsulates subsystems and subprocesses that work together to de-

termine the long-term climate.

The status-quo in Earth system model evaluation is based on simple descriptive
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statistics, like mean, variance, climatologies, and spectral properties of model out-

put derived from correlation and regression methods (Runge et al., 2019c). These

methods can be simple to implement and interpret but are often ambiguous or

misleading; resulting associations can be spurious and the directions of effects is

fundamentally unknown.

In recent decades, a rigorous mathematical framework has been developed for

observational causal inference by Pearl, Spirtes, Glymour, Scheines, and others

(Spirtes et al., 1993; Pearl, 2009; Spirtes and Zhang, 2016b). The framework is

largely based on Reichenbach’s (Reichenbach, 1956) Common Cause Principle:

that if two variables are dependent, there must be a causal relationship between

the two or a third common driver of the two. Most importantly, causal methods

identify the direction of observed effects between variables and detect spurious

correlations.

The model we are interested in for this work is the United States Department

of Energy (DOE) Energy Exascale Earth System Model (E3SM) (E3SM Project,

2018). This model is a coupling of atmospheric, ocean, river, land, land ice, and

sea ice numerical models. Its goal is to use exascale computing to output high-

resolution simulations of natural and anthropogenic effects in the climate.

The Arctic climate has significant direct and indirect impacts on global cli-

mate, ecology, geopolitics, and economics (Assessment, 2004; Arc, 2019; Smith

and Stephenson, 2013). In particular, the volume and extent of Arctic sea ice are

important indicators for the current state and projections of global climate change
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(Goosse et al., 2018; Sevellec et al., 2017; Runge et al., 2015b; Cvijanovic et al.,

2017). Because of this, effectively understanding the causal drivers in the Arctic

climate system is requisite for understanding the future of our climate and how we

can mitigate or intervene in climate change.

Climate models are in active development and the Coupled Model Intercompar-

ison Project (CMIP) is a group that collects and curates modern climate models for

world-wide collaboration. Researchers have found that models in phases 3 and 5

of CMIP underestimate the rate of Arctic sea ice loss on average (Rosenblum and

Eisenman, 2017; Taylor Karl E., Stouffer Ronald J., 2012; Stroeve et al., 2007).

Figure 4.1 shows the difference between observed sea ice extent and E3SM’s mod-

eled prediction.

In previous work, we used random forest feature analysis to determine which

summer-time features in the Arctic are most predictive of yearly sea ice extent

minimums in September (Nichol et al., 2021). We then compared results from

observed data and simulation output data. This approach allowed us to discover

and compare nonlinear relationships in the climate systems. Random forest feature

importance values are correlations and direction can only be inferred from each

feature to the single predictand. Therefore, inter-feature relationships in the model

cannot be interpreted causally. Finding differences between in causal relationships

between climate models and observed data will identify clear, actionable problems

with the models.
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4.4 Data

We selected time series data for ten features in the Arctic consisting of monthly

mean values for each year of available data. Empirical data was collected from ob-

servational and reanalysis data products, and simulated data were taken from five

ensemble members of the E3SM historical dataset (E3SM Project, 2018; Golaz

et al., 2019). The selected features are a subset of physical quantities simulated

by E3SM in the Arctic and are the same ones used in our previous work with

random forests, (Nichol et al., 2021). We originally chose these features because

they match observable features in nature and we hypothesized they would be good

predictors of sea ice loss. Through feature analysis, we discovered that some in-

puts were far more predictive than others, but we did not have a causal inference

framework to explain why. Each feature of the observed dataset is a time series

beginning with the start of the satellite era in 1979 to 2018. The E3SM historical

ensembles span 1850 to 2014.

The observational data includes monthly sea ice extent computed from gridded,

daily, passive-microwave satellite observations of sea ice concentration provided

by the National Snow & Ice Data Center (NSIDC) (Peng et al., 2013). Sea ice con-

centration is a percentage value of ice in each grid cell, and sea ice extent (SIE) is

computed as the total area of cells containing more than 15% ice. Sea ice volume

(SIV) reanalysis data were provided by the Pan-Arctic Ice Ocean Modeling and

Assimilation System (PIOMAS) (Schweiger et al., 2011). Atmospheric data, total
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cloud cover percentage (CLT), downward longwave flux at surface (FLWS), pres-

sure at the surface (PS), near-surface specific humidity (SSH), temperature at the

surface (TS), wind u component/zonal (uwind), and wind v component/meridional

(vwind)) were from an atmosphere reanalysis provided by the National Centers

for Environmental Prediction (NCEP) (NOAA et al., 2019a). Sea surface temper-

ature (SST) was provided by the National Oceanic and Atmospheric Administra-

tion (NOAA) (NOAA et al., 2019b). For each of the atmospheric data variables, as

well as SST, monthly Arctic area averages were computed from the global gridded

fields. Simulated data features were selected to match the observation dataset.

Figure 4.1: Comparison of observed, pan-Arctic mean September sea ice extent with predictions
from E3SM’s historical ensembles 1-5. The mean of E3SM simulations is shown with 95% confi-
dence interval (shaded).
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Figure 4.1 shows the difference between observed and E3SM’s simulated sea

ice extent in September each year between 1979 and 2014. September is when sea

ice extent is at its minimum. The model generally predicts the same trend but fails

to determine critical lows in yearly sea ice extent. While the simulations generally

predict sea ice extent well, there are significant departures (fall outside the 95%

CI) in particular years. For example, in 2012 there was a reversal between simula-

tion, which predicted a year-over-year increase in sea ice, but instead a record low

was observed. Since sea ice extent has a non-linear effect on the global climate,

providing a causal explanation for these departures is critical.

4.5 Approach

Causal inference is a mathematical framework for answering questions about why

phenomena occur. Causal modeling is an effort to discover, describe, and analyze

the relationships between cause and effect (Pearl, 2009; Spirtes and Zhang, 2016b).

The calculus of causation is defined in two languages: a causal diagram, expressing

what we know, and a symbolic language, expressing what we want to know (Pearl

and Mackenzie, 2018b). The methods we propose derive a causal diagram from

the given data.

A causal diagram is a directed graph where arcs represent the causal relation-

ships between variables. Figure 4.2 is a diagram depicting correlations between

variables in the observed dataset from our previous work. Only mean values from

June in each year between 1979 and 2014 were included. For example, the PC
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algorithm (Spirtes et al., 1993) could take a diagram such as the one in Figure 4.2

as input and iteratively remove spurious correlations and determine the causal di-

rection between the remaining links.

Sea Ice 
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Radiation
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Surface Air 

Temp.

Sea 
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Water 
Temp.

U-WIND V-WIND

Figure 4.2: Diagram showing correlated relationships between variables in June from the observed
dataset between 1979 to 2014. Green indicates a positive correlation and orange indicates a negative
correlation. The correlation threshold is ±0.6.

There are multiple methods for constructing causal networks that are candidates

for investigation in this work. These include causal network learning algorithms,

such as the Peter-Clark (PC) algorithm, structural causal model frameworks, such

as LiNGAM, and the fast causal inference (FCI) algorithm. Each of these require

sets of assumptions about the given data describing the system. We will need to

determine which assumptions we can meet with the available data. Due to the

nonlinear, stochastic, high-dimensional nature of the climate system, it is likely

that causal network learning algorithms and structural causal models will be more

effective.

79



4.5.1 The PCMCI method

We plan to attempt our analysis with PCMCI (Runge et al., 2019d) first. PCMCI

extends the PC-algorithm by adding momentary conditional independence (MCI)

tests. These remove false-positives left by the PC algorithm and conditions on each

variable’s causal parent and its time-shifted parents as well. Thus, the algorithm is

designed to remove spurious relationships and identify concurrent and time-lagged

causal relationships. PCMCI was specifically designed for highly interdependent

time series such as climate data.

In (Nowack et al., 2020b), the authors used time series data for sea level pres-

sure data collected at 50 locations around the globe. The authors then examined

the relationship between precipitation and the causal network skill scores for sea

level pressure to demonstrate that this method can help identify dynamic coupling

mechanisms arising from underlying physical processes. The Nowack et al. study

is one of the first causal network inference studies using large-scale spatiotempo-

ral data and provides a proof-of-concept that such methods are viable for analyzing

climate systems. They looked at a single variable in various regions. In contrast,

we plan to use PCMCI to analyze several different quantities in the same region.

4.5.2 Comparing and evaluating causal models

An obvious first approach for comparing causal diagrams is with standard graph

comparison metrics such as global properties and summary statistics: edge density,

global clustering coefficient, degree distribution, counts of subgraphs, hamming
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distance, etc. However, these are defined by correlation and do not address the

causal nature of the networks.

Other metrics grounded in information theory, such as information flow, are

more appropriate for causal networks but possibly more difficult to interpret holis-

tically. In (Runge, 2015), the authors present a framework for determining infor-

mation flow from multivariate causal diagrams.

A different approach is to consider the resulting models’ performance. This

includes metrics such as true positive rate (TP), false positive rate (FP), accuracy,

positive predictive value, false omission rate, the S-score, and the G-measure and

F1-score (metrics combining TP and FP). These require a baseline model, such as

the causal diagram of the observed dataset, to measure the performance of a test

model. These are easier to interpret than information flow but are relative measures

and cannot be assessed independently.

4.6 Anticipated Contributions

The contributions of this work will bring climate modeling experts a step closer

to understanding why E3SM does not model certain Arctic quantities well, such

as sea ice extent. In our previous work, random forests were able to elucidate

which features were more or less important for model predictability in observed

and E3SM data. This work should support those results and help explain the causal

drivers behind observed and E3SM results. Future research after this work could

include: considering more features in the Arctic; other regions with known mod-
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eling biases, such as the Antarctic; and other climate modeling problems, such as

determining the effects and sources of major climate events. Clear examples are

volcanic eruptions and anthropogenic climate change and intervention. Develop-

ing more informative analytics for climate models will hasten their improvement

and better inform policy decisions to mitigate and combat global climate change.
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ABSTRACT: 
 
We use a nascent data-driven causal discovery method to find and compare causal relationships in 
observed data and climate model output. We consider ten different features in the Arctic climate 
collected from public databases on observational and Energy Exascale Earth System Model (E3SM) data. 
In identifying and analyzing the resulting causal networks, we make meaningful comparisons between 
observed and climate model interdependencies. This work demonstrates our ability to apply the PCMCI 
causal discovery algorithm to Arctic climate data, that there are noticeable similarities between 
observed and simulated Arctic climate dynamics, and that further work is needed to identify specific 
areas for improvement to better align models with natural observations. 
 
 
INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS: 
 
The Arctic is changing rapidly and feedbacks between the ocean, atmosphere, and sea ice may be 
accelerating that change [12]. Accurate predictions of the future sea ice extent in the Arctic depend on 
understanding the impacts of greenhouse gas forcing and the superimposed internal variability of the 
complex Earth system. In particular, sea ice loss in the Arctic has been shown to have a linear 
relationship with global average surface temperature in both observational data and simulation data, 
with most predictions indicating that the Arctic will be seasonally ice free by mid-century [12,13]. The 
correlation is generally explained by a common dependency of temperature and sea ice concentration 
on greenhouse gas concentration, but causality has not typically been assessed. Other studies have 
found that internal variability in the climate system can accelerate or impede sea ice loss and there is 
currently no consensus on the dominant processes in the ocean and atmosphere that have the largest 
impact [14, 15, 16].  
 
Earth system models (ESMs) are critical to our understanding of climate change, but the complex nature 
of the interactions between atmosphere, ocean, ice, and land can obscure causal relationships. Here, we 
investigate the causal relationships between Arctic climate features to better understand the complex 
feedbacks that result in rapid Arctic change and sea ice loss. This effort extends our feature analysis that 
identified features important for predicting yearly minimum sea ice concentration and compared 
feature importance between simulations and observations [1]. 
 
In [2], a recent review of causal discovery methods for complex systems, they argue that causal 
discovery is well-suited to improving climate models. In [3], authors provide an example analysis of a 
global climate model, though focus on a single feature in many separate regions of the globe. This work 



 
 
builds on these publications by extending this nascent field to the U.S. Department of Energy’s Energy 
Exascale Earth System Model (E3SM) [4] and including a multiple feature analysis within one common 
region. E3SM is a coupling of atmospheric, ocean, river, land, land ice, and sea ice numerical models. Its 
stated goal is to use exascale computing to output high-resolution simulations of natural and 
anthropogenic effects in the climate. 
 
Commonly, causality is determined and quantified by interventionist experiments, usually in randomized 
trials. Because of the magnitude, complexity, and uniqueness of the Earth's climate, there are significant 
feasibility and ethical problems with controlling and intervening in the climate for experimentation. For 
this reason, climate science is largely studied with ESMs, which are coupled numerical models. Each 
model encapsulates subsystems and subprocesses coupled together to approximate the long-term 
climate. 
 
The status-quo in ESM evaluation is based on descriptive statistics, like mean, variance, climatologies, 
and spectral properties of model output derived from correlation and regression methods [2]. These 
methods can be simple to implement and interpret but are often ambiguous or misleading; resulting 
associations can be spurious and the directions of effects is fundamentally unknown. 
 
In recent decades, a rigorous mathematical framework has been developed for observational causal 
inference by Spirtes, Glymour, Scheines, Pearl, Rubin, and others [5, 6, 7, 8]. The framework for causal 
discovery is largely based on Reichenbach's [9] Common Cause Principle: that if two variables are 
statistically dependent, there must be a causal relationship between the two, or a third common driver 
of the two. Most importantly, causal discovery methods attempt to identify the direction of observed 
effects between variables and detect spurious correlations. Effectively understanding the causal drivers 
in the Arctic climate system is requisite for understanding the future of our climate and how we can 
mitigate or intervene in climate change.  
 
In previous work, we used a random forest feature analysis to determine which summertime features in 
the Arctic are most predictive of yearly sea ice extent minimums in September [1]. We then compared 
results from observed data and simulation output data. This approach allowed us to discover and 
compare nonlinear relationships in the climate systems. Random forest feature importance values are 
correlations and direction can only be inferred from each feature to the single predictand. Therefore, 
inter-feature relationships in the model cannot be interpreted causally. This research expands on our 
previous work by identifying causal relationships in the data and comparing causal networks from 
historical simulations and observations. 
 
Causal discovery of observational data is notoriously difficult because spurious correlations and 
incomplete data leads to spurious inferences. In this work we use conditional independence-based 
causal discovery, which relies on several assumptions for estimating causal links. One of which is causal 
sufficiency, that all confounding variables are observed. Because the complex dynamics of the Arctic 
system are actively researched, and there is no strong consensus on the dominant processes in the 
Arctic climate, we cannot validate causal sufficiency. We chose our variable set because of their strong 



 
 
correlation with sea ice extent and their success in predicting sea ice extent [17, 18, 1], and they serve as 
a good hypothesis for a sufficient set. 
 
In our analysis, we were able to fit a network depicting conditional dependencies between features to 
each of six data sets, observed and five simulated. We then applied a similarity score to evaluate how 
well the simulated datasets agree with the observed data and each other. Finally, we discuss the next 
steps for this work and how to derive meaningful differences between the networks. 
 
DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND 
METHODOLOGY:   
 Data	
We collected ten features of the Arctic climate. Each was a timeseries of monthly mean values, averaged 
spatially over the region above 60 degrees North latitude. The observed dataset consisted of natural 
observations and output from reanalysis products. Simulated data was from the five members, or runs, 
of the E3SM historical  ensemble [4]. The historical  ensemble is a set of runs simulating the Earth system 
from 1850 to 2014. These runs were initialized by a 500-year-long pre-industrial control simulations, 
named piControl. The selected features are a subset of the quantities E3SM models and were chosen to 
match observable natural quantities and have been shown in previous work to have strong correlations 
with sea ice extent [17, 18, 1]. Resulting are six separate datasets, one observational and five E3SM 
simulation datasets. 
 
The specific quantities we used were mostly the same as outlined in our plan (as seen in Addendum A). 
We did choose to change a few details. Rather than limit each variable to the same temporal range, 
1979-2014, we instead included all the data available for each. We used the entire 150-year span of the 
E3SM data. The observational timeseries’ date range varied by each feature, though they all start in 
1979 and continue at least through 2017. Additionally, the full 150-year surface zonal and meridional 
wind timeseries were not readily available, so we opted to use surface wind magnitude, SWind, in their 
place, which does not include a directional component. Lastly, we included monthly precipitation rate 
data from E3SM and from the National Centers for Environmental Prediction for the observational 
dataset. Full data details are in Addendum C. 	Preprocessing	
The method detailed below, PCMCI, assumes the data is statistically stationary, i.e., its summary 
statistics do not change in time. First, we tested each timeseries for stationarity. This consisted of using 
the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and augmented Dickey-Fuller (ADF) hypothesis tests. 
KPSS tests the null hypothesis that a timeseries is stationary around a deterministic trend while ADF 
tests the null hypothesis that a timeseries is nonstationary around a deterministic trend. If KPSS fails to 
reject the null hypothesis, and the ADF test rejects, then we considered a timeseries stationary. We used 
an alpha value of 0.05 to determine significance and found that most features were nonstationary. To 



 
 
keep dependencies and inferences consistent, we applied a 12-month differencing transform to every 
timeseries. A 12-month difference transform is the process of subtracting a timeseries by itself lagged 12 
months. Resulting is a timeseries of the original’s change from one year to the next. Differencing 
removes trend and choosing 12-months will remove yearly seasonality in the data. 
 Causal	network	learning	
Causal discovery is the process of reconstructing the causal structure from purely observational data 
[10]. Traditional causality research to determine the causal effect, inferences about the strength of 
effects between variables, is done when the causal structure is already known. Causal discovery is used 
when the causal structure is mostly unknown. The causal structure discovered is often represented as a 
directed acyclic graph in which the nodes represent observed variables, and the edges represent causal 
relationships.  
 
Causal discovery generally makes four major assumptions: (1) the causal Markov assumption, that if two 
nodes, X and Y, are d-separated in a graph G, given a conditioning set Z, then X and Y are conditionally 
independent in their joint probability distribution, given Z; (2) the faithfulness assumption, that if two 
variables, X and Y, are conditionally independent, given a set of variables, Z, then their nodes in a graph, 
G, must be d-separated, given Z; (3) causal sufficiency, that there are not any unobserved confounding 
variables of any variables in the graph; and (4) acyclicity, that there are no cycles in the graph. 
 
In this work, we applied the PCMCI algorithm [11]. PCMCI is an extension to the PC causal network 
learning algorithm [5], named for its authors Peter Spirtes and Clark Glymour. PC is known for a 
relatively high false positive rate and struggles with high dimensional, autocorrelated data [11]. In [11], 
Runge et al. adapted PC to use its skeleton discovery phase for condition selection and then utilize a 
momentary conditional independence (MCI) phase. PCMCI estimates the causal links between all 
variable pairs, including their temporal lags.  
 
The first important determination in applying PCMCI is to choose a conditional independence test. The 
authors have implemented three, the partial correlation, a linear parametric test, gaussian process 
regression and distance correlation, a nonlinear parametric test, and conditional mutual information 
with a k-nearest-neighbors estimator, a nonlinear nonparametric test. Generally, the functional form of 
the dependencies in the feature set needs to be assumed and the appropriate test is chosen. In our case 
though, we knew it was likely that nonlinear dependencies existed in the data but could not assume if 
they remained after the data was transformed.  
 
To estimate the dependencies’ functional form, we plotted each feature with another one in a scatter 
plot. The resulting plot depicts how each feature varies with the other. With this, linearities and 
nonlinearities can be found by eye. Applying this process to the untransformed data, we indeed found 
several nonlinearities of various forms as well as linear dependencies. Applying it to the transformed 
data revealed no clear nonlinearities, and multiple clearly linear relationships. With this discovery, we 
selected the partial correlation parametric linear conditional independence test. 



 
 
 
PCMCI has two primary hyperparameters for tuning. The first is the maximum lag, !!"#, the maximum 
lag to evaluate for each variable. !!"#  is an estimate of the maximum time that every variable may have 
an effect on the others. The estimation of !!"#  may come from prior knowledge or by analyzing the 
linear dependence of each variable with every other variable at a range of lags. The second parameter 
to estimate is the alpha significance threshold for edges in the graph. Every pairwise dependence is 
determined with conditional independence tests and has an associated p-value for its significance. Alpha 
is the threshold for whether the p-value of each link is small enough to be included in the final graph. 
 
To estimate !!"#, we plotted the cross-dependencies between each variable at lags between 0 and 24 
months and looked for dependence to reach zero for every graph. See Figure 1 for an example from the 
observed dataset. We repeated this process for each dataset and found that !!"# = 12 months was 
adequate for each variable pair. To estimate alpha, we followed the procedure in [3], which selects from 
the list {0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} by computing the Akaike information criterion 
(AIC) of the models fit by each value in the list. That list is slightly more extensive than in [3] because we 
found each graph was selecting 0.05 and wanted to be sure it was not just selecting the smallest 
available value. 
 

 
Figure 1: Plots of each feature as a function of each other feature's lags. The vertical axes denote linear dependence, and the 

horizontal axes denote the number of lags in months. 

 



 
 Causal	network	comparison	
We utilized the "$  score used in [3] to compare each pair of graphs. The "$  score is a graph similarity 
metric with bounds [0,1], with 0 indicating no similarity and 1 indicating perfect similarity. The metric is 
computed from the precision, #, and recall, $, of a graph in comparison to a reference graph. Precisely, 
these values are computed as: "$ = 2 ∙ # ∙ $# + $  
where # = &#&# + "#  $ = &#&# + "'  
and TP is the number of true positives, FP is the number of false positives, and FN is the number of false 
negatives. These terms often assume a ground truth, although because the observed graph is an 
estimated causal graph and not ground truth, it is important to consider this metric as a relative score 
and not absolute. 
 
RESULTS AND DISCUSSION:  
 
Before analyzing the results, we filtered links from each network with less than 0.001 significance. For 
each dataset, PCMCI independently selected pc-alpha value to be 0.05 via AIC. PCMCI evaluated lags 
between 0 and 12 months for each feature. The simplified graphs in Figure 2 and Figure 3 hide the 
nodes of each features’ lags and only presents a single node per variable. The full timeseries graphs 
inferred by PCMCI include nodes for each feature’s lags up to the maximum lag of 12 months. Because 
the date ranges on simulated and observed data are not the same, we present results from networks 
learned from the fully available date ranges, as well as from a homogenous range, 1979 to 2014. 
Although the algorithm has less data to learn from, this may be a fairer comparison to observed 
dynamics. 
 
Simplified graphs label links with a list of the lags with significant dependency in order of magnitude. 
Node color depicts a feature’s auto-dependency, how dependent a feature is on its lags. Edge color 
depicts cross dependency, how dependent a feature is on another feature. Negative, or blue, cross 
dependency indicates that as the parent’s value increases or decreases, the child’s value changes 
inversely. Positive dependence indicates parent and child values increase and decrease together. 
Because we used a linear conditional independence test, these relationships are linear. Since these 
colors span many lags, the color chosen for the simplified graphs is the maximum absolute link between 
two features or a feature and itself. 
 
 
Figure 2 is a simplified causal network estimation, trained from the full range of observed data. 
Resulting is relatively sparse partially directed acyclic graphs, with only 5.3% of all possible links existing 



 
 
in the graph. Directed links represent discovered dependencies between features. Undirected links 
represent contemporaneous dependencies.  
 
 

 
Figure 2: Simplified graph resulting from applying PCMCI with the partial correlation test on observational data in the fully 

available date range. The pc-alpha parameter was selected by AIC to be 0.05, the links are defined by a significance threshold of 
0.001. 

 
Figure 3 is the simplified graph fit by simulation 1 of the E3SM historical  ensemble in the fully available 
date range. Although many similar links exist in this graph, it contains many more than the observed 
data graph. The remaining simulation graphs can be found in the Addendum C. They all differ but are 
more alike than the observed data graph and contain more links. An average of 8.6% of all possible links 
exist in the simulation graphs. 
 



 
 

 
Figure 3: Simplified graph resulting from applying PCMCI with the partial correlation test on simulation 1's data in the fully 

available date range. The pc-alpha parameter was selected by AIC to be 0.05, the links are defined by a significance threshold of 
0.001. 

 
To better quantify the similarity between each graph, we computed the "$  score of each pair of graphs. 
For this analysis, we included the fully detailed networks. These include a node for each lag of each 
feature. Figure 4 shows these results for the fully available date range graphs. The simulation networks 
are the most similar with each other, while the observed network is the most different from all other 
networks. The average simulation to simulation "$  score is 0.83. The average simulation to observed "$  
score is 0.7. 
 



 
 

 
Figure 4: Matrix of !!  similarity scores of each pair of graphs for the fully available date range graphs. 

 
The homogenous date range changed the observed graph minimally but altered the simulated graphs 
noticeably. 5.5% of all possible links exist in the observed graph, while an average of only 4.8% exist in 
the simulation graphs for this date range. Figure 5 shows the "$  similarity scores for the homogenous 
date range, 1979-2014. In this, the simulation networks lose some similarity, dropping to an average 
value of 0.71 simulation to simulation. The average similarity to the observed network increases slightly 
though, to 0.73. It is intuitive that the simulations would diverge in later years, after having been 
initialized equivalently, and eliminating the early years makes this apparent in their similarity scores. 
 



 
 

 
Figure 5: Matrix of !!  similarity scores of each pair of graphs for the homogenous date range, 1979-2014. 

In this work, we developed a strong foundation for applying conditional independence-based causal 
discovery algorithms. The differencing transforms we applied to the data were important for removing 
seasonality and trend, which removes the unobserved confounders driving them. We have found that 
we can apply causal discovery algorithms to Arctic climate data and find strong consistencies between 
observed and simulated timeseries. Although we cannot validate the causal sufficiency assumption with 
certainty, we can see that discovered conditional dependencies are similar in each dataset. In future 
work, we can develop and apply node-to-node similarity metrics to find which nodes are most 
responsibility for dissimilarity between graphs.  
 
It is important to remember that each feature was transformed to create stationary timeseries. The 12-
month differencing transform means that each timeseries is a series each month’s deltas from that 
month’s previous year. This means that a directed link from feature X to feature Y would be interpreted 
as the change in Y from year to year is dependent on the change in X from year to year. 
 
The primary limitation of our findings is the inability to justify the causal sufficiency assumption. The 
remaining assumptions can be considered satisfied as they assume that an underlying causal structure 
exists in the data, and that cause and effect does not occur instantaneously. That is assured by the 



 
 
physical and temporal nature of these quantities. The challenge of causal sufficiency exists in any open 
complex system. We plan to apply causal discovery algorithms that do not rely on the causal sufficiency 
assumption, such as the Fast Causal Inference algorithm [5] or Latent PCMCI (LPCMCI) [19]. LPCMCI 
augments PCMCI to discover causal links in the presence of latent, or unobserved, features. 
 
ANTICIPATED OUTCOMES AND IMPACTS:   
During this project we presented our findings to the International Conference on Machine Learning 
(ICML) in the form of a workshop paper (as seen in Addendum A) and an online poster presentation.  We 
also gave another presentation internally to the Validation and Verification of Machine Learning Models 
discussion group (as discussed in Addendum B).  Later this fall there will be presentation at the 
Chesapeake Large-Scale Analytics Conference (CLSAC) about this work.  These presentations allowed us 
to network with other groups around the labs and externally; organizations include 5493, 1463, 0515, 
and professors at the University of New Mexico (as discussed in Addendum B). 
 
The major lesson learned in this project was that ground truth for artic climate dynamics is an ongoing 
research problem, which this work depends on for validating our results are causal.  Currently we are 
relying heavily on climate experts to validate our causal models, but to fully develop metrics for 
comparing our models we need a concrete understanding of arctic climate dynamics as well as global 
dynamics.  Once these climate dynamics are sufficiently validated, we can utilize these causal models to 
help us improve our simulated models. 
 
This work will continue in the CLimate impact: Determining Etiology thRough pAthways (CLDERA) Grand 
Challenge project starting in FY22.  We plan on improving and adding metrics for comparing similarities 
and differences between causal models.  We are also looking into determining how well a given model 
fits the data used for training.  Some other research areas we want to explore include incorporating 
spatial data features into our analysis.  The work done in this project used averaged values over the 
entire arctic.  We could have divided the data into subregions of the arctic, but with this being a Late-
Start LDRD with limited time we decided it was best to simplify the problem space.  This will be 
important for CLDERA because we will be working with data on a global scale and averaging values over 
the whole globe would not work as easily. 
 
CONCLUSION:  (400 word limit) 
In this work, we found strong similarities between conditional dependencies discovered in observed and 
simulated climate dynamics. If the assumptions of causal discovery were to hold, we would find that 
E3SM climate simulation runs are causally similar to each other and, importantly, causally similar to 
observations. Although we cannot validate the causal sufficiency assumption, there is evidence that our 
feature set is a good hypothesis. The largest remaining sources of confounding may be from remaining 
seasonality and trend from external forcing such as periodic-natural and anthropogenic climate changes. 
A clear next step is to apply a causal discovery algorithm that does not require causal sufficiency and 
then compare results. 
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ABSTRACT

Causal discovery algorithms construct hypothesized causal graphs that depict causal dependencies among
variables in observational data. While powerful, the accuracy of these algorithms is highly sensitive to the
underlying dynamics of the system in ways that have not been fully characterized in the literature. In this
report, we benchmark the PCMCI causal discovery algorithm in its application to gridded spatiotemporal
systems. Effectively computing grid-level causal graphs on large grids will enable analysis of the causal
impacts of transient and mobile spatial phenomena in large systems, such as the Earth’s climate. We
evaluate the performance of PCMCI with a set of structural causal models, using simulated spatial vector
autoregressive processes in one- and two-dimensions. We develop computational and analytical tools for
characterizing these processes and their associated causal graphs.
Our findings suggest that direct application of PCMCI is not suitable for the analysis of dynamical
spatiotemporal gridded systems, such as climatological data, without significant preprocessing and down-
scaling of the data. PCMCI requires unrealistic sample sizes to achieve acceptable performance on even
modestly sized problems and suffers from a notable curse of dimensionality. This work suggests that,
even under generous structural assumptions, significant additional algorithmic improvements are needed
before causal discovery algorithms can be reliably applied to grid-level outputs of earth system models.

3



ACKNOWLEDGMENTS

We thank members of the cldera Grand Challenge LDRD project team for helpful discussions and
comments on an early draft of this manuscript. JJN also acknowledges support from his Ph. D. advisors,
Dr. Matthew Fricke and Dr. Melanie Moses of the Department of Computer Science at the University of
New Mexico.

JJN and MS developed the 1D model and performed and analyzed relevant simulations. JJN and MW de-
veloped the 2D model, characterized its VAR dynamics, and performed and analyzed relevant simulations.
JJN and MW wrote and edited the manuscript. LPS supervised all research and edited the manuscript.

4



CONTENTS

1. Introduction 11
1.1. Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1. Structural Causal Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.2. Causal Discovery & the PCMCI Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. Methods 16
2.1. Spatiotemporal Data Generation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1. Model Definition: One Spatial Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2. Model Definition: Two Spatial Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2. PCMCI Algorithm: Tuning Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. Simulation Design 27
3.1. Simulation Design: One Spatial Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2. Simulation Design: Two Spatial Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. Results 29
4.1. Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2. One-dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3. Two-dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5. Discussion 42

Bibliography 44

Appendices 47

A. Additional Simulation Results: Two-Dimensional Model 47

5



LIST OF FIGURES

Figure 1-1. A time series graph representation of the SCM in Equation (1.1). By associating
each variable with a node for each time lag, it is possible to fully capture relationship
between variables and their temporal ancestors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2-1. Causal graphs of variables X ,Y,Z at grid cells A,B,C,D, for the SCM defined by
Equation (2.4). Here, each variable exhibits temporal autocorrelation at each grid cell
(orange arrows), while we observe spatial dependence among X and cross-variable
dependence X → Y → Z. All dependencies occur after a single lag. . . . . . . . . . . . . . . . 19

Figure 2-2. Spatial Updates in the Two-Dimensional Model (Section 2.1.2). The 3×3 NDM is
expanded to a N2×N2 matrix which fully characterizes the action of the NDM and
can be used to analyze the behavior of the resulting system. The sparsity pattern of
this matrix is reflected in the time series causal network for this process. . . . . . . . . . . . . 24

Figure 2-3. Dynamics matrix for the 3× 3 NDM
(
a b cd e f g h i

)
as applied on a

4×4 lattice. Note the “nested circulant” structure of this matrix, where each colored
block has a circulant structure, as well as the block circulant structure of the dynamics
matrix as a whole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3-1. A causal graph for the one-dimensional simulation model. The five variablesV,W,X ,Y,Z
are each observed on 10 grid cells. Each variable exhibits temporal autocorrelation
(orange), while only V and Y exhibit spatial (left/right) dependencies. Cross-variable
dependencies exist at every grid cell according to the causal structure V →W →
X → Y → Z. Both the cross-variable and left-to-right dependencies occur at one lag
(red), while the right-to-left dependencies occur at two lags (green). This graph
has 50 = 5× 10 nodes and 130 edges: the time series causal graph would have
100 = 50× (max lag = 2) nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4-1. F1 scores for the One-Dimensional model of Sections 3.1 and 3.1. Coefficients a and c
represent autocorrelation and cross-correlation dependence coefficients, respectively,
where cross-correlation relates to both variable-to-variable and cell-to-cell dependen-
cies. Only stable coefficient combinations are shown. PCMCI performs better with
more time samples, larger a values, and larger c values. When a or c are sufficiently
large, the system becomes unstable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4-2. F1 score results from the one-dimensional spatial example with varying autocorrela-
tion, a, and constant cross-correlation, c. Each data point includes all possible T time
samples. Note the different Y axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4-3. F1 score results from the one-dimensional spatial example with varying cross-correlation,
c, and constant autocorrelation, a. Each data point includes all possible T time sam-
ples. Note the different Y axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6



Figure 4-4. F1 score results from the one-dimensional spatial example with varying T time samples.
Each data point includes all possible a and c dependence coefficients. . . . . . . . . . . . . . . 36

Figure 4-5. Effect of grid size (N) on PCMCI F1 and MCC scores. Both metrics decrease relatively
slowly in N. Other simulation parameters are fixed to σ = 1.0, NDD = 3

9 , and
T = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4-6. Effect of increasing sample size (T ) on PCMCI performance (MCC). Performance
increases sublinearly in T , with T > 575 being necessary to obtain acceptable per-
formance (MCC > 0.7). Box labels report median MCC across replicates. Other
simulation parameters fixed as N = 10, σ = 1.0, and NDD = 6

9 . . . . . . . . . . . . . . . . . . 37
Figure 4-7. Effect of sample size, (T ) grid size, (N), and neighborhood dependence density on

PCMCI performance (MCC). For sufficiently large sample sizes, PCMCI is able to
consistently recover the true graph structure; the effect of grid size and NDD are less
pronounced than T . Values shown are mean performance over 30 replicates. . . . . . . . . 38

Figure 4-8. Effect of sample size, (T ) grid size, (N), and neighborhood dependence density on
PCMCI performance (MCC). For sufficiently large sample sizes, PCMCI is able
to consistently recover the true graph structure; the effect of grid size and NDD
are limited. Values shown are mean performance over 30 replicates. σ = 1 for all
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4-9. Probability of PCMCI Success as a function of grid size N and sample size T , with
success defined as MCC above a user-defined threshold. Results are empirical prob-
abilities over 30 replicates: σ and neighborhood density are fixed to 1.0 and 6

9 re-
spectively. Lines depict a simple linear model of grid size on success probability, with
shaded regions depicting (non-multiplicity adjusted) confidence intervals. . . . . . . . . . . 40

Figure 4-10. Effect of Innovation Magnitude (σ ) on PCMCI performance (MCC). Changing σ
appears to have no systematic effect on PCMCI performance. . . . . . . . . . . . . . . . . . . . . 41

Figure A-1. False Discovery Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits low FDR for T > 50. FDR decreases with the number of causal
effects (density) and with increasing time samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure A-2. True Positive Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits low true positive rates for T < 350. TPR decreases with the
number of causal effects and with increasing grid sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure A-3. False Negative Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits relatively high false negative rates in all scenarios, indicating low
statistical power. FNR generally increases with the number of causal effects and with
increasing grid sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure A-4. True Negative Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits near perfect true negative rates in all scenarios. To the extent it
varies, TNR decreases with the number of causal effects and with decreasing grid sizes. 51

Figure A-5. False Positive Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits near perfect false positive rates in all scenarios. To the extent it
varies, FPR increases with the number of causal effects and with decreasing grid sizes. 52

7



LIST OF TABLES

Table 4-1. The stable autocorrelation (a) and cross-correlation (c) dependence coefficients identi-
fied for the one-dimensional model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8



NOMENCLATURE

Abbreviation Definition
ANM Additive Noise Model
CI Conditional Independence
DAG Directed Acyclic Graph
DOE Department of Energy
ENSO El Niño Southern Oscillation
FCI Fast Causal Inference [algorithm]
LiNGAM Linear Non-Gaussian Acyclic Model
LPCMCI Latent-PCMCI
MCC Matthews Correlation Coefficient
NDD Neighborhood Dependency Density
NDM Neighborhood Dynamics Matrix
OCE Optimal Causal Entropy
PC Peter-Clark [algorithm]
PCA Principle Component Analysis
PCMCI PC -Momentary Conditional Independence [algorithm]
PDAG Partially Directed Acyclic Graph
PDE Partial Differential Equation
SCM Structural Causal Model
SEM Structural Equation Model
VAR Vector Autoregressive [model]

9





1. INTRODUCTION

Automated causal structure discovery is an exciting frontier of data-driven science and domain-informed
machine learning, but techniques for causal discovery are still rather untested in complex domains. As
part of a larger investigation of causal discovery and attribution in climate systems, we investigate the
performance of a state-of-the-art algorithm for causal discovery from climate data. The algorithm returns
a causal graphical model of the given variables. Causal graphical models are usually directed acyclic graphs
(DAGs) that relate the causal dependence (graph edges) between variables (graph nodes). Due to the
scientific, computational, and statistical difficulties of characterizing climate systems, we instead draw
upon well-established techniques for the benchmarking of machine learning algorithms for the evaluation
of causal discovery. Our results highlight the limitations of modern causal discovery approaches and
demonstrate the unreliable performance of these algorithms, even in the most amenable scenarios.

To create the benchmark test cases and perform the various studies we show in this report, we rely on
the ideas of benchmarking. According to Olson et al. [1], “the term benchmarking is used in machine
learning to refer to the evaluation and comparison of ML methods regarding their ability to learn patterns
in ‘benchmark’ datasets that have been applied as ‘standards’. Benchmarking could be thought of simply
as a sanity check to confirm that a new method successfully runs as expected and can reliably find simple
patterns that existing methods are known to identify.” There are many benchmark datasets available:
readers may be familiar with the ImageNet database which is commonly used for image classification test
problems [2]. Recently, there has been a growth in scientific machine learning benchmarks as well, see
Thiyagalingam et al. [3, 4]. The benchmarking approach typically involves a few main steps: identification
of training datasets which provide the benchmark data or “gold standard” data, identification of the
algorithm or method being tested and associated algorithm choices that might be examined (e.g. number of
layers in a neural network, activation function used, optimization algorithm to determine hyperparameters,
etc.), and a set of performance metrics with which to evaluate the algorithm. Depending on the extent
and focus of the benchmark exercise, the ML algorithm can be run with many algorithm choices and the
“best” choices can be identified, according to the performance metrics which typically involve “goodness
of fit” with respect to predicting the benchmark data but which also may include time to train, time to
make a prediction or inference, amount of computing power needed, etc.

We note that causal discovery does not necessarily fall into the machine learning category: it involves aspects
of statistical modeling and network inference. However, we feel the benchmark terminology as defined
above represents the goal of our efforts well. We also have leveraged verification and validation concepts
from the computational science community which focuses on PDE solutions for physical systems, with
the goal of improving the credibility of computational models and assessing their predictive capability
[5–8]. There are some aspects of verification, specifically solution verification, in the work presented in
this report. In the subsequent sections, however, we use the benchmarking terminology.

Benchmarking becomes more challenging for structure-learning algorithms (such as causal discovery),
because they require a complete ground-truth graph to evaluate correctness, rather than additional obser-
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vations as traditional machine learning requires. This typically limits structure-learning benchmarking to
high-fidelity simulation output or hypothesized ground-truth, developed from randomized control trials.
While there are a number of metrics that measure the performance of a machine learning model (such as
cross-validation error, leave-one-out error, etc.), they typically only apply to models predicting additional
data points from observational probability distributions, rather than intervention distributions1, because
they capture the ability of the model to represent the training and/or testing data. They do not address
other questions such as the correct implementation of the algorithm or the properties and performance it
exhibits on various classes of problems. For causal modeling and causal discovery algorithms, there has
been limited work specifically seeking to address the issue of “is the inferred graph or causal structure that
the algorithm produces correct?” though the works of Runge [10], Runge et al. [11] provide limited, but
promising, initial results in this space. In this work, we seek to partially address this important lacuna.

In this work, we report the results of an extensive benchmarking exercise for the PCMCI algorithm of
Runge et al. [11]. We specifically focus on the performance of this algorithm as applied to data with spatial
and temporal dependence. Our results rely upon a simulation framework inspired by statistical models for
time series and by the spatial dynamics of cellular automata. While limited benchmarking of PCMCI has
previously been performed, ours is distinguished by a thorough analysis of the effect of spatial structure
on performance.

1.1. Background and Related Work

The philosophical and statistical aspects of causal inference and causal discovery are subtle but powerful
and our discussion here is necessarily informal. For a further discussion of these issues, we refer the reader
to the books by Peters et al. [9] and by Pearl and Mackenzie [12], as well as the many references therein.

1.1.1. Structural Causal Modelling

Causal network discovery, or causal structure learning, is the process of estimating a causal graph2 of an
underlying structural causal model (SCM) from observational data3 and subject matter expertise4. An
SCM is a semi-mechanistic model, which augments a classical statistical model with a notion of causal
structure.5 While exact estimation of the SCM is typically impossible, it is often possible to accurately
estimate the causal network associated with that SCM. A causal network is a DAG representation of the
SCM, where variables represent different aspects of the data and directed edges connect “cause” to “effect.”

1Intervention distributions are what causal graphs predict. We omit discussion of that topic and refer the reader to Peters
et al. [9, p. 120-121]

2Also known as a causal network.
3Observational data is characterized as non-experimental data; it contains no planned interventions or controls.
4Subject matter expertise is represented by critical causal assumptions, which causal discovery algorithms leverage to reason

about the statistical properties found in observational data.
5Classical probabilistic statistical models do not naturally incorporate causal structure, instead representing data as a simul-

taneous draw from an underlying probability distribution. Any temporal object, such as the sample path of Brownian
motion, is a draw of a single time-indexed object from an underlying space, rather than a system obeying causal laws.
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Many SCMs imply the same causal network, but, under reasonable assumptions,6 there is a unique DAG
for any SCM. When considering SCMs of temporal data, there exist multiple ways of depicting the causal
network; see the works by Eichler [13] and Peters et al. [9, p. 198] for details.

As a simple example, consider the following SCM:

Wt := 0.9Wt−1 +ηW
t

Xt := 0.8Xt−1 +0.4Wt−1 +0.2Zt−3 +ηX
t

Yt := 0.5Yt−1 +0.2Xt−2 +ηY
t

Zt := 0.6Zt−1 +0.3Yt−1 +ηZ
t

(1.1)

where each η ∼N (0,1) is iid Gaussian noise. These relations form a SCM for simulated realizations of
this process.

Figure 1-1 is a causal graph for the SCM in Equation (1.1). Specifically, it is a time series graph [10], which
captures the temporal dependencies of each node. Each node is a temporally lagged instantiation of each
variable. Notice that each variable is autocorrelated in Equation (1.1), with a link between itself and its past
self, over 1 lag. The 2 and 3 lag dependencies in X →Y and Z→ X , respectively, are also depicted passing
over their respective lag lengths. Without the lagged representation, time-delayed feedbacks7 would be
illustrated as cycles, which violates an important assumption of causal graphs: acyclicity.

While an SCM maps to a DAG, causal network discovery algorithms often output partially-directed acyclic
graphs (PDAGs) [14], in which some edges are undirected. Undirected edges indicate a dependence was
identified, but not the direction of dependence. Edges sometimes fail to be oriented because of violated
assumptions or too little data, but most causal discovery algorithms can only estimate up to the correct
Markov equivalence class of graphs, even when assumptions are met and sampling is sufficient. See Peters
et al. [9, p. 102] for more on the Markov equivalence of graphs.

Estimated graphs can be annotated with more information indicating the strength of dependence between
nodes, causal effect size, causal susceptibility, etc. [15, 16], but in this work, we are only concerned with
estimating the topology (edge structure) of the time series causal network.

Algorithms for reconstructing causal networks from data generated by an SCM are discussed in the next
section.

1.1.2. Causal Discovery & the PCMCI Algorithm

Many algorithms for causal discovery have been proposed in the previous 30 years, most notably the
PC algorithm [17], named for its authors Peter Spirtes and Clark Glymour, the Fast Causal Inference
(FCI) [17], and the Linear Non-Gaussian Acyclic Model (LiNGAM) [18]. While these general-purpose

6These assumptions include causal faithfulness, the causal Markov condition, and causal sufficiency. Put simply, the faithful-
ness assumption states that separation of two nodes in the causal network is implied by independence, the causal Markov
condition states that separation in the graph implies independence in the data, and causal sufficiency states that we have
included all common causes of two or more variables in the analysis. Again, for a more detailed discussion, see the books of
Peters et al. [9] and Pearl and Mackenzie [12].

7Such as that from X → Y → Z→ X over 2, 1, and 3 lags, respectively.
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Figure 1-1. A time series graph representation of the SCM in Equation (1.1). By associating each
variable with a node for each time lag, it is possible to fully capture relationship between variables
and their temporal ancestors.

algorithms are primarly designed for non-temporal data, temporally-aware variants of these algorithms
exist [16] as well as novel approaches specific to time series, such as the Optimal Causal Entropy (OCE)
algorithm [19, 20]. In this work, we consider the PC-Momentary Conditional Independence (PCMCI)
algorithm of Runge et al. [16]. We focus on PCMCI because it was specifically designed to deal with the
complex temporal structure of climate data and it has found wide use among the causal climate community
[15, 21–25].

PCMCI modifies the classical PC algorithm [17] by adding so-called “Momentary Conditional Indepen-
dence” tests. These tests take advantage of the temporal structure of the data to greatly reduce the number
of potential causal effects, thereby decreasing the space of possible causal networks and improving inferen-
tial performance. Like the PC algorithm, the output of PCMCI is a PDAG, however, the time-order of
lagged dependencies helps PCMCI orient more edges than it would without temporal information.

The standard variant of PCMCI assumes all causal relationships work on a lag and that there are no
contemporaneous dependencies in the data. While we focus on the standard PCMCI algorithm, our
simulation study could easily be applied to PCMCI variants, including the Latent-PCMCI of Gerhardus
and Runge [26], which allows for unobserved confounders, and PCMCI+ of Runge [27], which allows
for contemporaneous dependencies.

Runge et al. [11] detail PCMCI thoroughly and provide an open-source implementation of the approach8.
PCMCI is a two-phase algorithm: the first phase uses a modified version of the PC algorithm to construct a
sparse causal PDAG; this modified algorithm, which they call PC1, performs a series of iterative conditional

8https://jakobrunge.github.io/tigramite/
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independence (CI) tests in a search for the causal parents of each variable. PC1 modifies this search to only
condition on the potential confounders with the largest correlations to the variables in question. While
this significantly increases computational performance, the full impact of this heuristic modification has
not yet been fully characterized.

The second phase of the PCMCI algorithm uses MCI tests to prune this graph in an attempt to eliminate
temporally-induced spurious causality. MCI tests extend traditional conditional independence tests by
conditioning on lagged (time-shifted) observations of variables. In doing so, they specifically examine
whether apparent causal dependencies are artifacts of autocorrelation and prune these spurious graph
edges and reduce the false positive rate of PC1.

As with the original PC algorithm, both the PC1 and MCI steps of PCMCI can be used with arbitrary
conditional independence tests. Test with the conditional Pearson correlation, the partial correlation, are
easily implemented and widely used, but their performance is only guaranteed for (jointly) Gaussian data.
Peters et al. [9] discuss alternative independence tests; see also the discussion by Runge [10].

Finally, we note that while PCMCI is commonly used for climate data, it does not take advantage of
the spatial structure typically present in such data. Rather than dealing with spatial structure explicitly,
common practice is to summarize data into non-spatial components before applying PCMCI. This
summarization is typically done with a statistical technique such as Principal Components Analysis (PCA)
or variants thereof or by using external climate knowledge to divide spatial data into pre-defined regions or
modes, which are assumed to have no further spatial dependencies [15, 22, 25, 28, 29]. While powerful,
these approaches have several drawbacks: PCA-type approaches construct features that are composed
of all of the features of the underlying data, so the implied causal relationships are often of an “all-to-all”
nature; a priori knowledge is useful for well-studied climate phenomena but is difficult to apply to novel
studies. In this work, we consider working with unaggregated spatial data observed on a regular grid, such
as the output of a large-scale earth system model or geo-referenced observational data. As we will see below,
this approach poses novel difficulties in simulation and estimation.

1.2. Contributions

In this paper, we perform an extensive simulation study to benchmark the performance of PCMCI on a
set of spatially-inspired SCMs. By using data generated from a known SCM, we are able to accurately
quantify the performance of PCMCI on a variety of metrics. In addition to the analysis of PCMCI, our
data simulation procedures may be of independent interest. Our findings inform the feasibility of causal
discovery from real and simulated climate data and identify several challenges that must be addressed
before applying these algorithms at scale.

Section 2 introduces the mathematical framework used to generate spatiotemporal data generation studies,
while section 3 describes the specific parameter values used in our simulations. The results of our simulation
studies are shown in Section 4, along with a detailed discussion of their implications for causal discovery
practice. Finally, Section 5 summarizes our results and discusses potential directions of future research.
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2. METHODS

2.1. Spatiotemporal Data Generation Models

Causal dependencies in multivariate data are often expressed as SCMs, e.g., SCM (1.1). If there exists
a direct causal dependence from X to Y , which we denote X → Y , then we posit a relationship of the
form:

Y := fY (X)+ηY (ηY ⊥⊥ X) (2.1)

where fY is a (measurable) function relating the cause variable X to the effect variable Y and ηY is additive
noise. If X is random, then we assume X and η are independent (ηY ⊥⊥ X ), though this assumption may
be relaxed in some circumstances.1 In the common case where fY (·) is a linear function of X , we recover
the well studied class of linear structural equation models (SEM) [12]. As Peters et al. [9] discuss, the
assumption of additive noise in Equation (2.1) is not essential, but it is standard in the field and we will
use it throughout our analysis.

The SCM (2.1) is an additive noise model2 (ANM) [9, p. 50], a restriction on the class of SCMs that is
also useful for identifying variables which do not exhibit a causal effect on Y . Suppose that

Y = f (X ,Z)+ηY

for some function f . It can be shown that Z is not a parent of Y if there exists some function g(X) such
that f (X ,Z) = g(X) for all (X ,Z) or equivalently Y = g(X)+ηY .

When modeling temporal data, the ANM (2.1) must be modified to allow for a variable to depend on its
previous values. Let XXX t be the state of a system of interest at time t; we make two standard assumptions
on the behavior of XXX t :

T1) Lagged dependence: Xi,t ̸→ X j,t−τ
3 for any (i, j) and any τ ≥ 0.

T2) Temporal Causal Stationarity: the dynamics governing the evolution of XXX t do not change over time.

These assumptions are essentially unavoidable in causal analysis of temporal data: Assumption T1 states
that causal dependencies follow the “arrow of time” while Assumption T2 implies that there is a fixed
causal structure that we are seeking to estimate. If T2 did not hold, then it is unclear what our target of

1We also assume that Y ⊈ X , i.e., that Y does not appear on both sides of equation (2.1): this is essentially equivalent to the
common assumption that the causal graph of the system is a DAG.

2Following the notation in Peters et al. [9], we will hereafter use assignment (:=) when describing SCM definitions, and
equivalence (=) when specifying ANMs and, later, autoregressive models. In this work, the ANMs and autoregressive
models are generative models, so they are no less causal.

3For our purposes, ̸→ indicates no direct dependence between variables.
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estimation actually is.4 Under these assumptions, the ANM for a system with only a single temporal lag5

becomes:
XXX t = f (XXX t−1)+ηηη (2.2)

where, as before, η is an independent noise variable. In the temporal context, where the effect of the
randomly sampled ηi,t terms persists over time, we will typically refer to the ηi,t terms as innovations rather
than error or noise to emphasize that they are not measurement error, but rather are the fundamental
driving element of the system.

In simulation settings, f (·) often represents one step of a (explicit) PDE solver [9]. If f (·) is a linear
function, then Equation (2.2) is a Vector Autoregressive (VAR) model [10, 11] and can be written as

XXX t = AAAXXX t−1 +ηηη

where AAA is a fixed matrix encoding the causal dynamics of the system. Specifically, we note that the sparsity
pattern of AAA exactly captures the causal structure of the system:

Xi,t−1→ X j,t ⇔ Ai j ̸= 0

As we will observe in the sequel, this property of VARs is particularly useful when simulating from and
estimating causal structure in temporal data.

So far, our development has not posited any spatial structure to XXX t , only the temporal lagged-dependence
structure of Equation (2.2). We next introduce two spatial causal assumptions that parallel our temporal
assumptions:

S1) Neighborhood dependence: if (i, j) are not neighbors (in a problem specific sense) then Xi ̸→ X j.

S2) Spatial Causal Stationarity: the dynamics governing the evolution of XXX t do not change over space.

Assumption S1 attempts to capture a sense of “locality” and to disallow “action at a distance.” When
applying this assumption to physical systems, this implies a certain relationship between the temporal
and spatial discretizations used: at sufficiently low observation rates, it is possible for a causal effect to
exist beyond immediate neighbors.6 We do not explore the details of that relationship here, but we do
note that similar concerns are well-studied in the design of numerical differential equation solvers where
spatial and temporal discretizations must be chosen in a suitably consistent manner. Like Assumption
T2, Assumption S2 ensures that PCMCI is learning the same causal structure throughout the space.
Assumption S2 is not essential in this application and can be easily relaxed. These dynamics are similar to
rule-based cellular automata (CA), where the state of each cell is dependent on its immediate neighbors
and the update rules are fixed across all cells and time steps.

Under these assumptions, we obtain the single-lag spatiotemporal ANM:

Xi,t = f
(
Xi,t−1,{X j,t−1} j∈N (i)

)
+ηi,t

4Assumption T2 can be weakened to only require the causal structure of the dynamics, and not the full dynamics, to remain
constant over time, but we do not pursue this relaxation.

5For higher order lags, we have XXX t = ∑T
τ=1 fτ(XXX t−τ)+ηηη , but we omit higher lags for simplicity of exposition unless noted

otherwise. See Peters et al. [9, p. 208] for additional discussion.
6For example, consider a simple system in which Xi+1,t+1 = Xi,t +ηi,t for all (i, t). If i is interpreted as a spatial coordinate in a

single dimension, this system satisfies S1. If we reduce our sampling and can only observeYYY t =XXX t ,YYY t+1 =XXX t+2, . . . ,YYY t+τ =
XXX t+2τ , we instead have the causal relationship Yi+2,t = Yi,t which appears to violate S1.
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where N (i) denotes the neighborhood of i, . If f is further assumed to be linear, then we have

Xi,t = αXi,t−1 + ∑
j∈N (i)

β jX j,t−1 +ηi,t (2.3)

The sparsity of the α and β j coefficients dictates the causal structure of XXX t . We will occasionally refer to α
as a temporal autocorrelation coefficient and β j as a cross-dependence coefficient, though they are not
numerically equal to the actual autocorrelation function of the process XXX t .

It is clear that Equation (2.3) can be again expressed as a linear VAR system, with the spatial assumptions
S1 and S2 posing additional constraints on the structure of the dynamics (coefficient) matrix. In the
next two sections, we characterize these constraints for one- and two-dimensional systems, leaving higher-
dimensional systems to the reader.

Specifically, we consider two spatial cases to evaluate different kinds of spatiotemporal dynamics. In
Section 2.1.1, we consider a multivariate, multi-lagged model supported on a one-(spatial)-dimensional
array. In Section 2.1.2, we consider a univariate single-lag model supported on a two-(spatial)-dimensional
array. For both models, we assume the underlying space has a toroidal topology, with the leftmost and
rightmost elements of the one-dimensional space being neighbors, and similarly for the topmost and
bottommost elements in the the two-dimensional case.7 In one-dimension, the torus is a circle, while the
two-dimensional torus is a “donut” shape. We note that this topology differs from that of the surface of a
sphere, in that moving far north does not have the same effect as moving far to the west and that there is
no analogue of a pole where all cells coincide, but our results can be extended to that setting. Under these
two settings, we design an extensive simulation study to characterize the performance of causal discovery
algorithms on spatial data.

7More informally, we simulate dynamics in a world which “wraps” like the classic arcade game PacMan.
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2.1.1. Model Definition: One Spatial Dimension

We first consider simulating causal dynamics on a one-dimensional spatial lattice of size N. Under our
assumption S2, we note that each cell can only causally depend on itself and its immediate left and right
neighbors, suitably lagged. We further consider a “multivariate” setting in which multiple variables are
observed for each cell, and where the causal structure for different variables may not coincide.

We describe the structure of our one-dimensional model in some detail, noting that most of the intuition
transfers to the two-dimensional case we consider in the following section. On a lattice of size N = 4,
we observe three variables, X ,Y,Z. Within a single variable, only X exhibits spatial dependencies, such
that each cell depends on the neighbor to its left. The causal structure between variables is X → Y →
Z. This sort of model is suitable for simplified modeling of atmospheric aerosol advection and their
interaction with radiation and atmospheric temperatures: for some aerosol species, wind can advect
aerosols to spatially neighboring regions, while the causal structure X → Y → Z reflects the aerosol
particles’ radiation absorption and subsequent temperature impact, e.g., H2SO4 → radiative flux→
atmospheric temperature. See Figure 2-1a for a spatial illustration of this structure, and Figure 2-1b for a
time series graph of the same example. Figure 2-1a is an example of a summary graph [9, p. 199].

(a) Spatial representation of the SCM. Auto-
correlation orange links exist for all variables,
but most are omitted for readability.

XA
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YB
YC
YD
ZA
ZB
ZC
ZD

tt 1

(b) The time series graph of the SCM.

Figure 2-1. Causal graphs of variables X ,Y,Z at grid cells A,B,C,D, for the SCM defined by Equation
(2.4). Here, each variable exhibits temporal autocorrelation at each grid cell (orange arrows), while we
observe spatial dependence among X and cross-variable dependence X → Y → Z. All dependencies
occur after a single lag.
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If we assume linear dynamics for this system, we obtain the SCM:

XA,t := αX ,AXA,t−1 +βX ,AXD,t−1 +ηX ,A,t

XB,t := αX ,BXB,t−1 +βX ,BXA,t−1 +ηX ,B,t

XC,t := αX ,CXC,t−1 +βX ,CXB,t−1 +ηX ,C,t

XD,t := αX ,DXD,t−1 +βX ,DXC,t−1 +ηX ,D,t

YA,t := αY,AYA,t−1 + γX→Y,AXA,t−1 +ηY,A,t

YB,t := αY,BYB,t−1 + γX→Y,BXB,t−1 +ηY,B,t

YC,t := αY,CYC,t−1 + γX→Y,CXC,t−1 +ηY,C,t

YD,t := αY,DYD,t−1 + γX→Y,DXD,t−1 +ηY,D,t

ZA,t := αZ,AZA,t−1 + γY→Z,AYA,t−1 +ηZ,A,t

ZB,t := αZ,BZB,t−1 + γY→Z,BYB,t−1 +ηZ,B,t

ZC,t := αZ,CZC,t−1 + γY→Z,CYC,t−1 +ηZ,C,t

ZD,t := αZ,DZD,t−1 + γY→Z,DYD,t−1 +ηZ,D,t

(2.4)

Because this system is linear, we have an equivalent vector autoregressive (VAR) process representation,
χχχ = ΓΓΓ+ηηη :



XA,t
XB,t
XC,t
XD,t
YA,t
YB,t
YC,t
YD,t
ZA,t
ZB,t
ZC,t
ZD,t




=




αX ,A 0 0 βX ,A 0 0 0 0 0 0 0 0
βX ,B αX ,B 0 0 0 0 0 0 0 0 0 0

0 βX ,C αX ,C 0 0 0 0 0 0 0 0 0
0 0 βX ,D αX ,D 0 0 0 0 0 0 0 0

γX→Y,A 0 0 0 αY,A 0 0 0 0 0 0 0
0 γX→Y,B 0 0 0 αY,B 0 0 0 0 0 0
0 0 γX→Y,C 0 0 0 αY,C 0 0 0 0 0
0 0 0 γX→Y,D 0 0 0 αY,D 0 0 0 0
0 0 0 0 γY→Z,A 0 0 0 αZ,A 0 0 0
0 0 0 0 0 γY→Z,B 0 0 0 αZ,B 0 0
0 0 0 0 0 0 γY→Z,C 0 0 0 αZ,C 0
0 0 0 0 0 0 0 γY→Z,D 0 0 0 0αZ,D







XA,t−1
XB,t−1
XC,t−1
XD,t−1
YA,t−1
YB,t−1
YC,t−1
YD,t−1
ZA,t−1
ZB,t−1
ZC,t−1
ZD,t−1




+




ηX ,A,t−1
ηX ,B,t−1
ηX ,C,t−1
ηX ,D,t−1
ηY,A,t−1
ηY,B,t−1
ηY,C,t−1
ηY,D,t−1
ηZ,A,t−1
ηZ,B,t−1
ηZ,C,t−1
ηZ,D,t−1




Here, the α parameters control the temporal autocorrelation of each cell-variable series with itself, the β
parameters control the spatial dependence within a variable, and the γ parameters capture cross-variable
dependencies. In this scenario, we assume only variable X has spatial dependencies within the same variable,
while variables Y and Z exhibit only autocorrelation and the cross-variable structure X → Y → Z. If we
further assume causal stationarity for this model (Assumption S2), these dynamics simplify further to
χ̃χχ = Γ̃ΓΓ+ηηη :



XA,t
XB,t
XC,t
XD,t
YA,t
YB,t
YC,t
YD,t
ZA,t
ZB,t
ZC,t
ZD,t




=




αX 0 0 β 0 0 0 0 0 0 0 0
β αX 0 0 0 0 0 0 0 0 0 0
0 β αX 0 0 0 0 0 0 0 0 0
0 0 β αX 0 0 0 0 0 0 0 0

γX→Y 0 0 0 αY 0 0 0 0 0 0 0
0 γX→Y 0 0 0 αY 0 0 0 0 0 0
0 0 γX→Y 0 0 0 αY 0 0 0 0 0
0 0 0 γX→Y 0 0 0 αY 0 0 0 0
0 0 0 0 γY→Z 0 0 0 αZ 0 0 0
0 0 0 0 0 γY→Z 0 0 0 αZ 0 0
0 0 0 0 0 0 γY→Z 0 0 0 αZ 0
0 0 0 0 0 0 0 γY→Z 0 0 0 αZ







XA,t−1
XB,t−1
XC,t−1
XD,t−1
YA,t−1
YB,t−1
YC,t−1
YD,t−1
ZA,t−1
ZB,t−1
ZC,t−1
ZD,t−1




+




ηX ,A,t−1
ηX ,B,t−1
ηX ,C,t−1
ηX ,D,t−1
ηY,A,t−1
ηY,B,t−1
ηY,C,t−1
ηY,D,t−1
ηZ,A,t−1
ηZ,B,t−1
ηZ,C,t−1
ηZ,D,t−1




That is:
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• αv = αv,ℓ for all variables v and spatial locations ℓ;

• β = βX ,ℓ for all spatial locations ℓ;

• γv→w = γv,w,ℓ for all variables v,w and all spatial locations ℓ

Further examination of this matrix reveals several sub-blocks with circulant structure, including an αX ,β
block, a γX→Y block, a γY→Z block, and αY and αZ blocks: we will return to this observation in the next
section.

The specific values of αv, β , and γv→w determine whether the resulting stochastic process has spatiotem-
poral statistical stationarity, which we will call "stability" for brevity. PCMCI assumes the given time series
are statistically stationary, so we need to filter the coefficients that constitute a stable process. To do that,
we constructed a companion matrix [30, p. 259], which is of the general form:

FFF =




Γ̃ΓΓt−1 Γ̃ΓΓt−2 . . . Γ̃ΓΓt−τ
I 000 . . . 000

000 . . . 000
...

000 000 I 000




for τ lags in the model. The companion matrix is a matrix composed of the Γ̃ coefficient matrices (defined
above), and the identity matrices and zero matrices that match the size of Γ̃. If all eigenvalues of the
companion matrix are less than one, then the chosen coefficients will constitute a stable system [30,
p. 259]. In Section 3.1, we describe a two-lag system used for experiments, and the companion matrix we
used for determining stability is given by:

FFF111 =

[
Γ̃ΓΓt−1 Γ̃ΓΓt−2
I 000

]

In Section 3.1 we give specifics of the various model parameters used in our simulations. Because our
spatiotemporal model thus reduces to a standard VAR process, for which the PCMCI causal discovery
algorithm has previously been found to be effective, we note that our results complement and extend what
has previously been shown for the PCMCI algorithm [11].

2.1.2. Model Definition: Two Spatial Dimensions

We next consider simulating causal dynamics on a two-dimensional finite lattice of dimension N. As
before, we require that the simulated system has VAR-type dynamics and satisfies assumptions S1-2 and
T1-2.

In two spatial dimensions, Assumption S2 implies that each cell has eight neighbors in its so-called “Moore
neighborhood”8, yielding a total of nine potential causal parents (eight neighboring cells and the dependent
cell’s own previous value). As such, the causal dynamics of the system are dictated by a 3-by-3 matrix,
which we term the neighborhood dependence matrix (NDM). To simulate dynamics from the NDM, we

8In the study of cellular automata, the Moore neighborhood of a cell includes both orthogonal and diagonal neighbors, while
the von Neumann neighborhood includes only orthogonal (up, down, left, right) neighbors.
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update each element of XXX t by taking the inner product of the NDM and the immediate neighborhood of
a grid cell: that is,

Xi j,t = ⟨XN (i j),t−1,NDM⟩+ηi j,t = Trace(X⊤N (i j),t−1NDM)+ηi j,t

where XN (i j) is the submatrix of X consisting of the (i, j)th element and its immediate neighbors. The
NDM defines an invariant “update kernel” which is applied separately to each grid cell in order to simulate
its expected value at the next time step. As such, the NDM update dynamics are a sliding dot product9 of
the NDM and the spatial grid, defined by XXX t :

XXX t =NDM⋆XXX t−1 +ηηη t (2.5)

For two matrices A ∈ Rn×n and B ∈ RN×N , we define their sliding dot product C ∈ RN×N to be the
matrix with (k, l)th element given by

Ckl =
⌈n/2⌉
∑

i=−⌈n/2⌉

⌈n/2⌉
∑

j=−⌈n/2⌉
A(k+ imodN, l + j modN)B(2i+1,2 j+ j). (2.6)

where the mod operator is used to enforce wrapping at the boundaries of our lattice. In our context, the
dimension of the sliding dot product kernel AAA =NDM is fixed as n = 3, reflecting the size of the local
neighborhood of each cell; the dimension of the state variable B = XXX t varies with the size of the lattice.

While it is possible to simulate dynamics according to Equation (2.5) for any NDM, the resulting mul-
tivariate time series is not statistically stationary without additional assumptions on NDM. In order to
guarantee stationarity, we seek to represent Equation (2.5) as a (linear) VAR model and apply standard
stationarity requirements [30]. In particular, we know that if we have VAR dynamics of the form

YYY t = AAAYYY t−1 +ηηη t

the time series {YYY t} is stationary if ∥AAA∥op < 1, where ∥ · ∥op denotes the operator or spectral norm of
a matrix, i.e., the magnitude of its largest (possibly complex) eigenvalue. Hence, for a given NDM AAA, it
suffices to find a matrix ÃAA ∈ RN2×N2 such that

vec(XXX t) = ÃAAvec(XXX t−1)+ vec(ηt) (2.7)

Figure 2-2 demonstrates how the NDM, AAA, can be used to form an equivalent VAR coefficient matrix, ÃAA.
For each grid cell, a suitably padded and shifted version of the NDM is constructed and then multiplied
with the previous length N2 state vector, vec(XXX t−1). Repeating this process for all N2 grid cells creates the
N2-by-N2 coefficient matrix for the VAR representation. We do not seek to fully characterize the algebraic
properties of this matrix here, but we do note that it exhibits a block convolutional structure, as shown in
Figure 2-3; that is, it has the form of a N-by-N circulant matrix where each element is itself an N-by-N
(sub)block matrix. Because the sliding dot product is closely related to a convolution, this circulant block
structure is not unexpected.

9Denoted by ⋆; also known as a cross-correlation in signal processing, or a flipped convolution à la convolutional neural
networks.
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With this representation in hand, we are now able to characterize NDMs that give statistically stationary
spatiotemporal data (which for brevity we will call “stable NDMs”): a 3-by-3 NDM, AAA yields stable
dynamics if its equivalent N-by-N VAR coefficient matrix ÃAA satisfies ∥ÃAA∥op < 1.

In our simulations below, we leverage this characterization as the basis of an Accept-Reject sampling
scheme for statistically stationary NDM matrices from the asymmetric Gaussian ensemble. See Algorithm
1. While the efficiency of Algorithm 1 was more than sufficient for this study, more work is needed to
efficiently sample stationary NDMs on larger grids. We note that, though natural, this characterization
of stationary NDMs does not appear to have been previously considered in the literature and the VAR
representation appears to be novel. Previous simulation studies of PCMCI, such as that of Runge [10] and
Runge et al. [11], do not sample from the space of stable NDMs and instead explicitly construct a selection
of SCMs with small coefficients whose stationarity is then verified empirically through simulation.

Algorithm 1 Sampling Stable Gaussian NDMs: Accept/Reject Algorithm

• Output: AAA sampled from AAA∼N (R3×3)|AAA is stationary

• Repeat:
1. Sample AAA ∈ R3×3 from the 9-dimensional standard Gaussian distribution

2. Construct ÃAA according to the process of Figure 2-2

3. If ∥ÃAA∥op < 1 return AAA

In our two-dimensional simulation studies below, we only consider the single-lag single-variable VAR
defined by Equations (2.5) and (2.7). Extensions to more complex models are straight-forward. For our
model, the multilag extension of Equation 2.5 is given by

XXX ttt =
L

∑
ℓ=1

AAAℓ ⋆XXX t−ℓ+ηηη t (2.8)

for L lags, while the multilag, the multivariate extension of Equation 2.5 is given by

XXX (J)
ttt =

L

∑
ℓ=1

J

∑
j=1

AAA( j→J)
ℓℓℓ ⋆XXX ( j)

t−ℓ+ηηη t for J = 1, . . . ,J (2.9)

for L lags and J variables. Here AAAℓ denotes the lag-ℓ NDM while AAA( j→J)
ℓ denotes the multivariate depen-

dence NDM of J on j at lag ℓ.

Finally we note that the single variable VAR(1) here represents the easiest case for causal discovery algo-
rithms. The introduction of more lags, more variables, or non-linear dependencies would only increase
the difficulty of causal discovery. As such, the experiments we show below represent an upper bound on
the performance of PCMCI as applied in more realistic scenarios.
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(a) Mapping the action of a neighborhood dependence matrix (NDM) on a single grid cell to a matrix
representation. As the NDM is applied to the top left grid cell of the 5× 5 spatial grid, the update
incorporates all 8 neighbors, which wrap both vertically and horizontally around the edge of our 2D
torus. The action of the NDM on a particular grid cell is represented by the top right matrix, which
can easily be seen to be equivalent to the vector-matrix product formulation shown below.
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(b) Constructing the matrix representation of the NDM action for the entire grid. The process
described in Figure is repeated for each grid cell in the 5×5 lattice, which produces a 5×5 matrix,
each element of which is a 5× 5 matrix reflecting the NDM on a particular cell. Vectorizing these
matrices yields the full 25×25-update matrix shown in the final row.

Figure 2-2. Spatial Updates in the Two-Dimensional Model (Section 2.1.2). The 3×3 NDM is expanded
to a N2×N2 matrix which fully characterizes the action of the NDM and can be used to analyze the
behavior of the resulting system. The sparsity pattern of this matrix is reflected in the time series
causal network for this process.
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Figure 2-3. Dynamics matrix for the 3× 3 NDM




a b c
d e f
g h i


 as applied on a 4× 4 lattice. Note the

“nested circulant” structure of this matrix, where each colored block has a circulant structure, as well
as the block circulant structure of the dynamics matrix as a whole.

2.2. PCMCI Algorithm: Tuning Parameters

The PCMCI algorithm has two tuning parameters which must be set by the analyst:

• τmax, the maximum dependence lag

• αPC, the significance threshold used for each conditional independence test

τmax can be chosen based on expert knowledge of the system to determine the maximum hypothetical
time for causality to propagate. In general, setting τmax too low will significantly distort the estimated
causal structure, while setting τmax too high will slightly increase the runtime and the false positive rate of
PCMCI; as such, users should err on the high side of possible values of τmax when the optimal value is
unknown.

The PCMCI algorithm uses the αPC parameter for pruning links in the PC Condition Selection phase of
the algorithm. During this phase, the (classical) PC Condition Selection algorithm is used for Markov
blanket discovery, where it proceeds by running a series of conditional independence tests and removes
the link between two variables if the associated test has a p-value less than αPC. As Runge et al. [11] notes,
PCMCI does not account for dependencies among the various independence tests or for multiple testing
and αPC is better interpreted as a regularization parameter than a statistical significance level, as the false
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positive rate of the PCMCI algorithm is not controlled. Ceteris paribus, decreasing αPC will result in a
sparser estimated causal graph.

Other free parameters include a minimum lag τmin, autocorrelation control parameters pX and pY , and a
final threshold level αG which is applied as a heuristic multiplicity correction. The roles of these parameters
are described in more detail by Runge et al. [11] and we do not vary them in our analysis.
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3. SIMULATION DESIGN

3.1. Simulation Design: One Spatial Dimension

In order to assess the performance of PCMCI on our one-dimensional model, we fixed a grid size of
N = 10 and considered five variables observed at each grid cell, V,W,X ,Y,Z. Only variables V and Y
exhibited spatial dependence: with a left-to-right dependence at one lag and a right-to-left dependence at
two lags (Vi−1,t−1→Vi,t and Vi+2,t−2→Vi,t and similarly for Y ). Our simulation design is depicted in
Figure 3-1.

Runge et al. [16] note that temporal autocorrelation is typically a severe difficulty for causal discovery
algorithms. The PCMCI algorithm was developed specifically to abate these difficulties [16]. To assess
the performance of PCMCI, we sampled autocorrelation, which we call coefficient a, from the range
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, with a common autocorrelation used for all variables and grid
cells. We consider many of these high degrees of autocorrelation, as autocorrelation is a notable aspect of
the climate science questions motivating this study.

We sampled both within-variable spatial and between-variable dependence coefficients, which we call
coefficient c, from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, to assess the performance of PCMCI under
a range of dependence structures. These dependence coefficients were held constant at all grid cells.
Innovations (ηi,t) were sampled from the standard normal distribution. We generated time series with T
time samples ranging from {50,150,250,350,475,575,675,775,900,1000}.

Parameter combinations that failed to exhibit stable dynamics were excluded from our analysis. We ran
30 replicate simulation runs for each stable parameter combination. The number of possible simulation
runs is 30,000, however, because most coefficient combinations were not stable, the number of runs
completed was 4,500. The specific coefficients used are detailed in Section 4.2.

3.2. Simulation Design: Two Spatial Dimensions

In order to characterize the performance of PCMCI in a variety of regimes, we considered the following
simulation parameters for our two-dimensional model:

• Number of Time Samples (T ): {50,150,250,350,475,575,675,775,900,1000}

• Grid Size (N): {4x4,5x5,6x6,7x7,8x8,9x9,10x10}

• Innovation Scale (σ = sd(ηi,t)): {0.1,0.5,1.0,2.0,4.0}

• Neighborhood Dependence Density (NDD): 1
9 ,

2
9 ,

3
9 ,

4
9 ,

5
9 ,

6
9 ,

7
9 ,

8
9 ,

9
9
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Figure 3-1. A causal graph for the one-dimensional simulation model. The five variables V,W,X ,Y,Z
are each observed on 10 grid cells. Each variable exhibits temporal autocorrelation (orange), while
only V and Y exhibit spatial (left/right) dependencies. Cross-variable dependencies exist at every
grid cell according to the causal structure V →W → X → Y → Z. Both the cross-variable and left-to-
right dependencies occur at one lag (red), while the right-to-left dependencies occur at two lags
(green). This graph has 50 = 5×10 nodes and 130 edges: the time series causal graph would have
100 = 50× (max lag = 2) nodes.

Here, σ controls the scale of Gaussian innovations added to each element of XXX t , and the NDD measures
the number of causal parents implied by the NDM. When NDD = 1

9 , there is only one dependence
between neighboring grid cells1; increasing NDD adds more dependencies; NDD = 1 = 9

9 implies a fully
connected (local) causal system. For each of these 3,150 parameter combinations, we generated 30 random
stationary NDMs, yielding a total of 94,500 NDMs, from which we generated 94,500 time series.

In order to simulate these dynamics, statistically stationary NDMs are sampled using Algorithm 1. In
order to avoid causal signals that are too small to be detected, we additionally only considered NDMs
whose non-zero elements had magnitude at least 0.1. Because the NDMs selected were guaranteed to be
stable, we encountered no numerical difficulties in our data generation process.

We generated the innovations ηi,t from a suitable mean-zero normal distribution and used a Gaussian
condition independence test in PCMCI. If a specific distribution for ηi,t is not assumed, non-parametric
independence tests can be used, though these have a higher sample complexity and require longer observa-
tional series (greater T ).

1Sometimes dependence is between a grid cell and itself, such that nodes are autocorrelated and there is no cross-dependence.
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4. RESULTS

4.1. Performance Measures

To compare the PCMCI-estimated causal graphs with the underlying SCM-implied causal graphs, we
report discovery performance using several measures of classification accuracy; in particular we show the
F1-score and the Matthews Correlation Coefficient. Additional accuracy measures appear in the Appendix
to this report.

The F1 score is a popular measure of classification accuracy, which attempts to balance the precision and
recall of a classifier. Specifically, the F1 score is defined as [31]:

F1 =
2×Precision×Recall

Precision+Recall
= Harmonic Mean(Precision,Recall) (4.1)

where precision and recall are defined as

Precision =
T P

T P+FP
(4.2)

Recall =
T P

T P+FN
(4.3)

and TP, FP, and FN are the counts of true positives, false positives, and false negatives, respectively.1
F1 ranges from 0.0 to 1.0, with 0.0 indicating perfect disagreement, that is the estimated graph is the
complement of the true graph, and 1.0 indicating exact graph recovery.

We note that the F1 score is undefined when T P = 0, as both Precision and Recall are 0, which would
occur if there are no links in the true graph (i.e. all varaibles are independent). We note that the F1 score
can equivalently be expressed as [32]:

F1 =
2×T P

2×T P+FP+FN
. (4.4)

As such we, define F1 to be 1.0 if FP,FN = 0 as the estimated graph is correctly fully sparse and 0.0 if
FP > 0 or FN > 0.

We additionally report the Matthews Correlation Coefficient (MCC), also called the φ coefficient. Unlike
F1, MCC depends on true negatives and is symmetric in the positive and negative labels: that is, if we

1In our context, positives refer to the existence of a link while negatives refer to absence of a causal link. In other contexts,
it may be more natural to refer to the absence of a causal link as a scientific finding, as the baseline assumption is that
dependencies exist among all measured variables. The MCC measurement we report is invariant to this switch of labels.
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compare the complements of the true graph and the estimated graph, representing causal independence,
we get the same MCC. Chicco [32] defined MCC as follows2:

MCC =
(T P×T N−FP×FN)√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(4.5)

which ranges from [−1,1]. MCC =−1 implies the model is perfectly incorrect, MCC = 0 indicates a
level of accuracy consistent with random guessing, and MCC = 1 indicates perfect graph recovery.

As before, we take care to define MCC for the case of sparse graphs (causal independence). MCC is
undefined in any of these four cases:

1. if T P = 0 AND FP = 0

2. if T P = 0 AND FN = 0

3. if T N = 0 AND FP = 0

4. if T N = 0 AND FN = 0

We handle these cases separately, assigning values of {−1,0,+1} as appropriate to the causal discovery
problem.

1. If T P = 0 AND FP = 0, then the estimated graph is fully sparse:

a) if FN = 0, then the true graph is also fully sparse and we take MCC = 1;

b) if FN ̸= 0 AND T N = 0, then the true graph is fully connected, the estimated graph missed
all causal relationships, and we take MCC =−1;

c) if FN ̸= 0 AND T N ̸= 0, then some, but not all, of the causal independence relationships of
the estimated graph are false and we take MCC = 0.

2. If T P = 0 AND FN = 0, then the true graph is fully sparse:

a) if FP = 0, then the estimated graph is also fully sparse and we take MCC = 1;

b) if FP ̸= 0AND T N = 0, then the estimated graph is fully connected, which is exactly wrong,
and we take MCC =−1;

c) if FP ̸= 0 AND T N ̸= 0, then the estimated graph has implies some spurious causal depen-
dencies and we take MCC = 0.

3. If T N = 0 AND FP = 0, then the true graph is fully connected:

a) if T P = 0, then the estimated graph is fully sparse, which is exactly wrong, and we take
MCC =−1;

b) if T P ̸= 0 AND FN = 0, then estimated graph is fully connected and we take MCC = 1;

c) if T P ̸= 0 AND FN ̸= 0, then the estimated graph omitted some, but not all, causal relation-
ships and we take MCC = 0.

2Derived from an earlier definition by Matthews [33].
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4. If T N = 0 AND FN = 0, then estimated graph is fully connected:

a) if T P = 0, then the true graph is fully sparse, so the algorithm is perfectly incorrect, and we
take MCC =−1;

b) if T P ̸= 0 AND FP = 0, then the true graph is also fully connected and we take MCC = 1.

c) if T P ̸= 0ANDFP ̸= 0, some, but not all, of the estimated causal dependencies are spurious
and we take MCC = 0.
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c
0.1 0.2 0.3 0.4

a

0.1 X X X X
0.2 X X X
0.3 X X X
0.4 X X
0.5 X X
0.6 X
0.7 X

Table 4-1. The stable autocorrelation (a) and cross-correlation (c) dependence coefficients identified
for the one-dimensional model.

4.2. One-dimensional model

The results of the simulation study described in Section 3.1 are shown in Figure 4-1. For each simulation,
we provided PCMCI with the correct maximum lag (τmax = 2) and set the threshold parameters to
relatively stringent values (αPC = 0.01, αG = 0.01). Internal to PCMCI, we used a Gaussian partial
correlation test for independence testing, as our data was generated from a linear-Gaussian VAR.

Recall from Section 3.1 that autocorrelated dependence is labeled coefficient a, and within-variable and
between-variable cross-correlation dependence is labeled coefficient c. As Figure 4-1 shows, only a minority
of a and c dependence coefficients were found to be stable. a was able to reach as high as 0.7, while c was
only able to reach as high as 0.4. Table 4-1 shows the specific a and c combinations that were identified
as stable in this model. The specific stable coefficient combinations would likely change with a different
model formulation, e.g., different spatial dependence structures.

Figure 4-1 shows that PCMCI performed better with more time samples, but performance was limited by
the particular a and c coefficients. The algorithm performed better where either coefficient was larger, but
particularly when c was larger. For example, when c = 0.1, more time samples made little to no difference
in performance beyond 250 samples.

In Figure 4-2, we show PCMCI performance as a function of autocorrelation. Figures 4-2a, 4-2b, and
4-2c depict this when c = 0.1, c = 0.2, and c = 0.3, respectively. Again we see that F1 score increases
as the a coefficient increases. Note the differently scaled Y-axes between the panels; the F1 score reaches
higher magnitudes when c is larger. This suggests that within the confines of a stable system, larger
autocorrelation increase the signal-to-noise ratio, making the dynamics more easily identifiable. It does
not appear that autocorrelation specifically is a detriment to structure identification.

In Figure 4-3, we show PCMCI performance as a function of cross-correlation. Figures 4-3a, 4-3b, and 4-
3c depict this when a = 0.1, a = 0.2, and a = 0.3, respectively. We more clearly see that F1 score increases
as the c coefficient increases. Note the differently scaled Y-axes between the panels; performance reaches
higher magnitudes when a is larger. Like autocorrelation, larger cross-correlation increases performance,
likely because of an improved signal-to-noise ratio. Larger autocorrelation and larger cross-correlation
combined results in the best performance.
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Finally, in Figure 4-4, we show PCMCI performance as a function of T time samples. Each data point
includes all a and c values. We observe a clear pattern that PCMCI performance increases as a function of
T , regardless of coefficient values.

4.3. Two-dimensional model

In this section, we present the results of the simulation study described in Sections 3.2. Recall that, for
the two-dimensional simulations, we had only a single variable and that the complexity of the problem
was controlled by the 3-by-3 neighborhood dynamics matrix, suitably expanded for the larger grid. For
each simulation, we provided PCMCI with the correct maximum lag (τmax = 1) and set the threshold
parameters to relatively stringent values (αPC = 0.01, αG = 0.01). Internal to PCMCI, we used a Gaussian
partial correlation test for independence testing, as our data was generated from a linear-Gaussian VAR.

In Figure 4-5, we examine the effect of grid size (N) on both the F1 and MCC scores, with other parameters
fixed to σ = 1.0, NDD = 3

9 , and T = 1000. While we observe a high degree of variance in this plot, it is
clear that performance degrades on larger grid sizes, though at a relatively slow rate if we recall that the
problem dimensionality increases quadratically in N. As F1 and MCC are highly correlated, we only
depict MCC in subsequent figures. Appendix A features alternate performance measures.

Figure 4-6 depicts the effect of varying the sample length (T ). We clearly observe a sub-linear growth in
accuracy, as would be expected from the decreasing marginal information of additional samples.3 Figure
4-7 further depicts the effect of T for various values of grid size, N, and connectivity (NDD). Here we
observe that neither grid size nor connectivity have significant impact on PCMCI performance, but that,
as expected, there is a small decrease in performance as the grid size increases.

Figure 4-8 highlights the effect of graph density on PCMCI performance. From this plot, it is clear that
PCMCI performance is marginally impacted by number of causal relationships increases, and increasing
T removes these minimal effects. Comparing results columnwise, we again observe a relatively limited
effect of grid size on our results. While Figure 4-8, clearly indicates that PCMCI is able to recover the true
graph in the large sample limit, this provides limited guidance for analysts considering the use of causal
discovery from data of limited sample size.

In Figure 4-9, we attempt to answer the question “how many samples will I need to expect success”? Because
the threshold for “success” is problem dependent, we instead estimate the probability of MCC > m for
various values of m. For moderately stringent thresholds (m≈ 0.7), we see that T = 500 samples appear
sufficient for even large grid sizes, while even T = 1000 samples may be insufficient at highly stringent
thresholds (m = 0.9). From these plots it is clear that, while average MCC performance may not vary
significantly in grid size, the dependability of PCMCI clearly decreases rapidly in N.

Finally, Figure 4-10 investigates the effect of the innovation scale (σ = sd(ηi,t)) on PCMCI performance.
Empirically, we observe no systematic effect of σ on performance: we hypothesize that this is because σ
controls the magnitude of both the additive Gaussian innovations and the signal component ÃAAvec(XXX t),
leaving the effective signal-to-noise ratio of the problem unchanged. While we do not show this analytically

3Via general statistical principles, we expect MSE ∝ T−1/2, and note that MCC is a non-linear, but monotonic, function of
estimation accuracy.
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for the causal discovery problem, we do note that a similar phenomenon occurs in the estimation of VAR
coefficients.4

Additional results, including analysis of the True Positive Rate (TPR), True Negative Rate (TNR), False
Positive Rate (FPR), and False Negative Rate (FNR) appear in Appendix A. Those plots indicate few
false positives across different simulation regimes and that decreases in MCC are primarily driven by false
negatives, indicating large numbers of samples are necessary to correctly identify causal effects. While
varying the PCMCI thresholding parameters αPC and αG may adjust the balance of false negatives and
false positives, we do not explore the effect of those parameters in this work.

4Briefly, let XXX t = AAAXXX t−1 +ηηη for ηηη ∼N (0,σ2I). Then

Cov(XXX t) = Cov(AAAXXX t−1 +ηηη)

= AAACov(XXX t)AAAT +σ2III

=⇒ vec(Cov(XXX t)) = σ2(III−AAA⊗AAA)−1.

Additionally recalling that the variance of the OLS estimator is given by Cov(vec(β̂ )) = (vec(XXX)vec(XXX)T )−1⊗σ2III, we
have Cov(vec(β̂ ))≈ [σ2(III−AAA⊗AAA)−1]−1⊗σ2III = (III−AAA⊗AAA)−1⊗ III which does not depend on σ .
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Figure 4-1. F1 scores for the One-Dimensional model of Sections 3.1 and 3.1. Coefficients a and c
represent autocorrelation and cross-correlation dependence coefficients, respectively, where cross-
correlation relates to both variable-to-variable and cell-to-cell dependencies. Only stable coefficient
combinations are shown. PCMCI performs better with more time samples, larger a values, and larger
c values. When a or c are sufficiently large, the system becomes unstable.

35



0.1 0.2 0.3 0.4 0.5 0.6 0.7
a

0.1

0.2

0.3

0.4

0.5
F 1

 S
co

re

(a) c = 0.1

0.1 0.2 0.3 0.4 0.5
a

0.40

0.45

0.50

0.55

0.60

0.65

0.70

F 1
 S

co
re

(b) c = 0.2

0.10 0.15 0.20 0.25 0.30
a

0.55

0.60

0.65

0.70

0.75

F 1
 S

co
re

(c) c = 0.3

Figure 4-2. F1 score results from the one-dimensional spatial example with varying autocorrelation, a,
and constant cross-correlation, c. Each data point includes all possible T time samples. Note the
different Y axes.
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Figure 4-3. F1 score results from the one-dimensional spatial example with varying cross-correlation,
c, and constant autocorrelation, a. Each data point includes all possible T time samples. Note the
different Y axes.
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Figure 4-4. F1 score results from the one-dimensional spatial example with varying T time samples.
Each data point includes all possible a and c dependence coefficients.
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Figure 4-5. Effect of grid size (N) on PCMCI F1 and MCC scores. Both metrics decrease relatively
slowly in N. Other simulation parameters are fixed to σ = 1.0, NDD = 3

9 , and T = 1000.
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Figure 4-8. Effect of sample size, (T ) grid size, (N), and neighborhood dependence density on PCMCI
performance (MCC). For sufficiently large sample sizes, PCMCI is able to consistently recover the
true graph structure; the effect of grid size and NDD are limited. Values shown are mean performance
over 30 replicates. σ = 1 for all simulations.
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Figure 4-9. Probability of PCMCI Success as a function of grid size N and sample size T , with success
defined as MCC above a user-defined threshold. Results are empirical probabilities over 30 replicates:
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Figure 4-10. Effect of Innovation Magnitude (σ ) on PCMCI performance (MCC). Changing σ appears
to have no systematic effect on PCMCI performance.
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5. DISCUSSION

In this work, we investigated the performance of the PCMCI causal network discovery algorithm for
linear-VAR systems in one- and two-dimensional space. We varied the length of the observed time series,
the size of the underlying grid, and the density of the underlying causal graph, and found significant effects
of each. Our results provide a robust characterization of PCMCI performance on spatiotemporal systems
and highlight several avenues of future inquiry.

Most notably, we found that T ≈ 1000 samples were necessary to for consistent high-accuracy causal
discovery across the various scenarios we considered (see Figure 4-4 and Figure 4-9). While this is consistent
with the asymptotic consistency of PCMCI, these extreme sample sizes are unrealistic for the climate data
analytics motivating this study. Note that we restricted our analysis to linear-Gaussian systems, which
enables PCMCI to reduce the difficult problem of testing conditional independence to the relatively
easier problem of estimating partial correlations. While it is possible to use PCMCI with more general
conditional independence tests, these tests have a far higher sample complexity, and would require a far
greater sample size to achieve consistent performance.

By contrast, the effect of the grid size was relatively minor, suggesting that performance gains may attainable
through clever use of this spatial structure. Changing the number of true causal effects had notable
impacts on certain performance measures, but further work is needed to determine whether this scenario
is inherently more difficult for causal discovery or whether it is an artifact of the specific accuracy measures
we used, e.g., the number of true positives for an empty graph.

We note that in our study of the one-dimensional model, we found that PCMCI tolerated high autocor-
relation well. This result is somewhat unexpected, given previous work showing that causal discovery
algorithms tend to handle autocorrelation poorly. However, PCMCI was developed to be robust to
autocorrelation [10]. The clearest conclusion, apart from the aforementioned benefits of more time
samples, was that larger causal dependence coefficients were beneficial, regardless of whether they were
autocorrelational or cross-correlational coefficients.

Finally, our study of the two-dimensional model also provided several computational advances that may
be of independent interest, including characterization of the sliding dot product and VAR representations
of our model, an easy-to-implement check for stability of the resulting VAR process, and an effective
algorithm for sampling from the space of stable dynamics.

As shown in Figure 4-9, the probability of “successful” graph recovery is highly sensitive to both the sample
size and the grid size. As the number of potential causal parents for a single grid cell increases quadratically
in N, this is perhaps unavoidable. More generally, causal discovery algorithms are known to suffer from
the curse of dimensionality, particularly when applied on the grid-level in spatiotemporal systems as the
both the potential causal parents and the number of grid cells studied increase rapidly in the grid size
[10, 15, 22, 25].
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In the climate context, the underlying grids are far larger than those considered in this study, necessitating
extremely large sample sizes. Unfortunately, our causal stationarity assumptions (Assumption T2 and S2)
are less likely to hold over these extended time frames. To avoid this problem, some works have artificially
reduced the problem dimensionality by replacing grid cells with pre-defined regions of climatological
interest [15, 21, 22, 25]. They made attempts to benchmark their results with either simulated or theoretical
expectations. However, their simulations were not of grid-cell-level causal dynamics, as ours are, and
their studies on natural climate data could not be benchmarked rigorously. Finally, we note that these
approaches are only appropriate for long-term climate analyses in which well-defined spatially-stable
statistically-regular modes are the objects of study. We do not expect these approaches to perform well
when studying “one-off” climate events, in which relevant regions are rarely known a priori, making
dimension reduction a far more challenging task.

Finally, we note that our study only considered samples from the stationary distribution of a linear system
driven by Gaussian innovations. As a result, our simulated data is itself Gaussian and does not reflect
structures that may be found in climate data, e.g., the El Niño Southern Oscillation (ENSO) or, on shorter
scales, major storms. It is unclear how PCMCI would perform when applied to these stable structures, as
they have complex spatiotemporal dynamics.

Causal discovery is an important aspect of modern climate research and there is a need for algorithms that
can scalably and accurately determine causal structure from grid-level data. While PCMCI is quite data-
hungry on large grids and observational climate data are quite limited, additional insights can be gleaned
from the analysis of large simulation ensembles. Currently, PC-family algorithms do not incorporate spatial
structure: in future work, we hope to investigate the use of spatial structure to reduce the dimensionality
of the causal discovery problem.

Causal discovery remains a challenging task, particularly in the climate domain. As simulation and
observational data continues to grow in size and scope, there is a pressing need for approaches that can
perform robustly at a range of time- and spatial-scales, ranging from storm tracking to diffusion of volcanic
aerosols to long-term natural and anthropogenic climate changes. The benchmarking techniques and
simulations of this paper give insight into the weaknesses of current approaches and suggest new avenues
of causal discovery research.
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APPENDIX A. Additional Simulation Results: Two-Dimensional Model

In this section, we depict various performance rates of PCMCI in our two-dimensional simulation study
(Section 3.2). Here we report:

FDR =
FP

T P+FP
(False Discovery Rate, Figure A-1)

T PR =
T P

T P+FN
=

T P
P

(True Positive Rate, Figure A-2)

FNR =
FN

T P+FN
=

FN
P

(False Negative Rate, A-3)

T NR =
T N

T N +FP
=

T N
N

(True Negative Rate, A-4)

FPR =
FP

T N +FP
=

FP
N

(False Positive Rate, A-5)

where FDR is the false discovery rate; T P,FP,T N,FN are the number of true positives, false positives,
true negatives, and false negatives, respectively; and P,N are the number of edges and non-edges in the
true graph.

As with the one-dimensional model, PCMCI exhibits a bias towards non-discovery, with low true and
false positive rates across scenarios. The FPR is almost always kept near 0, indicating that we can have
a high degree of confidence in the causal effects identified by PCMCI, but that it has limited statistical
power at moderate sample sizes.
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Figure A-1. False Discovery Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits low FDR for T > 50. FDR decreases with the number of causal effects (density)
and with increasing time samples.
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Figure A-2. True Positive Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits low true positive rates for T < 350. TPR decreases with the number of causal
effects and with increasing grid sizes.
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Figure A-3. False Negative Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits relatively high false negative rates in all scenarios, indicating low statistical
power. FNR generally increases with the number of causal effects and with increasing grid sizes.
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Figure A-4. True Negative Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits near perfect true negative rates in all scenarios. To the extent it varies, TNR
decreases with the number of causal effects and with decreasing grid sizes.
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Figure A-5. False Positive Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits near perfect false positive rates in all scenarios. To the extent it varies, FPR
increases with the number of causal effects and with decreasing grid sizes.
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7.2 Abstract

Causal discovery tools enable scientists to infer meaningful relationships from ob-

servational data, spurring advances in fields as diverse as biology, economics, and

climate science. Despite these successes, the application of causal discovery to

space-time systems remains immensely challenging due to the high-dimensional

nature of the data. For example, in climate sciences, modern observational tem-

perature records over the past few decades regularly measure thousands of loca-

tions around the globe. To address these challenges, we introduce Causal Space-

Time Stencil Learning (Causal Space-Time Stencil Learning (CaStLe)), a novel

meta-algorithm for discovering causal structures in complex space-time systems.

CaStLe leverages regularities in local space-time dependencies to learn govern-

ing global dynamics. This local perspective eliminates spurious confounding and

drastically reduces sample complexity, making space-time causal discovery practi-

cal and effective. For causal discovery, CaStLe flexibly accepts any appropriately

adapted time series causal discovery algorithm to recover local causal structures.

These advances enable causal discovery of geophysical phenomena that were pre-

viously unapproachable, including non-periodic, transient phenomena such as vol-

canic eruption plumes. Regularities in local space-time dependencies are trans-

formed into informative spatial replicates, which actually improves CaStLe’s per-
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formance when applied to ever-larger spatial grids. We successfully apply CaStLe

to discover the atmospheric dynamics governing the climate response to the 1991

Mount Pinatubo volcanic eruption. We provide validation experiments to demon-

strate the effectiveness of CaStLe over existing causal-discovery frameworks on

a range of geophysics-inspired benchmarks while identifying the method’s limita-

tions and domains where its assumptions may not hold.

Plain Language Summary

We introduce a new method for learning the dynamics of causal systems, that is,

the physical rules that define a system’s behavior. While this task, causal discov-

ery, is not new, existing tools are ill-suited for many large geophysics datasets.

Current state-of-the-art approaches use statistical techniques to search for causal

relationships between all aspects of a system, examining billions of possible causal

effects, or simplifying the data by focusing on the most important variables. In-

stead of an exhaustive search or oversimplifying the data, we incorporate basic

physical principles—requiring effects to be “local” and “uniform”—to massively

simplify the causal discovery problem. We demonstrate that our approach can

recover known geophysical dynamics by applying it to the 1991 Mt. Pinatubo

eruption, validating its ability to uncover space-time causal structure from obser-

vational data.
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7.3 Introduction

Explaining the causal dynamics that govern geophysical phenomena is paramount

in the Earth sciences. Climate models, for example, critically depend on under-

standing both local and global causal pathways to model the complex Earth system.

Understanding short- and long-term consequences of the Earth system’s behavior

is essential for future model development, our scientific knowledge, and prepar-

ing for the future. More specifically, in atmospheric science, we know the initial

state of specific wind modes, such as the quasi-biennial oscillation or the Brewer-

Dobson circulation, dramatically affects the later evolution and impact of volcanic

eruptions, major wildfires, or geoengineering efforts such as stratospheric aerosol

injection (Hitchman et al., 1994; Jones et al., 1998; Aquila et al., 2014; Gray et al.,

2018).

Traditional statistical methodologies, while providing valuable insights, often

fall short of capturing the complex causal relationships inherent in geophysical

systems. Causal models are hard-won and often represent the culmination of many

decades of research. Causal discovery tools aim to accelerate the discovery of these

relationships using statistically-rigorous techniques to separate predictable, but in-

direct, statistical relationships from direct causal connections. Causal discovery

has been successful across the sciences, providing new understandings of climate,

biological, genetic, neural, and other dynamical systems (Ebert-Uphoff and Deng,

2012; Sugihara et al., 2012; Neto et al., 2010; Zhang et al., 2011b; Kamiński et al.,
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2001; Tsonis et al., 2017).However, applying existing causal methods to space and

time structured data remains limited due to the complexity and scale of such sys-

tems.

This work presents a novel causal discovery methodology that overcomes these

challenges to recover networks describing local causal structures from gridded

data. A fundamental insight driving the present work is that in many complex sys-

tems, global phenomena—whether climate teleconnections, brain functional net-

works, or ecosystem dynamics—emerge from countless repeated and structured

local interactions. We can better understand how complex global patterns arise by

accurately capturing these foundational local structures.

Today’s Earth science measurement and modeling capabilities provide a wealth

of data for studying our planet’s complex dynamics. However, due to the immense

complexity of these dynamics, simple analyses provide only a limited understand-

ing of the data. Causal discovery tools offer the ability to understand finer mech-

anistic details via causal graphs’ simplicity, interpretability, and flexibility. causal

discovery is a field that utilizes algorithmic causal inference to identify causal mod-

els as dependencies between fields of interest, which are often represented as a

directed acyclic graph. Causal graphs let us analyze the space-time evolution of

fields of interest and causal discovery can estimate them without requiring hypoth-

esized physical models. Insights gleaned from causal discovery can further inform

physical models, validate simulations against observational data, and identify fu-

ture research questions.
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While causal discovery show considerable promise for addressing problems in

the Earth sciences, the enormous size and scope of Earth science data have lim-

ited its applications. For example, atmospheric data often contains hundreds of

thousands of grid cells, each with several orders of magnitude fewer observations

in time. That imbalance is one aspect of the curse of dimensionality (Bellman,

1957; Bühlmann and Geer, 2011), where high dimensionality relative to sample

size challenges conventional statistical methods and renders many forms of in-

ference, including causal discovery, unreliable without dimensionality reduction.

Despite these obstacles, causal discovery has been successfully applied in Earth

science (Deng and Ebert-Uphoff, 2014; Runge et al., 2015c; Capua et al., 2019,

2020; Nowack et al., 2020a; Krich et al., 2020; Galytska et al., 2022; Tibau et al.,

2022; O’Kane et al., 2024; Zhao et al., 2024), primarily via dimensionality reduc-

tion techniques to reduce the number of relationships to estimate. Those contribu-

tions identified teleconnection pathways to recover large, periodic climate modes

and their effects. While a dimensionality reduction approaches can be practical, the

analysis of local effects has been considered challenging and generally avoided due

to the curse of dimensionality (Ebert-Uphoff and Deng, 2012; Runge et al., 2015c;

Nowack et al., 2020a).

In contrast to dimensionality reduction methods that marginalize large amounts

of information, our work leverages the known locality in space-time systems to har-

ness informative spatial replicates, i.e., repeating space-time relationships, without

loss of local structural information, to identify local causal graphs. These advances
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enables us to approach problem classes in space-time systems that are typically in-

tractable with prior art—both in terms of performance and algorithmic efficiency.

We highlight two features of Causal Space-Time Stencil Learning (CaStLe) that

are useful contributions to causal discovery for geoscience problems: the ability

to learn grid-level relationships instead of regional relationships from reduced di-

mensional data (e.g. principal components or modes) and the ability to handle

dynamic, advective processes.

Prior causal discovery work in Earth science has primarily focused on large-

scale regional phenomena, such as the El Niño Southern Oscillation. These patterns—–

generally consistent in their spatial distribution and periodic in nature—–are well

suited to global dimensionality reduction techniques, which project fields onto a

small number of modes. While global teleconnections are crucial research areas,

they ultimately emerge from local causal interactions. However, dimensionality

reduction sacrifices critical local information, making it impossible to see how lo-

cal structures give rise to global patterns. CaStLe reduces problem complexity in

a fundamentally different way: By identifying and leveraging the repeating local

structures, it preserves the relationships at the grid level while remaining applica-

ble to spacetime systems that exhibit multiscale organization.

Typical dimensionality reduction approaches to causal discovery decrease the

data space from many grid cells to a few regional modes and uses many observa-

tions, resulting in a little p, large n problem, where p is the number of variables

and n is the number of data points. In contrast, phenomena that evolve dynami-
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cally in space or occur rarely, like volcanic plumes, are harder to analyze and often

have few data points. Such problems are large p, little n. CaStLe makes causal

discovery of the space-time evolution of these phenomena tractable for the first

time by leveraging the gridded sample space, avoiding the marginalization that re-

duces many grid cells into a single time series per regional mode, and recovering

interpretable space-time causal structures.

This work’s primary case study is the 1991 Mount Pinatubo eruption. It injected

a plume of aerosols into the stratosphere, which then advected around the tropical

zone before dispersing northward and eventually diffusing around the globe. This

example demonstrates the characteristics of the unique, transient problem class,

has an established research history, and exhibits dynamics verifiable with a known

causal driver: stratospheric wind.

We introduce a new Earth system causal network, the causal stencil graph,

which describes local space-time causal structures between adjacent locations,

and a new estimation methodology, Causal Space-Time Stencil Learning (CaS-

tLe), that is capable of describing local mechanistic pathways in space and time

between grid cells. Grid-level causal discovery in high dimensional space-time

data has been previously considered intractable due to the curse of dimensional-

ity (Nowack et al., 2020a; Tibau et al., 2022). Though demonstrated with climate

model output, our methodology applies to any space-time system where local phys-

ical interactions drive global behavior, including fluid dynamics, biological pattern

formation, or material transport processes.
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CaStLe combines modern causal discovery with classical physics-based princi-

ples, namely spatial and temporal locality, to accurately perform causal discovery

on large spatial domains. Our novel local-coordinate-space projection does not

marginalize any data points, such that local causal information is lost, which is

a common sacrifice of other space-time dimension reduction techniques such as

weighted averaging or principal component analysis (PCA). This preservation of

local information is crucial because global-scale phenomena in complex systems

emerge from interactions at smaller scales. By mapping these foundational causal

pathways, CaStLe provides insights not just into immediate local effects but also

into how these effects propagate and combine to create larger-scale patterns.

With these advances, CaStLe achieves remarkable improvements over state-

of-the-art space-time causal discovery approaches. CaStLe is a flexible frame-

work that can be implemented by adapting any given time series causal discovery

algorithm to the stencil approach. Our approach performs excellently in high-

dimensional data regimes, making it capable of describing the local space-time

evolution of transient phenomena transporting over many grid cells.

The Earth system is rich with transient phenomena examples including for-

est fires, monsoons, coastal erosion, salt or freshwater incursions, inter-tropical

convergence zone shifts, and atmospheric rivers. Aside from elucidating under-

lying dynamics, CaStLe can be used to identify and characterize causal change

points, such as polar vortex disruption and ocean current disruptions. Addition-

ally, understanding these local dynamic structures can give further insights into
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the construction and evolution of important macro phenomena such as the El Niño

Southern Oscillation, the Quasi-Biennial Oscillation, and the Madden-Julian Os-

cillation. Table 1 in the Appendix summarizes the capabilities of CaStLe and their

relevance to specific Earth science applications. These capabilities address analyt-

ical needs that have been challenging or infeasible with previous causal discovery

approaches.

The remainder of this paper is organized as follows: Section 7.4 provides a

brief background on causal discovery and its use in Earth science; Section 7.5 de-

scribes our case studies in the HSW-V and E3SMv2-SPA models and available

data; Section 7.6 explains our novel CaStLe methodology; Section 7.7 demon-

strates CaStLe’s ability to recover known volcanic aerosol evolution in climate

models of different resolution; and finally, Section 7.8 illustrates CaStLe’s com-

putational, and performance improvements over the state-of-the-art methods with

synthetic data experiments.

Contributions

We introduce the CaStLe approach to causal discovery from space-time data. CaS-

tLe allows the discovery of causal structures in high-dimensional spatial data,

avoiding the need for dimension reduction techniques that dominate causal dis-

covery of space-time data, e.g., the work by Nowack et al. (2020a). By working

in the raw data space, CaStLe’s causal graphs are inherently interpretable and do

not require mapping structures from the dimension-reduced space back onto the
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original data. We provide a theoretical analysis of CaStLe, showing that it has at-

tractive computational and statistical properties and, rather remarkably, that CaS-

tLe’s accuracy actually increases on larger spatial domains. We apply CaStLe to

two simulations of a major volcanic eruption and demonstrate how it can be used to

better understand how stratospheric winds mediate the climate response to volcanic

activity. Our first study is of a relatively simplified model to validate the method-

ology with proxy ground-truth. In our second study, we consider a more realistic

model and find that CaStLe still provides consistent and valuable results, demon-

strating its value for realistic atmospheric dynamics. Finally, extensive numerical

experiments measure the advantages of CaStLe and demonstrate: i) significantly

improved performance over existing causal discovery methods on a set of vector

autoregressive (VAR) benchmarks; and ii) the use of CaStLe to identify the gov-

erning dynamics of Burgers’ non-linear partial differential equation (PDE). While

our case studies utilize climate model data, the methodology is domain-agnostic

and can be applied to any high-dimensional space-time system meeting our local-

ity and stationarity assumptions.

7.4 Background: Causal Discovery and Formal Mathematical

Scope

Here, we provide a brief overview of the causal discovery field and the mathe-

matical scope of our contributions. For a broader overview of causal discovery

and its applications to Earth science, see the reviews by Glymour et al. (2019),
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Runge et al. (2019b), and Runge et al. (2023), and the book by Peters et al. (2017).

Additionally, we outline the mathematical constraints and assumptions that define

where our methodology can be applied in the class of space-time systems.

Causal discovery is a field of causal inference that seeks to recover causal dy-

namics from observational data. In the parlance of causal inference, observational

data is data that is passively observed rather than data to which treatments (e.g.

manipulations) have been applied. Observational data can be natural (e.g. physical

observations) or synthetic (e.g. simulations). The present work exclusively per-

tains to untreated data, so we will use observational in this way.

While correlation does not imply causation, causal discovery is built upon Re-

ichenbach’s common cause principle (Reichenbach, 1956): if two quantities are

correlated then one must cause the other or there is a third causal driver of the two.

causal discovery generally has two output classes: a causal graph/network (Pearl,

1995a) or a structural causal model (Pearl, 1998). We focus on causal graphs,

which are networks of variables (nodes) connected by edges that denote a causal

dependence. Causal graphs can be more appealing than structural equation models

because they are human-interpretable and do not require prior knowledge of the

underlying causal function. In the study of Earth science, causal graphs may often

be preferred to visually describe space-time relationships on the globe. Our contri-

bution produces a novel type of causal graph, the causal space-time stencil, which

is detailed in Section 7.6 and an example of which is in panel 4 of Figure 7.2.

168



7.4.1 Related Work: Causal Structure Learning

In recent decades, causal inference has been developed into a rigorous mathemati-

cal framework (Rubin, 1974; Pearl, 2000; Pearl et al., 2016). These developments

made algorithmic discovery of causal structures from observational data possible

(Spirtes et al., 1993; Peters et al., 2017; Glymour et al., 2019). Causal structures

can be modeled with two common forms: structural causal models (SCMs) and

causal graphs. Both describe a functional relationship between a variable X j and

its causal parents, denoted P( j).

For example, if Xi causes X j, then it is said Xi is a parent of X j and i ∈P( j).

Formally, Peters et al. (2017, p.83) defines an SCM as follows:

A structural causal model (SCM) consists of a collection of d (struc-

tural) assignments

X j := f j(XXXP( j),η j), j = 1, . . . ,d,

where P( j)⊆ {1, . . . ,d}\{ j} are called parents of X j: and a joint dis-

tribution Pη = Pη1,...,ηd over the noise variables, which we require to be

jointly independent; that is Pη is a product distribution [in our notation].

An SCM admits a unique causal graph, where X j→ Xi if j ∈P(i) and j ̸→ Xi

if j ̸∈P(i). While discovery of an SCM requires hypothesizing all f j’s, discov-

ering a causal graph can be done without knowing the exact functions. Because a

causal graph does not imply a specific function between variables, each may imply
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multiple SCMs. This does limit some of the inferential power of causal graphs, in

exchange for more versatility.

Algorithms for discovering causal graphs have two primary classes: constraint-

based and score-based algorithms. Constraint-based methods use statistical tests to

compute conditional independence relationships between sets of variables. Once a

set of independence relationships is established, it utilizes causal assumptions and

reasoning to connect the variables with directed links. Score-based approaches are

similar but use score optimization to determine causal dependence between vari-

ables. Both constraint-based and score-based algorithms produce causal graphs be-

cause they operate on graphical structures and independence relations rather than

the explicit parametric relationships between variables required to specify a com-

plete SCM.

Early causal discovery algorithms developed as two parallel traditions. The

temporal Granger causality (Granger, 1969) methodology was an early innovation

using time series data to determine if the past history of X aids the prediction of Y

better than Y ’s history alone. If so, then X Granger causes Y . Independently, the

constraint-based PC algorithm (named for its authors Peter and Clark) (Glymour

and Scheines, 1986) and FCI (Spirtes and Glymour, 1991) developed out of the

inductive causation (Pearl and Verma, 1992) framework and the earlier SGS algo-

rithm (Spirtes and Glymour, 1991), significantly improving the efficiency of causal

discovery using statistical structures in observed data. In time, other structural al-

gorithms developed, such as LiNGAM (Shimizu et al., 2006), utilizing asymme-
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tries in non-linear and non-Gaussian data for inferences, and NOTEARS (Zheng

et al., 2018), a graph score-optimization-based method. Eventually, these two tra-

ditions converged as structural methods were developed to take advantage of tem-

porally ordered data. Key advances included: hMRF (Liu et al., 2010), which uses

hidden Markov models for estimation and is grounded in Granger causal struc-

tures, PCMCI (Runge et al., 2019a) (and related PCMCI+ and LPCMCI), which

improves PC to handle autocorrelated dependencies better, and DYNOTEARS

(Pamfil et al., 2020), which extends the NOTEARS method to time series. More

recently, a third tradition, causal representation learning, developed out of machine

learning (ML) to leverage causal reasoning in ML models (Schölkopf et al., 2021).

While still a developing field, it shows particular promise for estimating relation-

ships in the presence of latent confounding.

The directed nature of time provides a powerful asymmetry to leverage, of-

ten sufficient to overcome the difficulties of autocorrelation, automatically orient-

ing discovered relationships in time. In contrast, spatial data lacks an obvious

uniform directional structure and poses challenges for causal discovery. As dis-

cussed in Section 7.3, while some approaches have incorporated domain-specific

spatial constraints for point-measurement networks, none have developed a gen-

eralizable framework that leverages fundamental physical principles of locality to

enable scalable causal discovery in high-dimensional gridded space-time systems.
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Causal Discovery in Earth Science

We present a brief review of causal discovery for Earth science to position CaStLe

within the literature. Please also see the extensive reviews by Runge et al. (2023)

and Ali et al. (2024).

Ebert-Uphoff and Deng (2012) were the first to apply a causal discovery algo-

rithm, PC-stable (Colombo and Maathuis, 2014), to the climate science domain.

They were able to find a grid-cell-level causal teleconnection network in 50 year

daily geopotential height data using the PC algorithm. Ebert-Uphoff and Deng

(2014); Deng and Ebert-Uphoff (2014) further explored application requirements

and climatological interpretations of the geopotential height analysis. In each pa-

per, they note grid challenges related to the high expense of many grid cells, ag-

gregation effects, and cell spacing. The first paper limits the number of grid cells

to 800, while the subsequent analyses limited grid cells to 200 to minimize com-

putational costs. While their results are compelling, they use extensive decadal

data and recover patterns common to all 50 years. The fundamental difference

between our work and Ebert-Uphoff and Deng’s work is that they recover causal

graphs from recurring atmospheric phenomena with sufficiently large datasets on

relatively coarse-grained grids, whereas CaStLe is recovers networks of isolated

phenomena with many more grid cells and many fewer time samples per cell.

Runge et al. (2015c) introduced an alternative approach to causal discovery of

space-time Earth science data. They reduced the dimensionality with varimax-

rotated principal component analysis prior to applying the causal discovery al-
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gorithm, producing a graph relating discrete, potentially remote, regions. Their

causal graph is most similar to a teleconnection network between large areas on the

globe. Nowack et al. (2020a) utilized that framework to evaluate CMIP5 models.

Particularly of note, they point out the challenges and strengths of Ebert-Uphoff

and Deng (2012)’s grid-cell-level approach, “... while an analysis at the grid-cell-

level is more granular which, however, carries the challenges of higher dimension-

ality, will have a strong redundancy among neighbouring grid cells, and grid-level

metrics will require handling varying spatial resolution among data sets.”

Tibau et al. (2022) built on the dimensionality reduction approach, augmenting

it to output grid-cell-level networks. They specifically delineate mode-level (di-

mensionality reduction or cell aggregation) and grid-level causal discovery. Their

augmentation is called Mapped-PCMCI, which first applies dimensionality reduc-

tion, then computes a mode-level causal network with PCMCI, and finally maps

the grid cells within the modes to each other using the network previously con-

structed. Their resulting network is one consisting of edges between grid cells, but

the method assumes that cells within modes are fully connected, i.e., each cell is

dependent on all of its neighbors. In contrast, our work specifically seeks inter-cell

spatial relationships. Finally, they also describe the failure of a traditional causal

discovery approach for grid-cell-level data, “[if] we apply PCMCI directly at the

grid-level, the low power of this high-dimensional and redundant estimation prob-

lem (see Section 2.2.2) leads to most links being missing.”
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Boussard et al. (2023) and Brouillard et al. (2024) developed the Causal Dis-

covery with Single-parent Decoding (CDSD) algorithm within the causal repre-

sentation learning framework and applied it to the climate science field. Like CaS-

tLe, CDSD performs well in high-dimensional data settings but through a different

mechanism. It performs dimensionality reduction by learning latent variables and

enforcing a “single-parent” constraint where each grid cell belongs to exactly one

latent factor. This naturally clusters grid cells into coherent, often contiguous re-

gions and enables the discovery of causal relationships between these larger-scale

patterns. In contrast to CaStLe’s grid-level structure learning, CDSD identifies

broader teleconnection pathways between regional climate modes. Thus, while

CaStLe preserves the original grid structure to capture fine-grained causal dynam-

ics, CDSD abstracts to a higher level by mapping the native grid space to an iden-

tifiable latent representation before performing causal discovery.

Several studies have addressed local-scale phenomena. Pfleiderer et al. (2020)

applied causal discovery to identify precursors to seasonal hurricane frequency.

They utilized the precursors to inform a predictive model. Polkova et al. (2021)

identified local drivers of marine cold-air outbreaks in the Barents Sea. These

demonstrate that existing causal discovery approaches can be valuable for seasonal

and sub-seasonal phenomena. However, both marginalized large regions prior to

analysis, reducing the space’s dimensionality, and did not evaluate the space-time

evolution of phenomena nor grid-level dynamics.

There are some examples of causal discovery algorithms leveraging spatial in-
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formation. Zhu et al. (2016) developed pg-Causality that applies space-time pat-

tern mining and a Gaussian Bayesian Network to seek local dependencies in the

space-time propagation of air quality data. Sheth et al. (2022) developed STCD

for understanding hydrological systems. They constrained the discovery of spatial

structures by only allowing higher elevation nodes to be parents of lower elevation

nodes because water follows the gravity gradient. While both cleverly use mined

or known spatial structure to inform their causal discovery, they are both limited

to use in sparse point-measured data from static base stations rather than gridded

data. Further, these methods enforce constraints as filtering mechanisms, whereas

CaStLe actively leverages spatial structure to enhance statistical power. Neither

address the scalability challenges in high-dimensional gridded data.

Parallel Approaches in Neuroscience: Causal Discovery for High-Dimensional Spatial-Temporal

Data

Other scientific domains face similar challenges with high-dimensional space-time

data. Neuroscience, for example, needs to study mechanisms in brain interactions,

and fMRI images may contain thousands to millions of pixels. The anatomy of

the brain also exhibits locality constraints. Ramsey (2014) made computational

optimizations to the Greedy Equivalence Search algorithm, including sparsity con-

straints and limiting the distance of potential parents, to recover graphs with mil-

lions of nodes. Saetia et al. (2021) marginalized regions of interest in the brain

using spatial averaging and then applied the PCMCI algorithm to construct causal

graphs. There is a common interest in recovering graphs of high-dimensional grid-
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level data throughout the sciences. Developing more tools that enhance the esti-

mation and interpretability of causal graphs in these spaces will help advance our

understanding of space-time structures across the sciences.

What is clear from prior work is that grid-level analyses are challenging, both

statistically and computationally, due to how many grid cell dependencies need to

be estimated, the enormous number of observations needed, and the redundant in-

formation content of nearby cells. As we present in the following sections, CaStLe

adds to the literature as it overcomes the statistical and computational limitations

of grid-level analysis by leveraging the known physical structure of spatial infor-

mation to produce interpretable graphs describing local causal structures.

7.4.2 PDE-Like Systems

We seek to perform causal discovery from space-time data governed by consistent

physical laws. As detailed in Section 7.6, CaStLe operates via two phases. The

first restructures the given space-time data into a lower-dimensional local neigh-

borhood space without marginalization or loss of any data points; the second is

the causal discovery step. This section details the assumptions required for effi-

cient use of spatial replicates that enable CaStLe’s first phase, scalability proper-

ties, performance in high-dimensional settings, and interpretability. We note that

the assumptions necessary for the second phase will be inherited from our meta-

algorithm’s chosen causal discovery method. In general, they will be the causal

Markov condition, faithfulness, and often causal sufficiency, which we define for-
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mally in Appendix A.2.

We take PDE-like models as our starting point, and assume that all behavior in

the given space are driven by a fixed set of dynamics that apply at infinitesimal

time and spatial scales. Specifically, we assume that, for data observed in discrete

space and time, the evolution of a single grid cell is controlled only by the values of

its immediate spatial neighbors at the previous time step. Using causal discovery,

we seek to determine which neighbors have a causal impact on a given grid cell

and the direction of that relationship. Our analytical framework has similarities to

the sparse identification framework initially developed by Brunton et al. (2016),

though our approach builds upon causal discovery rather than sparse regression.

Because our approach can use non-linear conditional independence tests, we can

avoid the difficult dictionary construction step associated with sparse regression

methods.

In contrast to causal discovery methods, other current research also focuses

on approximating ordinary differential equations or PDE-like systems with opera-

tor learning approaches, such as operator neural networks (Li et al., 2020; Pathak

et al., 2022; Hart et al., 2023). These Fourier Neural Operators (FNO) focus on

generating accurate models of the PDE-like evolution of key variables over time

and space. Their assumptions are rooted in several of the same fundamental physi-

cal principles of how PDEs propagate effects in space and time as CaStLe: locality

in space and time and spatial stationarity. While CaStLe is not meant to be a

predictive model, it captures important relationships between grid cells in an inter-
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pretable fashion, providing insights into the underlying causal structures.

7.4.3 Causal Discovery of Physical Dynamics: Dynamical Constraints

We state here four key assumptions that capture what we describe as a PDE-like

system XXX t :

T1) Temporal Locality: for any τ ̸= 1, Xi,t−τ ̸→ X j,t for any spatial coordinates

(i, j)

T2) Temporal Causal Stationarity: the dynamics governing the evolution of XXX t do

not change over time. That is, Xi,t−1→ X j,t⇔ Xi,t−1+τ → X j,t+τ for any time

offset τ .

S1) Spatial Locality: if (i, j) are not neighbors (in a problem-specific sense) then

Xi,t1 ̸→ X j,t2 for any t1, t2.

S2) Spatial Causal Stationarity: the dynamics governing the evolution of XXX t do

not change over space. That is, Xi,t−1 → X j,t ⇔ Xi+s,t−1 → X j+s,t for any

spatial offset s.

Here, ̸→ denotes the absence of a direct causal relationship between two variables.

Therefore, if an SCM exists for a given system, then it will have a functional

shape constrained by our assumptions: Xt = f (Xt−1,ηt), for some vector of noise,

ηt . In the context of an SCM, the constraints are: temporal locality (T1) adds

lagged relationships between parent and child variables; spatial locality (S1) re-

stricts possible parents to those in the spatial neighborhood of each variable (grid
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cell), that is, fi is only a function of the neighborhood of i ( fi depends only on

XXXP(i)); and temporal/spatial causal stationarity (T2 & S2) require that there be

only one function, f , for all space and time in the window/region of analysis.

Building on physical principles, Assumption T1 implies that causal dependen-

cies follow the “arrow of time” while S1 disallows “action at a distance.” Assump-

tions T2 and S2 serve to ensure that there is a consistent causal structure to target.

Assumption S1 further requires that fi is only a function of the neighborhood of i

( fi depends only on XXXP(i)). We refer the reader to the book by Peters et al. (2017)

for a more detailed discussion of how SCMs can be used to model physical sys-

tems.

We deliberately chose lag-1 temporal relationships in assumption T1 because

they reflect fundamental physical principles: In the discretized form of PDEs, each

element depends on the future state of the immediate past of its neighboring el-

ements. The symmetry of the radius-1 neighborhood in assumption S1 and the

single lag constraint in assumption T1 captures the essential causal dynamics in

physical processes when temporal and spatial data resolutions are appropriately

balanced.

While not descriptive of all possible systems, we assert these locality and sta-

tionarity assumptions are descriptive of any system governed or modeled after

PDEs, cellular automata (Bhattacharjee et al., 2020), or Tobler’s First Law of

Geography (Miller, 2004; Walker, 2022). These assumptions reflect fundamental

principles of locality and consistency that apply across numerous domains, from
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fluid dynamics to reaction-diffusion systems. However, for these to hold in prac-

ticality, one must also assume sufficient data is available to characterize locality

and dynamics are smooth and non-turbulent, relative to the analysis frame. These

assumptions imply that there is an optimal balance between temporal and spatial

resolution sufficient to impose space-time locality. The exact value of this scaling

is problem-dependent, as more rapidly evolving systems require higher temporal

resolution, and we do not explore it further here. However, we note that similar

concerns are well-studied in the design of numerical differential equation solvers

where spatial and temporal discretizations must be chosen suitably consistently.

Section 7.6 and A detail how these assumptions are essential for our method-

ology, CaStLe, and discuss their limitations. Section 7.6.6 discusses strategies for

managing those limitations. While CaStLe’s framework assumptions (T1, S1, T2,

S2) enable efficient use of space-time samples, the algorithm adapted for CaStLe’s

parent-identification phase will have additional causal assumptions.

Interestingly, CaStLe’s spatial locality assumption (S1) creates an environment

where, when properly implemented, causal sufficiency can be satisfied by con-

struction. When we focus on learning only the parents of the center cell while

including all potential spatial neighbors in the analysis, we automatically satisfy

causal sufficiency for that specific node if S1 holds. While reliant on S1 hold-

ing, this is significant because causal discovery is notoriously the most challeng-

ing causal discovery assumption to ensure in real-world settings (Spirtes et al.,

1993; Raghu et al., 2018). As we discuss in Section 7.6.5, sufficiency may be
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relaxed depending on which causal discovery algorithm is adapted for the parent-

identification phase. However, satisfying it by construction may enable implemen-

tation choices with fewer compromises.

In the following sections, we discover grid-cell-level causal graphs under these

five assumptions. Assumptions T1 and S1 allow us to significantly reduce the

scope of the problem, as there are only 9 possible parents of a grid cell in 2D (8

neighbors and itself). Assumptions T2 and S2 suggest that we only need to deter-

mine a single local causal graph, because spatial stationarity allows us to extend it

to the entire domain.

7.5 Data: The 1991 Mt. Pinatubo Eruption

Mount Pinatubo’s eruption in 1991 was a massive, natural intervention in the

climate, with effects that had a relatively high signal-to-noise ratio. The event

launched 20 Tg of SO2 gas into the atmosphere (Guo et al., 2004a,b; Kremser

et al., 2016). The sulfate aerosols that resulted from these gases remained in

the stratosphere for approximately two years, leading to stratospheric warming

of ∼ 1.5K and surface cooling of 0.2-0.5K (Dutton and Christy, 1992; Labitzke

and McCormick, 1992; Parker et al., 1996a; Soden et al., 2002). This aerosol in-

jection has recently been the object of much study, with some authors suggesting it

as a natural proxy for proposed stratospheric aerosol injection (SAI) responses to

global climate change (Trenberth and Dai, 2007). Recent work continues to char-

acterize the nature of the response to the Pinatubo eruption, with the timing and
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Figure 7.1: Schematic overview of the key elements of CaStLe and the process followed in its
application to Mount Pinatubo’s eruption of stratospheric aerosols. Beginning with Earth system
model output, Step 1. is to collect stratospheric wind and aerosol data. Step 2. is to apply our
novel CaStLe meta-algorithm to the aerosol data to obtain a causal graph describing the space-time
evolution of the aerosols. Finally, we use the wind fields to help validate the causal graph results in
Step 3.

spatial structure of the surface response being essential factors to inform policy

decisions (Weylandt and Swiler, 2024).

Large volcanoes can impact climate quantities, such as surface temperatures,

on timescales from months to years (Parker et al., 1996b; Robock, 2000; Timm-

reck, 2012; Marshall et al., 2022). However, to evaluate whether CaStLe could re-

cover the initial advection dynamics of volcanic aerosols, we focused on the period

shortly after the eruption that includes stratospheric aerosol transport. The recent

paper by Marshall et al. (2022) indicates: “Although global-scale climatic impacts
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following the formation of stratospheric sulfate aerosol are well understood, many

aspects of the evolution of the early volcanic aerosol cloud and regional impacts

are uncertain.” This initial spread of aerosols in the stratosphere is a geophysical

process, falling between synoptic weather patterns and longer-term impacts.

We utilized models of the event, combining stratospheric aerosol and wind data,

as case study to illustrate the analysis possible with CaStLe. Figure 7.1 is a high-

level illustrative schematic of the this work’s key ideas: We collect gridded space-

time data, e.g. aerosol optical depth (AOD) measurements, and apply it to CaStLe

to learn a causal stencil graph. We then map the stencil to the original grid space.

Finally, we compare the data to ground-truth. o be clear, the ground-truth in our

later case studies is a proxy, referring to the models’ understood underlying dy-

namics, not the true realization of AOD in Earth’s atmosphere or a mathematical

representation of the dynamics. In Section 7.7, we compare to the wind fields car-

rying AOD as a proxy ground-truth. In Section 7.8, we compare CaStLe results

from synthetic data to mathematically-known ground-truth.

7.5.1 Held-Suarez-Williamson-Volcanic

For our first case study, we utilized the limited-variability ensemble approach of

the Held-Suarez-Williamson-Volcanic (HSW-V) model (Hollowed et al., 2024).

HSW-V is an atmosphere-only model built in the Department of Energy’s Energy

Exascale Earth System Model version 2 (E3SMv2) (Golaz et al., 2022). HSW-V

does not set out to replicate the historical Mt. Pinatubo eruption or any other, but
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uses the Mt. Pinatubo’s eruption characteristics “to produce a plausible realiza-

tion of a volcanic event, simulated with a minimal forcing set” (Hollowed et al.,

2024). The model was developed specifically to facilitate basic research of attribu-

tion methodologies by providing realistic source-to-impact pathways of eruption

quantities. We use this model to create a realistically complex dataset of strato-

spheric aerosol and wind dynamics with a clear ground-truth to demonstrate the

capabilities of CaStLe and the correctness of its results.

We gathered aerosol optical depth (AOD), sulfate, and zonal (U) and meridional

(V) wind fields for analysis. Only AOD is provided to CaStLe, while the sulfate,

U, and V wind components are used for validating results, as detailed in Section

7.7. AOD is a derived quantity that measures the extinction of a beam of light

through the atmosphere by atmospheric aerosols, i.e., it describes the amount of

light occluded by atmospheric particles. One of the simplifying aspects of HSW-

V is that all aerosol particles originate from SO2 gas ejected by the volcano; this

avoids confusing signals from other sources, such as smoke and dust, in the atmo-

sphere.

The data collected from the HSW-V ensemble run are on a 2° grid with 6-hourly

average observations. We selected AOD in grid cells between−20.00◦ to 40.00◦N

and −120.00◦ to 140.00◦E, comprising 3,900 grid cells. We used the first three

weeks post-eruption for our analysis.
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7.5.2 Mt. Pinatubo in E3SMv2-SPA

For our second case study, we considered a simulation of the Mt. Pinatubo erup-

tion in the fully coupled E3SMv2 model augmented with Stratospheric Prognos-

tic Aerosol capability (E3SMv2-SPA) as detailed and validated by Brown et al.

(2024). E3SMv2-SPA includes atmosphere, land, ocean, sea ice, land ice, and

river components. AOD, U, and V wind fields are analogously collected from this

dataset. However, in this model, aerosols are a natural feature, thus complicating

the analysis of aerosol optical depth.

Data were collected on a daily temporal resolution for a 1° spatial grid. We se-

lected grid cells between−30.00◦ to 60.00◦N and−180.00◦ to 180.00◦E. Analysis

covered the first six months. Because this data has a coarser temporal resolution

and finer spatial resolution than our study of HSW-V, we coarsened the CaStLe

spatial grid to a 3◦ grid, resulting in 3,600 total grid cells. This helps ensure that

the motion of aerosol particles between grid cells is measured within the one-day

sample period.

7.6 Methodology: Causal Discovery with CaStLe

7.6.1 Notation

We first introduce notation used in the remainder of this paper. Data is observed on

a spatial domain D , which we typically take to be a finite subset of the real plane,

R2. The causal structure generating this data can be represented by a directed
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acyclic graph G = (V ,E ), where V =D . CaStLe represents local causal structure

with a stencil, which we identify as a graph G̃ = (Ṽ , Ẽ ) in a reduced coordinate

space (|Ṽ = 9|). In both the original and reduced spaces, let P(v) be the potential

causal parents of v and let P(v) be the actual causal parents of v. We take D

to be points on a regular grid of size N×N, observed over T time steps, giving

data XXX ∈ RN2×T . When transformed to the reduced space used by CaStLe, the

resulting data matrix will be denoted X̃XX ∈ RT (N−2)2×9. Quantities estimated from

data are denoted with a hat, e.g., P̂(v). We provide additional background on the

interpretation of the causal graphs G , G̃ in Section 7.4.1 and formally specify the

mapping between XXX and X̃XX , or equivalently, between V and Ṽ , in Section 7.6.3.

7.6.2 Causal Space-Time Stencil Learning

We now introduce the CaStLe paradigm for the causal discovery of local space-

time dynamics. Under our assumptions, CaStLe identifies a sketch of the local

causal dynamics, which we call a stencil. This stencil can then be used to construct

the causal graph for the entire system (S2). The stencil is estimated in a reduced

coordinate space, where we only examine the direct neighbors of a given grid

cell (S1). We can pool information across time (T2) and space (S2) in order to

estimate the stencil accurately, and the problem is tractable because we only seek

causal parents which are local in time (T1). As we will see, this combination

of reduced search space and pooled information provides a powerful approach

to causal discovery and enables accurate causal discovery from high-dimensional
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grid-cell-level data.
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Figure 7.2: Illustration of CaStLe (Algorithm 1) as applied to space-time data on a 4×4 grid.
Step A (§7.6.3): for every interior grid cell, its 3×3 (Moore) neighborhood is selected. (Note,
all four 4×4 grids in the second panel are identical.) Step B (§7.6.3): Data are represented in a
reduced coordinate space obtained by appending time series from each neighborhood according to
its position relative to the neighborhood’s center. Step C (§7.6.3): during the Parent Identification
Phase (PIP), a causal discovery algorithm is used to estimate the parents of the center time series;
the resulting graph forms the causal stencil. Step D (§7.6.3): the estimated stencil is expanded to
its equivalent representation in the original space. Note that each time chunk (colored intervals in
the center panel) in the reduced space corresponds to an interior grid cell of the original data, and
that each edge in the final causal graph reflects to a stencil edge learned during the PIP. See §7.6.3
for details.

Having motivated the CaStLe approach to causal discovery from space-time

data in Section 7.4.2, we now state it formally as Algorithm 1, describe its compu-

tational steps, and then analyze its statistical and computational properties.

7.6.3 The CaStLe Meta-Algorithm

Steps A-B: Projection to a Reduced Coordinate Space

CaStLe begins by transforming the given data from its original domain into a re-

duced coordinate space that captures the underlying causal dynamics’ locality and

spatial homogeneity. In this transformation, all data points are preserved, i.e., no

marginalization or truncation occurs. This process is represented as Steps A and B

in Figure 7.2 and Algorithm 1. In Step A, the local 3×3 (Moore) neighborhood of
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Algorithm 1 CaStLe for Space-Time Data in 2D (D ⊆ R2)

Inputs:

• Parent-Identification Phase subroutine PIP

• Gridded space-time data XXX ∈ RT×N2

1. Step A: Extract 3×3 Moore Neighborhoods

• For each interior point in the original space, construct local view of the data XXX i = [X·P(i)]∈
RT×9

2. Step B: Construct Reduced Space Data Matrix

X̃XX = [XXX⊤1 XXX⊤2 . . . XXX⊤(N−2)2 ]
⊤ ∈ RT (N−2)2×9

3. Step C: Perform Parent-Identification in Reduced Space

PIP(X̃XX) = Ẽ = (P̂(C)×R9)⊆P(C)×R9

4. Step D: Expand Stencil Graph to Original Coordinate Space:

• E = /0⊆ V 2×R
• For each (p,w) ∈ Ê :

E = E ∪{(p(v),v,w) for v ∈ V }

Outputs:

• Graph Stencil, Ẽ

• Estimated Causal Graph, G = (V ,E )
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each interior cell is selected, and each cell is labeled by its location relative to the

center cell (S, NW, E, etc.). This process creates (N−2)2 sub-views in XXX i ∈ RT×9.

In Step B, these views are concatenated along the time dimension to create a

reduced coordinate space data matrix X̃XX ∈ RT (N−2)2×9. Note, when concatenating

the subviews, data are aligned by their coordinates relative to the neighborhood

center so that, e.g., data from all NW cells are aligned upon concatenation, even

though they originally come from different spatial locations. Although this trans-

formation results in specific time series segments appearing in multiple reduced

space cells, these repetitions do not eventually create spurious dependencies in the

causal stencil, as CaStLe only seeks lag-1 dependencies. The repeated segments

are well-separated in the temporal dimension, and no chunks appear in different

cells in the same interval.

We depict this process on a 4×4 grid in the first half of Figure 7.2. In Step A,

the four interior cells are sequentially highlighted, and their local neighborhoods

are extracted, which are depicted in boxes colored according to the center used. In

Step B, the local data views are concatenated to form one set of time series, with

each temporal chunk reflecting the color of the center cell of the underlying data

view.

Step C: Parent-Identification Phase

CaStLe next examines the reduced coordinate space data representation, X̃XX , to

identify the stencil of the local causal dynamics. This is done by applying an
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augmentation of an arbitrary time series causal discovery algorithm to identify the

parents of the center cell, C. We emphasize that we only seek the parents of C, not

a full causal structure, in this step and refer to it as the Parent Identification Phase

(PIP). Under assumption S1 (locality), all parents of C are present at this step, sat-

isfying causal sufficiency, ensuring more accurate estimation of the causal stencil.

By contrast, while the data of the parents for the exterior cells, e.g. W, is included in

the reduced data space matrix, X̃XX , it spreads across multiple columns, and accurate

parent identification is not possible. The output of this process is a set of (up to) 9

weighted edges, corresponding to the parents of C (the eight neighboring cells and

C itself).

We depict the PIP in Step C of Figure 7.2, where two parents of C are identified:

W, which has a positive dependence on C, and SW, exhibiting negative dependence.

Note that while the PIPs we implemented in testing—see Section 7.8.1—had no

trouble with the seams connecting each time chunk in the reduced space, we pro-

pose an improved testing implementation in E to alleviate potential statistical test-

ing issues.

Step D: Graph Reconstruction in the Original Space

Finally, CaStLe uses the stencil constructed in Step C to reconstruct the causal

graph in the original data space, in a process that essentially reverses Steps A and

B. Specifically, for each edge identified in Ẽ , corresponding edges are added to

grid cell in the original domain. We depict this in the final step of Figure 7.2 where
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the stencil is repeated throughout the entire 4×4 space, copying the two parents of

C identified in Step C, to create a causal graph in the original space. Note also that

we use the stencil to identify parents for both interior and boundary cells, omitting

edges that go “off-grid” when applying the stencil to boundary cells.

7.6.4 Theoretical Properties

CaStLe has many advantages over classical causal discovery algorithms in gridded

space-time settings. By reducing the causal discovery problem to identifying the

causal parents of the center cell (C) in the reduced space, CaStLe achieves signifi-

cant improvements in both the computation necessary to infer the causal graph and

the statistical quality of that graph. As previewed in Section 7.4.2, the PIP’s focus

on identifying only the parents of the center cell creates an important connection

to the causal discovery assumption of causal sufficiency. Because we include all

spatial neighbors (as defined by our locality assumption S1) in the conditioning

set, all potential parents of the center cell are present in the analysis. If our spatial

locality assumption holds, causal sufficiency is automatically satisfied within each

local stencil analysis. This represents a key advantage of the CaStLe framework

- while the Markov condition and faithfulness remain necessary assumptions for

the PIP algorithm, our implementation leverages spatial structure to ensure causal

sufficiency by construction.

Below, we briefly outline the theoretical implications and their contributions to

CaStLe’s remarkable performance and algorithmic improvements. Their deriva-
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tion, a deeper analysis, and a discussion on graph estimation asymptotic consis-

tency are provided in B. We discuss CaStLe’s asymptotic consistency in C, which

shows that CaStLe converges on the correct causal stencil as grid size increases,

given a PIP consistent in increasing time samples. These properties illustrate the

mathematical justification for CaStLe’s empirical correctness and improvement

over the state of the art shown in the following sections.

CaStLe yields significant improvements to both time complexity, a measure of

an algorithm’s computation time as it scales with input size (e.g., number of time

steps, graph nodes), and statistical complexity, a measure of estimation perfor-

mance given larger sample sizes. Following the complexity analysis of Kalisch

and Bühlmann (2007), we show that traditional causal discovery approaches are

bounded by O(np32p) = O(T (N2)32N2
) = O(T N62N2

), for T time samples and

N ×N = N2 grid cells. Since CaStLe computes on the smaller reduced coordi-

nate space, and only seeks causal parents of one node, rather than parents of all

nodes, several terms become constants, resulting in O(np32p) = O(T (N− 2)2×

93×29) = O(T N2). CaStLe’s computational complexity is O(T N2), a major im-

provement over existing approaches. For more details on this derivation, see Ap-

pendix B.1. By leveraging locality and spatial replicates, CaStLe identifies causal

structure for the entire graph (O(N4) possible edges) in N2 time. Kalisch and

Bühlmann (2007, Appendix B) show that the probability of the PC algorithm in-

correctly estimating the true graph is bounded by≈O(N2N2
), whereas we find that

CaStLe’s error probability scales as ≈O
(

N2T
eN2T

)
. From this, as the grid size grows
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larger, we see PC is less likely to estimate the correct causal graph, while CaStLe

is more likely to estimate the correct graph. Furthermore, both of these effects

are exponential, implying significant performance differences even on moderately

sized graphs; this change from a regime of exponential decay to super-exponential

growth in graph recovery performance makes local causal graph recovery feasible,

finally enabling the tools of causal discovery to scalably explore grid-level Earth

science dynamics in commonly high-dimensional settings.

7.6.5 Methodological Limitations

CaStLe’s assumptions may pose challenges in some domains of interest, and viola-

tions of these assumptions can affect the CaStLe output. For example, large-scale

homogeneity can be difficult to achieve in geosciences, which is the primary ra-

tionale for the spatial-blocking strategy that we implement for our application in

Section 7.7. Locality assumptions (T1 & S1) create a framework where the causal

Markov condition can be effectively applied to local structures, while causal sta-

tionarity assumptions (T2 & S2) create consistency in these structures across space

and time. However, the PIP algorithm we use within CaStLe additionally requires

standard causal discovery assumptions, particularly the causal Markov condition

and faithfulness, which is a separate non-trivial assumption. We list causal suffi-

ciency as an assumption, however, if the others hold then it follows that all of the

causal parents of the stencil’s center are in its immediate neighborhood, so suffi-

ciency is satisfied by construction. Alternatively, causal sufficiency may be relaxed
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if the chosen PIP is an algorithm that does not rely on sufficiency, such as the FCI

algorithm (Glymour et al., 2019). As such, violations of CaStLe’s assumptions re-

late directly to violations of the causal Markov condition, faithfulness, and causal

sufficiency. Both Spirtes et al. (1993, p. 29) and Runge (2018a) discuss assump-

tion violations in causal discovery and some examples of how they manifest in

resulting graphs. We have included a more detailed discussion on each assumption

and their limitations in A.

7.6.6 Strategies for Addressing Limitations

To address the limitations of CaStLe’s assumptions, several practical strategies

can be employed. One effective approach is the use of spatial blocking to create

subdivisions where dynamics are more uniform, thus mitigating the violation of

spatial causal stationarity (S2). The selection and size of these blocks are highly

domain-dependent and can be guided by subject matter expertise. An automated

approach may be sufficient for certain dynamics, such as stratospheric dynamics,

but more manual approaches may be necessary for surface-level dynamics where

blocks are chosen based on topological assumptions. In specific areas of interest,

blocks can be manually created to avoid topological boundaries such as coastlines,

rivers, and mountain ranges, ensuring that the assumptions of spatial homogeneity

are better satisfied.

Additionally, strategies such as variograms can be used to test for spatial sta-

tistical stationarity, providing heuristics for effective blocking. In future work, an

194



iterative block size estimation approach could be considered. Varying the block

size serves as a form of stability check, a technique widely applied in ML to ensure

robustness of discoveries to parameter choices and modeling assumptions (Allen

et al., 2023). However, it is important to note that there may not always be a single

optimal block size due to the complex nature of spatial dynamics. Instead, there

may be a range of valuable block sizes depending on the needs for analysis and the

limitations of the setting. Because CaStLe is data efficient, it may be better to tend

towards smaller blocks, which are more likely to be homogeneous, but possibly at

the cost of some interpretability.

Deep learning and space-time feature engineering approaches may be fruitful

directions for future research on automated block-identification. Methods such

as δ -MAPS (Fountalis et al., 2018), feature extraction with convolutional neural

networks (Nukavarapu et al., 2023), and spatiotemporal cluster analysis (Davis

et al., 2025) are strong starting points. These computational approaches could

automate the identification of optimal spatial blocks, reducing reliance on manual

delineation and subject matter expertise while preserving the statistical properties

necessary for valid causal discovery with CaStLe.

By employing these strategies and acknowledging their limitations, the robust-

ness and applicability of CaStLe in various domains can be significantly enhanced,

allowing for more accurate causal discovery in complex space-time systems. In

general, more data at higher spatial and temporal resolutions will make satisfying

the assumptions easier. The appeal of CaStLe is when one is interested in small-
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scale local dynamics, it is preferable to analyze raw gridded data directly, because

marginalization can introduce statistical artifacts.

I provides an empirical investigation of how violations of each assumption af-

fect CaStLe’s performance when applied to our E3SMv2-SPA case study. Our

analysis reveals that CaStLe is surprisingly robust to moderate assumption vio-

lations. While violations of spatial and temporal causal stationarity (particularly

with overly large blocks or extended time intervals) introduce more false positives

and reduce interpretability, CaStLe often still identifies key true causal pathways.

This robustness to moderate assumption violations further expands the practical

utility of CaStLe in realistic Earth science applications where perfect adherence to

assumptions is rarely possible.

7.7 Results: Discovering Atmospheric Dynamics in Global Cli-

mate Models

As described in Section 7.5, we applied CaStLe to output of the Held-Suarez-

Williamson-Volcanic atmosphere model, tuned to accurately reproduce the ob-

served Pinatubo response (Hollowed et al., 2024), and the E3SMv2-SPA model

including the eruption. In this section, we describe how we applied CaStLe to

these case studies and present the results.
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7.7.1 Validation with HSW-V

We first note important implementation considerations, particularly how CaStLe’s

assumptions are satisfied. In general, if assumptions T1, T2, S1, and S2 are uncer-

tain, either because of data availability or dynamical instability, then assumptions

can be verified using subject matter expertise. In this study of Mt. Pinatubo, we

describe how we carefully managed each assumption prior to applying CaStLe.

In order to be sure CaStLe’s assumptions of temporal locality, temporal causal

stationarity, and spatial locality (T1, T2, and S1) held in the dataset’s 2° grid res-

olution (corresponding to approximately 214 km at 15 degrees N), we used atmo-

spheric wind speeds at the time of the eruption, which were recorded at 25 m/s

on average at 30 hPa; cf. Figure 1 in Thomas et al. (2009). That speed translates

to a theoretical maximal aerosol travel distance of 540 km over a 6-hour period,

meaning aerosols should move fast enough to traverse one 2° grid cell per time

step.

Spatial causal stationarity, assumption S2, is indeed violated considering the

globe holistically. We resolved this challenge by using a spatial blocking strategy

to create subdivisions in which dynamics were more uniform, and applied CaStLe

within each separately. As noted in Section 7.6.6, the selection of blocks and their

size is a potential challenge and is highly domain-dependent. We conducted a

sensitivity analysis of block sizes, which is presented in H, and determined that

dynamics were consistent in various of block sizes. We chose a middle size, 20◦×
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20◦, for this analysis to balance more nuanced outputs (smaller sizes) with less

risk of false positives (larger sizes). This case study was selected for its relatively

simple advective dynamics to clearly validate CaStLe and demonstrate its results

in an atmospheric setting. We observe that stratospheric winds vary smoothly and

slowly, without hard boundaries, which enables us to use a regular grid of blocks.

Other settings, such as surface level analyses, the blocking strategy will certainly

require special treatment to avoid analysis across hard dynamical boundaries, such

as coastlines and mountain ranges. In H, we also demonstrate that blocking alone

is not sufficient for non-CaStLed approaches to succeed.

We chose CaStLe’s PIP to be the PC-Stable-Single algorithm because in our

validation experiments in Section 7.8.1, we found it to be the marginally more

effective PIP. However, those experiments showed any tested PIP algorithm is ef-

fective. PC-Stable-Single is the PC-Stable causal discovery algorithm (Colombo

and Maathuis, 2014) adapted to find the causal parents of only one node; its pseu-

docode is provided in L. Specific CaStLe parameterizations are given in G. In J,

we present similar results using DYNOTEARS for CaStLe’s PIP.

Our proxy ground-truth in this case study was stratospheric winds that cause

suspended aerosols to advect through space. We display dominant wind fields

throughout the space to validate the resulting graphs. Our dataset included wind

components in 72 pressure levels in the HSW-V dataset, so we display column-

averages of the levels at the levels where volcanic sulfate was most prevalent.

Specifically, we chose pressure levels containing more than 5.00 µg of sulphate
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Kg air, which were between ∼ 6-114.00 hPa. With this, we effectively captured

the stratosphere and 56% of all sulfate aerosols in all atmosphere levels. By com-

paring winds in at the stratospheric levels where most of the sulfur was present, we

can directly compare CaStLe’s discovery of AOD’s space-time evolution to wind

data in the same locations.

Comparing the wind and recovered stencils in Figure 7.3, it is clear to see that

CaStLe is able to accurately reconstruct the prevailing stratospheric winds using

only AOD observations. As these wind fields are the key drivers of aerosol dis-

persal, it is clear that CaStLe can accurately capture the dynamics dictating the

spatial pattern of the Pinatubo response. The CaStLe stencils best capture the un-

derlying wind fields when AOD levels are high. When there are few particles in

a region, it is challenging to determine wind by solely observing dispersal pat-

terns. We also observe a zonal (East-West) pattern driving the aerosol dispersion,

with Pinatubo aerosols transported nearly fully around the equator within 3 weeks,

while meridional (North-South) dispersion taking much longer. This alignment

between CaStLe-derived causal structures and observed wind patterns demon-

strates the method’s effectiveness in reconstructing the physical mechanisms driv-

ing aerosol transport, particularly in regions with sufficient particle density to en-

able clear detection of dispersal trajectories.
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Comparative Analysis of CaStLe Versus Traditional Approaches on HSW-V

The current state-of-the-art causal discovery methods cannot tractably approach

this study of Mt. Pinatubo’s aerosol short-term evolution. As described in Sec-

tion 7.3, dimensionality reduction techniques commonly used to make them tractable

are suitable for spatially static, periodic space-time patterns. However, they are

not good solutions for studying a dynamic, transient pattern because modes de-

rived from those techniques are space-timely invariant. Moreover, they are meant

to capture large-scale teleconnections, rather than local dynamics that eventually

give rise to global phenomena such as teleconnections. For a detailed demonstra-

tion of why dimensionality reduction approaches, such as PCA and PCA-varimax,

are insufficient for capturing local causal structures in space-time systems like vol-

canic eruption plumes, see F.

Traditional approaches attempted without dimensionality reduction suffer from

the curse of dimensionality when applied to short-term global-scale phenomena

because there are more grid cells than temporal observations. They also struggle to

identify local connections in the massive search space they seek, where every grid

cell may be dependent on any other grid cell; i.e., they are not constrained by local

causal structure. Finally, their efficiency scales poorly as the grid size gets larger,

requiring a lot of time to execute on relatively small grids. We present specifics

below and discuss time complexity in depth in Section 7.6.4 and Appendix B.1.

Here, we demonstrate the disparity in performance between traditional approaches

and CaStLe for our HSW-V case study using the PC algorithm. The reasons for
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the disparity are explored in Sections 7.3 and 7.4. Because PC did not terminate

within 48 hours on the full spatial region studied in Section 7.7.1, we restricted

the analysis space the area between 20.00◦ to 50.00◦N and 55◦W to 120◦E in the

first 8.5 days after the eruption. On the 2◦ grid, the given space is equivalent to a

35×35 grid, or 1,225 grid cells. Since temporal observations were 6-hourly, there

were 34 time series samples per grid cell.

Figure 7.4 shows the results of the PC causal algorithm and CaStLe-PC-Stable

applied to a large section of grid cells for the HSW-V problem. Figure 7.4a illus-

trates that PC is incapable of reconstructing a graph with any meaningful physical

interpretation. There are some local dynamics found, but they are dominated by

the many links across disparate locations. PC was implemented here with the par-

tial correlation conditional independence test, a test alpha-value of 0.00001, and a

p-value threshold of 0.05 to remove links below that threshold in the final graph. P-

values were corrected using the

Benjamini-Hochberg procedure prior to final thresholding.

In Figure 7.4b, CaStLe was applied to 10◦-by-10◦ blocks, rather than the 20◦-

by-20◦ blocks in Figure 7.3. The smaller block size enables more link density and

nuanced results, with the possibility of more mistakes. In this illustration, we chose

to display the stencils mapped back to the original space for each block to compare

to PC more fairly and demonstrate how much more sparse CaStLe’s results are. We

found that CaStLe was again able to recover the westward aerosol transport from

Mt. Pinatubo. Because HSW-V only models aerosols from the volcano, there is
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little to no aerosol signal outside the plume, and results in these areas will be less

reliable.

Additionally, the run-time of the PC algorithm is demonstrably poorer than

CaStLe. The PC algorithm experiment in Figure 7.4a PC took 65 minutes to ex-

ecute for a 35×35 grid size. In contrast, the CaStLe experiment in Figure 7.4b

completed all blocks serially in 0.46 seconds on the same data. Further, for each of

the panels in Figure 7.3, CaStLe computed the 39 stencils for the 3,900 grid cells

in a total of 10 seconds. These empirical data points are explained by CaStLe’s

improved theoretical properties, as detailed in Section 7.6.4 and B.

7.7.2 Extending to More Complexity: E3SMv2-SPA Modeled Aerosols

Given the intended simplicity of the HSW-V model, we also evaluated a simula-

tion of the Mt. Pinatubo eruption in E3SMv2-SPA. More complex graphs arise

with a more complex model, providing an opportunity for more nuanced analy-

sis and discovery, but with a higher chance of false positives and false negatives.

E3SMv2-SPA is a fully coupled model, so AOD results from many sources in-

cluding the volcanic eruption and Saharan dust. As such, we expect results to

be somewhat noisier, however, as we demonstrate below, CaStLe is still able to

identify important features of transport. Because of this additional complexity,

we focus on CaStLe as an exploratory tool and leave additional analysis to future

work. However, even with the added complexity, CaStLe can obtain compelling

results consistent with dominant stratospheric winds as well as the dynamics dis-

202



covered in our study of HSW-V.

We used 15◦ spatial blocks so that CaStLe operates on a 5×5 grid space per

block. This size strikes a balance in the trade-off that a smaller block-grid enables

more nuance in the final output, and larger block-grids take advantage of more

spatial replicates to multiply sample size. We chose to study the eruption in two

distinct 20-day intervals spanning a six month period to understand the changing

evolution of the plume.

Similarly to HSW-V, we utilize the U and V wind fields to visually validate

the CaStLe results. In this case, we did not average over multiple altitudes, instead

opting to simply use the 50 hPa wind fields; this altitude was shown in Brown et al.

(2024, Figure S6) to contain significant levels of the sulfate aerosols.

Figure 7.5 depicts the results of our experiment on E3SM. Again, we applied

CaStLe-PC-Stable to construct causal stencils for each given spatial block. We

selected two intervals of interest from our results to show here. Day 15 is June

15, 1991, the day of the eruption, so the top row of Figure 7.5 is the first 20 days

after the eruption. The bottom row was selected to illustrate later dynamics when

aerosols have circumnavigated the tropical zone and more northward advection is

present. Days 175-195 are November 22 to December 12, 1991, a little over six

months after the eruption.

In the more challenging setting of the fully-coupled E3SMv2-SPA model, our

results in the first weeks are still generally consistent with those in HSW-V pre-

sented in Section 7.7.1, showing that CaStLe is largely robust to greater com-
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plexity. We note that visually identifying the sulfate aerosol plume is much more

difficult in this case as the background AOD is quite strong. A solution may be

to apply CaStLe to AOD anomalies (computed by subtracting grid cell long-term

AOD means from the signal in the analysis period), thus potentially removing

background variability from the analysis. However, our goal in this work is to

present CaStLe as applied to raw data to illustrate what it can and cannot accom-

plish in complex, heterogeneous settings.

Regardless, we observe that tropical westward advection is present throughout

both studied time periods, but more complexity is present in other regions, in part

due to the background AOD. Six months later, the aerosols and winds are in a

different regime. We observe northward and southward causal structures in the

northern latitudes matching dominant wind fields in the area, with CaStLe stencils

still consistent in the tropics. Additionally, CaStLe recovers dynamics moving

aerosols northwards above central Asia and southwards through western North

America. Causal structures are recovered more often and more accurately where

stronger winds coincide with more aerosol presence, building a map of significant

aerosol movement. A more complex model and smaller block sizes illustrate more

nuanced dynamics, and there is more to learn from these; however, we leave deeper

atmospheric dynamics analysis to future work.
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7.8 Validation and Benchmarking

In this section, we demonstrate the effectiveness of the CaStLe approach to space-

time causal discovery, highlighting its ability to identify structure in low-signal

and data-sparse regimes. We first demonstrate the benefits the CaStLe approach

can provide to any causal discovery algorithm using a synthetic linear-Gaussian

dynamics benchmark; we then apply CaStLe to an important non-linear PDE prob-

lem, showing that we can determine the underlying advective forcing.

7.8.1 Evaluating CaStLe: A Comparative Analysis

We demonstrate the effectiveness of CaStLe using a set of local interaction mod-

els (LIMs), building upon the comparison framework introduced by Nichol et al.

(2023). In summary, we defined a stencil for each experiment that dictates how

each grid cell depends on its nine neighbors (including itself). A LIM is a special

case of an SCM, which simulates the evolution of a gridded space by computing

the current state of each grid cell based on a predefined function of the historical

states of its neighbors. In the linear case, this is most simply accomplished with

vector autoregression (VAR) models, where the coefficient is sparse, only contain-

ing nonzero entries where a desired dependence exists between neighbors. The

function is defined by a linear function of coefficients in the given stencil. Our

results appear in Figure 7.6, which shows that CaStLe provides significant im-

provements in graph recovery regardless of the causal discovery algorithm used in
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the parent identification phase.

Data: Benchmark Construction

In order to compare different causal discovery algorithms with a common set of

benchmarks, we begin by generating coefficient matrices parameterizing spatially

homogeneous and statistically stationary VAR(1)s that satisfy our key assumptions

S1 and S2. We generate coefficient matrices for these VARs, M̃, using the follow-

ing sampling scheme:

1. Generate a random 3×3 local dynamics matrix, M, with d non-zero elements,

one of which is the central element (autocorrelation). Each of the d non-zero

elements, {ai}d
i=1, have a random value 1.0≥ coefficienti ≥ s∗.

2. Expand M to M̃ on a grid of size N×N (cf. Step D of Algorithm 1 or Figure

2-2 of Nichol et al. (2023))

3. If |λmax(M̃)| ≥ 1, scale M̃ by |λmax(M̃)|.

4. If m < s∗ ∀m ∈ M̃, reject, else accept.

where |λmax(M̃)| is the maximum absolute eigenvalue of M̃, which when above 1.0

indicates the system is numerically unstable (Strang, 2016, p.307). We note that

this process is essentially an accept-reject scheme used to sample from the set of

statistically stationary & spatially homogeneous VARs on a 2D grid with minimum

signal strengths s∗ ≥ 0.1 and fixed sparsity levels in the range d ∈ {1,2, . . . ,9}.
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After each M̃ is generated, we create a single realization, using standard Gaussian

noise applied independently, cell-wise at each time step.

Method Comparison: Highlighting CaStLe’s Strengths

On each realization, we apply one of three causal discovery algorithms, in both

CaStLed and non-CaStLed form: i) the PC algorithm of Spirtes and Glymour

(1991) as adapted to time series by Runge et al. (2019a, Algorithm S1 with q = 1);

ii) PCMCI, an autocorrelated time series extension of PC developed by Runge et al.

(2019a); and iii) the DYNOTEARS approach of Pamfil et al. (2020), itself a time se-

ries adaption of the NOTEARS approach of Zheng et al. (2018). We additionally

compare each of these against a simple sparse VAR approach, where we estimate

VAR coefficients directly using ordinary least squares (OLS) and truncate coeffi-

cients with magnitude less than s∗; this approach is not necessarily causal, but it

is the exact model of our data generating process and provides a useful point of

comparison.

We compare the estimated graph structure with the true graph derived from the

sparsity pattern of M̃ and report the average Matthews’ Correlation Coefficient

(MCC) (Matthews, 1975) and F1 score over 30 replicates. We used an adapted

MCC formula derived by Nichol et al. (2023), which accounts for edge cases in

which the denominator would be zero, but is otherwise defined as:

MCC =
(TP×TN−FP×FN)√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(7.1)
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where TP, FP, TN, and FN are true positive count, false positive count, true negative

count, and false negative count, respectively. Here, a positive is a graph edge that

exists, and a negative is a graph edge that does not exist. The MCC graph similarity

measure is sometimes preferable to the more common Fβ Score (β is chosen such

that recall is considered β times as important as precision), which is dependent on

the ratio of positive to negative test cases; we treat link positives equally to link

negatives, hence our preference for MCC. Figure 7.6 includes the F1 score due it

its common use in causal discovery, but results are similar.

In Figure 7.6, we depict CaStLe performance results on a 2D VAR with ground-

truth link density d = 4
9 . We show two extremes of sample size: a low-sample

regime of T = 10, which is barely enough to identify the local dynamics of 9 cells,

and a high-sample regime of T = 150. Our results are quite striking: in the low-

sample regime, the CaStLed versions of each algorithm can accurately infer graph

structure, with near-perfect performance on grids of size 10× 10. By contrast,

the performance of the non-CaStLed versions is essentially no better than random

guessing, with only the sparse VAR able to exhibit any skill, and then only on small

grids. In the high-sample regime, the CaStLed variants perform well on all grid

sizes, with CaStLe-PC consistently achieving perfect recovery; the non-CaStLed

variants perform better, as expected, but their performance still decays quickly as

the spatial grid grows.

While the stronger performance of the CaStLed variants is noteworthy, the ex-

hibited trends are even more important and highlight the true strength of the CaS-
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tLe approach: CaStLed approaches improve on larger grids while traditional ap-

proaches suffer. While Figure 7.6 shows results for the fixed link density d = 4
9 ,

we present results for all other link densities in K.

Having established CaStLe’s strong performance on linear dynamics, we also

validated its effectiveness on non-linear systems that more closely resemble real-

istic physical processes in Earth science. Specifically, we applied CaStLe to the

advection-diffusion dynamics of Burgers’ equation, a fundamental non-linear PDE

that models a combination of advective and diffusive processes. Unlike our VAR

benchmarks, which are discrete linear models with random initializations, Burg-

ers’ equation presents continuous non-linear dynamics that allow us to evaluate

CaStLe’s ability to recover spatial propagation patterns under controlled condi-

tions. Our analysis demonstrates that CaStLe successfully identifies the underlying

advection angle across a range of diffusion conditions, further supporting its ap-

plicability to complex space-time systems. This non-linear validation’s complete

methodology and results are presented in D.

7.9 Discussion

We have introduced CaStLe, a novel causal discovery meta-algorithm tailored for

analyzing grid-level space-time data sets arising in Earth science. CaStLe can be

directly applied to grid-level data and does not require pre-processing and spa-

tial dimension reduction, allowing it to capture dynamics in the natural domain

of the data rather than a derived (PCA-type) space. This distinction is crucial be-
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cause global-scale phenomena across many complex systems—whether climate

teleconnections, ecological patterns, or fluid dynamics—emerge from networks of

local causal interactions that are often lost in dimensionality reduction approaches.

While demonstrated with Earth science case studies, CaStLe is fundamentally

domain-agnostic, applicable to any space-time system governed by local physical

interactions, from fluid dynamics and heat transfer to biological pattern formation.

CaStLe can overcome the limitations of existing causal discovery approaches

in Earth science’s space-time data, filling a significant gap. By leveraging realis-

tic assumptions of locality and homogeneity, CaStLe creates “spatial replicates”

to substitute large observational domains for lengthy time series. This process

transforms the spatial causal discovery problem from the high-dimensional (many

variables, few observations) to the low-dimensional (few variables, many obser-

vations) regime, allowing accurate and efficient discovery of underlying causal

dynamics. A key aspect of CaStLe is the causal stencil graph, a simplified rep-

resentation of the local dynamics driving larger global behaviors. This notion of

a stencil is particularly well-suited for systems able to be modeled by PDEs, as

PDE-type dynamics inherently enforce both locality and homogeneity, as well as

the sufficiency assumptions necessary for causal discovery to be truly causal.

We used these insights to identify the space-time evolution of volcanic aerosols

that erupted from Mount Pinatubo in the HSW-V and E3SMv2-SPA models. We

found that CaStLe found the expected path of advection in both models and more

nuanced dynamics, including northward and southward dispersion, in E3SMv2-
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SPA. We showed that CaStLe outperforms its peers in the causal discovery of

synthetic benchmarks generated by vector autoregressive structural causal mod-

els. Additionally, as detailed in D, we found that CaStLe could accurately identify

the advection angle in our Burgers’ equation benchmark, demonstrating that it can

filter out the “noise” of diffusion.

Our brief theoretical analysis of CaStLe in Section 7.6.4 and in B, demonstrates

two regimes of consistent estimation for CaStLe, i.e., CaStLe recovers the true

causal dynamics: long time series (T → ∞) or large grid sizes (N → ∞). This

starkly contrasts existing approaches, whose performance rapidly deteriorates as

N → ∞. Several other important theoretical questions remain open, including the

optimal relationship between sampling rates and grid resolution, behavior under

mild violation of the key assumptions, and the correct target of inference for sys-

tems without clear advective dynamics (e.g., the chemical evolution of atmospheric

aerosols).

We have focused on space-time data observed on regular 2D grids, but we be-

lieve that this assumption can be relaxed to adapt CaStLe for a broader range of

observational structures. CaStLe can also be adapted to multivariate space-time

data (more than one observation at each point) by including more comeasured

variables in CaStLe’s transformation of the region to the reduced coordinate space,

enabling causal discovery of the space-time interactions of multiple species on the

grid-level, which is a particularly exciting avenue of future research and applica-

tion to Earth system dynamics. Developing data-driven methods for evaluating
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block sizes based on output robustness will enable more automatic application

of CaStLe, requiring less subject matter expertise. Finally, causal representation

learning is a nascent field combining the estimation power of machine learning

with the strength of inference of causal discovery. Applying these techniques in

CaStLe’s parent-identification phase or for discovering spatial embeddings for re-

gional block analysis is an exciting potential direction for future work.

Because our assumptions are readily satisfied by many physical systems, CaS-

tLe can be applied quite broadly in the physical sciences. It may find value in any

space-time system in which quantities at every point in space impact their adjacent

spatial neighbors. In the Earth system, it may be of particular interest for study-

ing forest fires, ocean dynamics, salt/fresh water incursions, and coastal erosion,

for example. For atmospheric rivers, CaStLe could identify pathways of moisture

transport and evolution; for wildfire spread, it could reveal causal relationships

between local weather conditions and fire behavior; for drought propagation, it

could track how soil moisture deficits spread across regions. CaStLe’s preservation

of local causal structures while efficiently handling high-dimensional data offers

advantages over approaches requiring dimension reduction. For datasets where

the temporal sampling is too coarse relative to the spatial resolution, extending

to a radius-2 neighborhood might be appropriate while still maintaining our core

assumption of locality. This extension would preserve the fundamental CaStLe

methodology—only the dimensionality of the reduced coordinate space would in-

crease. Additionally, CaStLe provides a promising framework for Earth system
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model evaluation (Nowack et al., 2020a; Nichol et al., 2021), potentially identify-

ing where models produce correct outcomes through incorrect causal mechanisms.

While climate science typically studies large, long-term phenomena, the com-

munity increasingly recognizes the importance of understanding multi-scale inter-

actions (Diffenbaugh et al., 2005; Palu, 2019; Agarwal et al., 2019; Zhang et al.,

2022). Teleconnections present an exciting challenge for future applications of

CaStLe. These statistical dependencies between distant regions appear to violate

locality but physically result from countless local interactions that are often un-

observed or unmodeled. A two-stage methodology could be effective for tackling

this challenge. First, apply CaStLe to discover local causal stencils, and then apply

a complementary causal discovery technique to connect the discovered local pro-

cesses across scales. This approach could bridge the gap between local and global

causal discovery in climate science.

Complex space-time systems present apex challenges for causal discovery, com-

bining chaotic dynamics, high dimensionality, noisy observational records, and

complex underlying physical processes. CaStLe represents the first successful

application of causal graph discovery to learn grid-cell-level causal structures in

Earth systems. By preserving local causal structures while efficiently handling

high-dimensional data, CaStLe presents a path toward connecting micro-scale in-

teractions with macro-scale phenomena, potentially offering new insights into how

global patterns emerge from local causal mechanisms. There are rich future re-

search directions, including multivariate analysis and automated block size selec-
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tion. The feasible discovery of local causal stencils presents an exciting new fron-

tier for causal discovery of space-time data, particularly in the Earth sciences.
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Figure 7.3: Application of CaStLe-PC-Stable to HSW-V simulation of the 1991 Mt. Pinatubo erup-
tion. The stencils estimated by CaStLe (white) capture the underlying high-altitude wind fields
(green) using only satellite-measured AOD, with near perfect accuracy in high aerosol regions
(red-orange). Autodependencies are shown with black nodes where grid cells cause themselves,
and gray nodes where there is no autodependence. All links represent a six hour time lag, the time
resolution of the HSW-V dataset. On longer horizons (bottom row), CaStLe is able to recover equa-
torial wind currents as far away as South America, half-way around the world from Mt. Pinatubo
(white triangle). CaStLe accurately identifies the prevailing westerly atmospheric winds because it
was able to identify the space-time dependence between neighboring grid cells. Additional details
are given in Section 7.7.
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(a) PC algorithm results (b) CaStLe results

Figure 7.4: Causal maps inferred from the PC algorithm applied naively to all grid cells and
CaStLe’s equivalent results immediately to the west of Mt. Pinatubo; a 35× 35 grid between
−20.00◦ to 50.00◦N and 55.00◦ to 125.00◦E in a 8.5 day span after the eruption. All links repre-
sent a six hour time lag, the time resolution of the HSW-V dataset. As expected, PC struggled with
the high dimensionality and the discovered dependencies do not conform to the ground-truth un-
derstanding that aerosols advected towards the west. It also fails to identify local dynamics, instead
drawing most connections over great distances. The PC analysis was computed in 729 minutes on
1,600 grid cells, while the CaStLe analysis was computed in 0.46 seconds.
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Figure 7.5: Application of CaStLe-PC-Stable to E3SMv2-SPA simulation of the 1991 Mt. Pinatubo
eruption. The stencils estimated by CaStLe (white) capture the underlying high-altitude wind fields
(green) using only total aerosol optical depth (AOD). Autodependencies are shown with black
nodes where grid cells cause themselves, and gray nodes where there is no autodependence. All
links represent a one day time lag, the time resolution of the E3SMv2-SPA dataset. The heatmap
depicts AOD from any source at 50 hPa. The top panel depicts learning from the first 20 days
after eruption, which began on day 15. The bottom panel depicts learning approx 6 months af-
ter the eruption over a 20-day time period. In the more challenging setting of the fully-coupled
E3SMv2-SPA model, our results in the first weeks are still generally consistent with those in HSW-
V presented in Section 7.7.1, showing that CaStLe is largely robust to greater complexity. In the
bottom panel, the aerosols and winds are in a different regime. CaStLe stencils are still consistent
in the tropics and now begin to recover dynamics pushing aerosols northwards above central Asia
and southwards through western North America. A more complex model and smaller block sizes
illustrate more nuanced dynamics, and there is more to learn from these, however, we leave deeper
atmospheric dynamics analysis to future work.
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Figure 7.6: Comparison of CaStLed and non-CaStLed causal discovery approaches on linear-
Gaussian dynamics, including Granger causality or FullCI (orange), PC (green), PCMCI (red),
and DYNOTEARS (purple), as well as a statistical model of the data generating process (blue)
presented with both MCC and F1 metrics. In the low-sample size regime (T=10, left) CaStLed
approaches can accurately recover the underlying causal graph, with performance increasing on
larger grid sizes (solid lines); by contrast, non-CaStLed approaches are unable to perform better
than mere chance (dashed lines). Even a model based on the underlying data generating process
(Sparse VAR, blue) is significantly outperformed by its CaStLed counterpart. In the high-sample
size regime (T=150, right), non-CaStLe approaches have improved performance but still compare
unfavorably with their CaStLed counterparts.
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Table 1: Capabilities of CaStLe for Earth science applications. This table summarizes the key
methodological advantages of CaStLe and their relevance to specific Earth science phenomena,
highlighting applications where grid-level causal discovery enables analyses that were previously
infeasible with prior causal discovery approaches.

Capability Description Relevant Applications

Local mechanism
discovery

Global phenomena emerge
from local causal
interactions. Previous
approaches use
dimensionality reduction,
losing this local informa-
tion.

Volcanic plume transport (Sjolte
et al., 2021), wildfire propaga-
tion & plume transport (Bara-
nowski et al., 2021), atmo-
spheric rivers (Payne et al.,
2020; Baño-Medina et al., 2025;
Higgins et al., 2025)

Transient,
non-periodic
phenomena

CaStLe effectively identi-
fies grid-level causal path-
ways.

Volcanic eruptions, heat waves
(Keellings and Moradkhani,
2020), wildfires (Driscoll et al.,
2024)

High-
dimensional
data settings

CaStLe leverages spatial
replicates to make high-
dimensional problems
tractable.

Gridded Earth science data from:
regional climate modeling, satel-
lite observation analysis, climate
reanalysis products (Ali et al.,
2024, Table 3)

Earth system
model evaluation
and comparison

CaStLe enables
comparison of causal
mechanisms between
models and observations
at the grid level, poten-
tially
identifying where models
produce correct outcomes
through incorrect causal
mechanisms.

Grid-level causal model evalua-
tion that identifies local mecha-
nism differences between mod-
els and observations, extending
beyond previous approaches that
were limited to regional-scale
analysis (Nowack et al., 2020a;
Nichol et al., 2021)
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A Understanding Assumptions

In this section, we outline the key assumptions underpinning the CaStLe frame-

work and their relationship to causal discovery assumptions.

A.1 CaStLe Assumptions

CaStLe operates via two complementary sets of assumptions:

1. CaStLe Framework Assumptions (T1, S1, T2, S2): These enable efficient

use of spatiotemporal data by leveraging locality and stationarity to transform

a high-dimensional problem into a tractable one.

2. Causal Discovery Assumptions: The causal discovery algorithm used within

CaStLe’s Parent Identification Phase requires its own set of assumptions -

typically the Causal Markov Condition, Faithfulness, and Causal Sufficiency.

While these assumption sets are conceptually distinct and serve different pur-

poses, they work together to enable scalable causal discovery in high-dimensional

space-time systems.

In review, our framework introduces four key assumptions to capture a “PDE-

like” system XXX t , creating an environment where local space-time dynamics can be

efficiently learned:

T1) Temporal Locality: restricts causal influence the most recent past state, one

time lag, aligning with how PDEs are discretized.
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T2) Temporal Causal Stationarity: ensures consistent causal structure over time.

S1) Spatial Locality: limits causal influence to immediate spatial neighbors.

S2) Spatial Causal Stationarity: ensures consistent causal structure across space.

These assumptions enable CaStLe to leverage “spatial replicates”—treating each

local neighborhood as providing information about the same underlying causal

process. This transforms what would be a high-dimensional, data-sparse problem

(many variables, few observations) into a data-rich problem (few variables, many

observations).

A.2 Causal Discovery Assumptions

Separately, the causal discovery algorithm used within CaStLe’s PIP require its

own assumptions. The three foundational assumptions of causal discovery are

detailed in Runge (2018a) and in Spirtes et al. (1993, Ch. 3):

• Causal Markov condition: for XXX = {X1,X2, . . . ,Xn}, each variable Xi is con-

ditionally independent of its non-effects given its direct causes P(Xi):

Xi ⊥⊥ XXX \P(Xi) |P(Xi)

– A variable is conditionally independent of its non-effects given its direct

causes.

• Faithfulness: if Xi and X j are statistically dependent, then there exists a direct
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causal link or a common cause:

Xi ̸⊥⊥ X j =⇒ ∃ a direct cause or common cause of Xi and X j

Conversely, if Xi and X j are conditionally independent given their parents

P(Xi) and P(X j):

Xi ⊥⊥ X j |P(Xi),P(X j) =⇒ no direct causal link between Xi and X j

– All conditional independencies in the data arise from the causal structure

(no accidental cancellations).

• Causal sufficiency: all common causes of observed variables are also ob-

served.

A.3 Relationship Between Assumption Sets

While CaStLe assumptions (T1-S2) and causal discovery assumptions serve dif-

ferent purposes, there are important interactions between them:

• CaStLe assumptions create an environment where causal discovery becomes

tractable in some high-dimensional gridded settings.

• CaStLe assumptions do not guarantee causal discovery assumptions will be

satisfied.

• For example, even in perfectly stationary systems (T2, S2 satisfied), faithful-

ness can be violated through counteracting mechanisms, as demonstrated in
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Runge (2018a).

• Similarly, the Causal Markov Condition is a property of the joint distribution

that cannot be derived from locality assumptions.

Instead of replacing causal discovery assumptions, CaStLe’s assumptions cre-

ate a context where causal discovery methods can be applied efficiently to high-

dimensional space-time data.

CaStLe’s Implementation and Causal Sufficiency

One meaningful connection exists between CaStLe’s implementation and causal

discovery assumptions: When CaStLe focuses on identifying only the parents of

the center cell while including all potential spatial neighbors (per assumption S1),

causal sufficiency is automatically satisfied for that specific node by construction -

assuming S1 holds true.

This is a significant benefit, as causal sufficiency is typically the most difficult

assumption to guarantee in practice (Spirtes et al., 1993; Raghu et al., 2018). While

CaStLe cannot guarantee faithfulness or the Markov condition holds, its design

cleverly leverages spatial structure to address causal sufficiency within each local

analysis.

A.4 Potential Violations and Their Manifestations

Violations of CaStLe’s assumptions can occur in various ways, leading to different

manifestations in the causal discovery process. Violations of CaStLe’s assump-
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tions can affect results in different ways:

1. Violations of Temporal/Spatial Locality (T1, S1): If causal effects extend

beyond immediate neighbors, CaStLe will miss these connections, creating

false negatives.

2. Violations of Stationarity (T2, S2): If dynamics change across space or time,

CaStLe’s stencil will represent only an average pattern, potentially creating

both false positives and negatives.

3. Even with CaStLe assumptions holding, traditional faithfulness violations can

occur through cancellation effects or deterministic relationships.

Below, we provide examples of how these assumptions can be violated and their

potential impacts, drawing on the discussion by Runge (2018a).

Temporal and Spatial Locality (T1, S1)

• General Violation: These assumptions can be violated by any process that

introduces dependencies beyond immediate temporal or spatial neighbors.

• Example – Time Aggregation: Time aggregation can violate temporal local-

ity by introducing dependencies across multiple time steps. Runge (2018a)

discusses how time aggregation can cause such violations (Section IV.B, Ex-

ample 4). Figure 5 in Runge (2018a) illustrates the impact of time aggregation

on causal inference.
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• Example - Spatial Aggregation: Similarly, spatial aggregation can violate

spatial locality by introducing dependencies across non-neighboring spatial

units.

Temporal and Spatial Causal Stationarity (T2, S2)

• General Violation: These assumptions can be violated by any process that

introduces changes in the causal relationships over time or space.

• Example – Counteracting Mechanisms: Counteracting mechanisms or het-

erogeneous processes can violate these stationarity assumptions. If the data

contains opposing generating processes (e.g., different hemispheres in cli-

mate data), the faithfulness assumption may be violated. This results in un-

stable and inconsistent causal relationships. Runge (2018a) discusses such

violations in Section IV.C, Example 5, and provides an illustration in Figure

6.

Understanding potential violations and their manifestations is crucial for apply-

ing our framework effectively in realistic scenarios. Section 7.6.6 outlines practical

strategies to mitigate these violations.

B Statistical and Time Complexity

In this section, we elaborate on Section 7.6.4 and provide a more detailed discus-

sion of the time-complexity (Appendix B.1) and statistical (Appendix B.2) proper-

ties of CaStLe. Additionally, we provide analyses giving conditions under which
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CaStLe is (asymptotically) guaranteed to recover the true causal graph, indepen-

dent of the specific PIP used.

B.1 Time Complexity

Steps A, B, and D of CaStLe consist primarily of copying and rearranging of data,

so we focus our analysis on the complexity of Step C, which dominates the run-

time of CaStLe. Because CaStLe can use a variety of PIPs within Step C, we begin

with a general analysis of the worst-case time complexity of causal discovery algo-

rithms. Throughout, recall that a runtime complexity O( f (n)) implies there exists

a fixed constant C ≥ 0 such that that the algorithm terminates in at most C f (n)

steps for any input of size n.

Kalisch and Bühlmann (2007) and Runge (2018a) discuss the time complex-

ity of causal discovery, particularly the PC algorithm. Much of constraint-based

causal discovery is descendant of PC, and it represents a valuable baseline for com-

paring the computational complexity of CaStLe and prior work. Causal discovery

is largely bounded by how long it requires to determine independence between

nodes (bounded by samples and size of conditioning sets of nodes) and how many

times it needs to do so (generally bounded by the number of nodes). Runge (2018a)

cite the time complexity of a single conditional independence test using ordinary

least squares (linear partial correlation), while Kalisch and Bühlmann (2007) ex-

plore bounds on the number of tests in PC. Our analysis is consistent with theirs,

which we derive from first principles.

227



Consider causal discovery in p-dimensions (p measured variables) with n sam-

ples; suppose further that it is known, a priori, that any node in the causal graph

has at most degree q: that is, no element has more than q causal parents. An

exhaustive search for the causal parents of a single node will require evaluating

∑q
i=0
(p

i

)
= O(2p) possible sets of parents; repeating this process for all p nodes

evaluation of up to O(p2p) possible causal graphs. If we construct graphs using

statistical tests for linear partial (conditional) correlation, each test can be per-

formed in O(n p min{n, p}) = O(np2) time (the time required to fit an OLS re-

gression to n observations and p variables using a direct method such as an SVD

or QR factorization), yielding an overall runtime of

O(np2 ∗ p2p) = O(np32p).

This analysis is quite loose, and as Runge (2018a) notes, the complexity of a sin-

gle linear conditional independence test can be reduced to O(np2q2) when efficient

algorithms are used. Far stronger guarantees can be provided for specific causal

discovery algorithms that more efficiently search the space of possible graphs. Re-

gardless, even this rough analysis will be sufficient to demonstrate the algorithmic

improvements attained by CaStLe.

We now consider the specific context of causal discovery from gridded time

series data. Here, we have n = T total observations and have p = N2 features of

our data. Direct application of causal discovery to this data gives a worst-case
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complexity of

O(np32p) = O(T (N2)32N2
) = O(T N62N2

),

so the complexity of standard causal discovery methods grows super-exponentially

with the size of the grid. For the purposes of direct comparison to CaStLe, where

p = N2, we assume PC’s τmax = 1. By contrast, the reduced space where CaStLe’s

PIP operates has T (N−2)2 observations and only p = 9 features, yielding a poly-

nomial worst-case runtime of

O(np32p) = O(T (N−2)2 ∗93 ∗29) = O(T N2).

Even for grids of relatively modest size, this improvement can be significant:

consider a small 30×30 grid; at 1◦ resolution, this covers approximately 1.5% of

the globe. Unstructured causal discovery methods need to consider approximately

306 ∗230 possible graphs, while CaStLe needs to evaluate only 93 ∗29 = 373,248

graphs, representing an improvement of approximately 2× 1012-fold. Specific

PIPs may provide less dramatic improvements, but it is clear that CaStLe can be

expected to be millions-if not billions-of times more efficient than existing ap-

proaches.

Note that in our application scenarios, CaStLe is always applied to a square

N×N grid. However, more generally we can consider p grid cells. Traditional

causal discovery will be bounded by

O(T p32p),
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while CaStLe will be bounded by

O(T p).

Thus, if grid cells scale linearly, CaStLe scales linearly in both samples and grid

cells.

B.2 Statistical Consistency

Statistically, we see that CaStLe can achieve significantly improved estimation

performance compared to a full graph inference approach. Rather than give a

general analysis, we rely on the prior work of Kalisch and Bühlmann (2007) to

compare CaStLe-PC with the standard PC algorithm. Using the same definitions

of n, p,q as in our previous analysis, Kalisch and Bühlmann (2007, Appendix B)

show that the probability of the PC algorithm incorrectly estimating the causal

graph incorrectly is bounded above by

P[Ĝ ̸= G ] = O
(

pq+2(n−q)e−c(n−q)
)
.

In our setting, this gives an error probability of

O
(

pq+2(n−q)e−c(n−q)
)
=O

(
(N2)N2+2(T −N2)e−c(T−N2)

)
=O

(
N2N2

ecN2 ∗Te−cT
)

for PC applied in the original data space. It is clear that this quantity grows rapidly

in N, consistent with the intuition that causal discovery algorithms struggle when
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applied to larger spatial domains. By contrast, this analysis implies that the error

probability of CaStLe-PC scales as

O
(

pq+2(n−q)e−c(n−q)
)
=O

(
99+2(T (N−2)2−9)e−c(T (N−2)2−9)

)
=O

(
T N2

eT N2

)

Quite surprisingly, this decreases with the graph size (N), implying that CaStLe

actually achieves better performance when applied to larger spatial domains. We

demonstrate the remarkable practical effect of this scaling in Section 7.8.1. Similar

improvements can be shown for any base causal discovery algorithm (and associ-

ated PIP) for which precise estimates of statistical convergence rates are available.

C Asymptotic Consistency

We examine the asymptotic consistency of CaStLe, with a particular focus on the

Parent Identification Phase (PIP). Asymptotic consistency is a fundamental prop-

erty that ensures the accuracy of causal graph estimates as the number of obser-

vations increases. We begin by establishing the technical assumptions necessary

for our analysis, specifically those related to the p-values generated by the PIP

for edge existence. These assumptions are critical for maintaining control over

both false positive and false negative rates, thereby ensuring the reliability of our

causal inferences. The central theorem we present demonstrates that, under these

conditions, CaStLe achieves asymptotic consistency as the number of nodes ap-

proaches infinity. In the case of Bayesian score optimization causal discovery,
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such as DYNOTEARS, Bayesian posterior probabilities can be used in lieu of p-

values with suitable minor modifications to the combination procedure. The proof

is structured into three parts, addressing the independence of observations, the ap-

plication of Fisher’s method for combining p-values, and the implications of using

overlapping regions. Through this analysis, we aim to reinforce the validity of

our algorithm and its effectiveness in uncovering causal relationships in gridded

space-time data structures.

Technical Assumption (P1):

• The Parent Identification Phase, PIP(·), produces p-values for edge existence,

which satisfy the following:

– For every non-edge (i, j) ( j /∈P(i)), P(p(i, j)PIP ≤ u) = u for all u ∈ [0,1];

that is p(i, j)PIP ∼U ([0,1]) is uniformly distributed.

– For every edge (i, j) ( j /∈P(i)) and every T > T0, there exists πT
(i, j)(u)>

0 such that P(p(i, j)PIP ≤ u)≤max{0,u−πT
(i, j)(u)}< u for all u ∈ [0,1].

Taken together, these require that the PIP(·) control the false positive rate at

the nominal significance level used and that the false negative rate is less than

the false positive rate.

Here, T0 is a minor technical assumption to allow the PIP to have non-trivial

accuracy: we use it to exclude trivial cases like T = 1, in which no time series

causal discovery mechanism can be accurate.

Additionally, note that we typically assume that the PIP(·) is asymptotically
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consistent, so that πT
(i, j)(u) is bounded above 0 for all u as T → ∞. This can be

used to prove T -asymptotic consistency of CaStLe, but in this section we aim only

to prove N-asymptotic consistency.

Theorem: Suppose D is an RT×N×N realization of a data-generating process

satisfying T1-S2. Suppose also that PIP(·) is a parent-identification-phase satisfy-

ing P1. Then, there exists a T0 such that for any T ≥ T0, CaStLe is asymptotically

consistent as N → ∞; that is, the causal graph estimated by CaStLe converges to

the true causal graph generating D with probability 1.

Proof. This proof proceeds in three parts:

• First, we argue that, for large N, well-separated (non-overlapping) spatial re-

gions can be considered IID realizations.

• Next, we argue that the application of Fisher’s method leads to asymptotic

consistency of CaStLe.

• Finally, we argue that “infill” of the overlapping regions does not invalidate

the asymptotic consistency.

At a high level, we argue that, because it is T -asymptotically consistent, there

exists some T0 where the PIP has non-trivial power. We then apply standard sta-

tistical methods for combining several weak p-values to obtain a global strong

p-value. The technical bookkeeping of our argument serves primarily to deal with

the fact that we use overlapping spatial regions and cannot assume independence of
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the individual p-values; we overcome this by selecting regions that are sufficiently

spatially separated to be statistically independent on the time scale considered.

Without loss of generality, we focus on asymptotically consistent estimation of

a single edge, say (East,Center). Extension to all 9 stencil edges follows immedi-

ately by a standard union bound argument.

Part I: For analytical simplicity, we divide the spatial region into square regions

of size (5+ 2T )× (5+ 2T ). On a grid of size N×N, there are BN,T = ⌊N/(5+

2T )⌋ such regions. We apply the PIP(·) to the center 3× 3 region of each region

separately, obtaining BN,T p-values for the existence of the edge. Because these

central regions are separated by (at least) 2T +2 grid cells and causal effects exist

at a distance of at most 2T under our data generating model, these p-values can be

treated as statistically independent. (This is essentially the same argument used by

Goerg and Shalizi (2013), though their application is quite different.)

Part II: Given BN,T independent p-values, we then apply Fisher’s method for

combining p-values. Specifically, given a set of p-values for edge non-existence,

Fisher’s method controls the familywise error-rate, rejecting the global null (no

edges anywhere). By our assumption of spatial homogeneity, if an edge exists in

at least one region, it must exist everywhere, so Fisher’s method precisely tests for

edge existence in the stencil.

Recall that Fisher’s method constructs a test statistic T = −2∑B
b=1 log pb and

tests it against a null χ2
B distribution. We consider two cases:

1. If the edge does not exist, each p-value is U ([0,1]) by construction and the
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test statistic T follows its null distribution. So long as the global significance

level used for Fisher’s test αFisher is converging to 0 as N → ∞, we have

asymptotic consistency for edge absence.

2. If the edge does exist, each p-value is less than α with probability (1+c)α for

some c strictly positive. We then have that T has a non-central χ2 distribution,

which is asymptotically distinguishable from a (central) χ2 at all significance

levels as N ∝ B→ ∞.

Taken together, these guarantee the the output of Fisher’s method is asymptoti-

cally consistent for both edge presence and edge absence.

Part III: In practice, we apply CaStLe not to disjoint regions but to overlapping

regions. As discussed elsewhere, the region-discretization strategy and the use of

Fisher’s method are such that this does not cause “cross-contamination” or invalid

tests of edge existence. We note here that this strategy also does not invalidate

asymptotic consistency of CaStLe. Specifically, we note that, with overlapping

regions, the p-values used in Fisher’s method may no longer be assumed indepen-

dent.

In this case, however, this is not an issue as they exhibit positive dependence

(as they are taken from overlapping data). As such, the true degrees of freedom of

T under the null are less than the nominal degrees of freedom; this leads Fisher’s

method to be (if anything) overly conservative in finite samples. Hence, for the

case of edge absence, the nominal significance level is understated and we retain

consistency as long as we take αFisher
N→∞−−−→ 0; for the case of edge presence, it
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suffices to note that the true sampling distribution is still asymptotically distin-

guishable from the null (since each individual p-value is powerful), so we retain

consistency.

We note that Fisher’s method may not be the optimal method for combining

p-values. In particular, Holm’s method allows for arbitrary dependence of the p-

values, likely yielding better performance at finite N, but we do not pursue this

approach here as the implementation and theoretical analysis are somewhat more

difficult. As with Fisher’s method, Holm’s method controls the error rate of the

global null which, under our assumptions of causal stationarity, is precisely the

correct null for accurate stencil estimation.

Additionally, we note that the p-values produced by the PIP under the null do

not need to precisely satisfy a uniform distribution; conservative p-values decrease

the value of Fisher’s statistic T , thereby lowering the rate of false positives.

Remark: If PIP(·) is strongly asymptotically consistent as T → ∞, it must

satisfy assumption P1.

Proof. We argue by contradiction. Suppose that PIP(·) were not asymptotically

consistent and that the false positive rates and false negative rates of the PIP were

equal (or worse, the false negative rate was greater than the false positive rate).

Specifically, assume that there exists a true edge (i, j) and some π− > 0 such that

P(p(i, j)PIP ≤ u) > π−+u for all T and all u. For the PIP to guarantee no false posi-

tives, we must take α → 0 as T → ∞. But this would imply that there remains an

asymptotic π− probability of a false negative (P(p(i, j)PIP ≤ α) > α +πi ≥ π− > 0),
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contradicting our assumption of asymptotic consistency.

D Application to Non-Linear Dynamics: Continuous Systems

via Burgers’ Equation

This appendix extends our validation of CaStLe to non-linear dynamical systems

through application to Burgers’ equation, demonstrating the method’s effective-

ness beyond the linear systems discussed in the main text.

Having established the strong performance of CaStLe on discrete models of lin-

ear dynamics, we turn to a far more challenging domain: continuous models with

non-linear PDEs. Specifically, motivated by our interest in turbulent atmospheric

dynamics, we consider Burgers’ equation, a PDE used to model a combination of

advective (directed flow) and diffusive processes (Burgers, 1948). While initially

developed to model fluid flows, Burgers’ equation has been successfully applied

to a variety of fields, such as turbulence, non-linear wave propagation, traffic flow,

cosmology, gas dynamics, and more (Bonkile et al., 2018). In the following exper-

iments, we again implemented CaStLe’s PIP with the PC-Stable-Single algorithm.

We note that the interaction of PDE dynamics with causal language is rather

subtle: while PDEs are imbued with a “forward” direction in time, the actual nu-

merical methods used to solve them include “forward” and “backward” steps in the

underlying integrators as well as sophisticated interpolation schemes. Our focus

here is not on finding a causal model for the PDE solution per se, but on identifying
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the structure of the underlying advection. This choice is motivated in part by the

results of Rubenstein et al. (2018), who explored the related problem of identify-

ing causal models from deterministic ordinary differential equations (ODEs). As

they note, there is not generally a single causal graph corresponding to an ODE,

with different models being appropriate at equilibrium or under various interven-

tions. Given the additional complexity of PDEs, we believe that identifying the

underlying advection angle provides the most meaningful causal representation of

Burgers-type dynamics, particularly as it relates to our volcanic eruption aerosol

case study.

D.1 Burgers’ Equation: Model and Parameters

In two dimensions, Burgers’ equation can be written as:

∂u
∂ t

+u
(

α
∂u
∂x

+β
∂u
∂y

)

︸ ︷︷ ︸
Advective Dynamics

= c
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)

︸ ︷︷ ︸
Diffusive Dynamics

+ f (2)

where α,β are the advection coefficients in the x,y directions, capturing directed

flow dynamics; c is the diffusion coefficient; and f is a forcing term representing

additional mass being injected into the system. In order to create a closed system

with no exogenous forcings, we take f = 0 uniformly throughout this section.

The left panel of Figure D1 shows three different solutions to Burgers’ equation

at different advection angles (θ ), advection strength (M =
√

α2 +β 2), and diffu-

sivities (c), each with the same initial conditions. Examining the time evolution of
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these solutions (left to right), we see that the high-advection low-diffusion systems

(top) exhibit a clear direction of flow, while it is far more difficult to find direction

in low-advection high-diffusion systems (bottom). We take inferring the angle of

advection as our principal task: given an observed solution u to Equation (2), can

we determine the angle of the underlying advective dynamics?

D.2 Advection Angle Estimation

Given a CaStLe-estimated stencil, we infer the angle of underlying advection in

the following manner: i) identify each potential parent edge of C with a vector,

taking the angle of the underlying edge in the reduced space as direction and the

(signed) strength of the underlying relationship as magnitude; ii) sum these vectors

to obtain an aggregate estimate of the advective dynamics; iii) take the angle of the

vector sum as an estimate of the underlying advection angle. In pseudo-code, we

can write this as

θ̂ = atan2

(
∑

l∈P(C)
el sinθl, ∑

l∈P(C)
el cosθl

)
.

Here atan2 is the signed arctangent function, P(C) = {NW,N, . . . ,W} represents all

potential parents the center cell, el represents the strength of that edge (0 for non-

present edges), and θl represents the angle of that edge (135◦,90◦, . . . ,180◦). This

process allows us to estimate all angles instead of just the eight angles present in

the stencil structure.
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D.3 Experimental Setup

In order to assess the effectiveness of CaStLe-PC in a variety of regimes, we gen-

erate (approximate) solutions to Equation (2) with 500 angles sampled uniformly

from [0◦,360◦), advection magnitudes varying from 1 to 10 and diffusion coeffi-

cients from 0.05 to 0.5. The diffusion-free (“noiseless”) case of c = 0 is numeri-

cally unstable. To compute the simulated Burgers’ dynamics, we use MATLAB’s

default PDE solver (pdesolve) on a circular mesh of radius 3 and 100 time steps

equally spaced between t = 0 and t = 1. Then we interpolated the finite-element

solution onto a grid of size 25× 25, covering the square [−1,1]2, yielding spatial

points that are approximately 0.1 units apart. We restrict our solution to avoid any

boundary conditions. Finally, we apply CaStLe-PC and the aforementioned advec-

tion angle estimation method, and compare the estimated angle to the true angle.

We demonstrate three realizations of this process in the left-hand panel of Figure

D1.

Angle Estimation Results

Our results appear in the right panel of Figure D1, where we plot the difference in

the true and estimated angle, taking care to account for the “wrapping” behavior

of angle-valued data. We see that stronger advection (higher SNR) consistently

leads to improved estimation (downward trend within each group), with estimated

angles consistently within 10◦ for advection magnitude 5 or greater. Comparing

across different levels of the diffusion coefficient c, we note that higher c increases
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Figure D1: Application of CaStLe-PC to advection estimation from non-linear PDE dynamics.
In the left panel, the first three columns depict realizations of Burgers’ equation under different
advection-to-diffusion regimes; the fourth column depicts the causal stencil identified by CaStLe-
PC; and the final column compares the estimated advection angle with the true advection angle.
The right panel depicts the accuracy of CaStLe-PC under various signal-to-noise conditions. Each
combination of advection and diffusion rates were tested with 500 angles sampled uniformly from
[0◦,360◦). In low-diffusion (high SNR) scenarios, CaStLe-PC can identify the underlying ad-
vection clearly (top row of left panel and yellow-green columns in right panel). By contrast, in
low-advection (low SNR) scenarios, CaStLe-PC struggles to accurately identify the underlying ad-
vective dynamics (bottom row of left panel and blue bars in right panel). Even in highly diffusive
scenarios, CaStLe-PC is able to accurately estimate the underlying advection when it is sufficiently
strong (around M/c≥ 20) as shown in the middle row of the left panel. Additional details are given
in D.

the angle estimation error, as we would expect in the higher-noise regimes. For low

advection magnitude and c ≥ 0.3, we see an average error approaching the “pure

guessing” value of 90◦. Even at high diffusion levels (c= 0.5), moderate advection

magnitudes of 5-6 are sufficient to ensure accurate estimation. From these, we see

that CaStLe-PC is able to consistently recover advection structure across a wide

range of SNR regimes. As demonstrated in F, traditional dimension reduction ap-

proaches such as PCA and PCA-varimax, when combined with standard causal

discovery methods, fail to accurately capture the advection dynamics in Burgers’

equation, particularly in identifying the correct advection angle. This highlights
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CaStLe’s unique ability to preserve and extract meaningful causal structures from

nonlinear PDE systems that would otherwise be lost through dimensionality re-

duction.

The takeaway from these results is that CaStLe can not only generalize to con-

tinuous, non-linear models of advection and diffusion, but it can successfully infer

the direction of causality in any advective-diffusive system, given that the diffu-

sion is not so large as to dominate advection. Further, each simulation has only

one signal surrounded by large areas without data or causal information. Despite

this sparsity and the presence of regions where diffusive information flow might

suggest incorrect advection angles, CaStLe successfully identifies the correct ad-

vection angle when analyzing the full space. CaStLe is asked to learn from the

full space, but successfully hones in on the correct advection angle. With these

results, we believe CaStLe can be applied to a broad range of space-time systems

with advective-diffusive properties to better understand their dynamics.

E Proposed Modification of Statistical Methods for CaStLed

Data

While essentially any consistent PIP may be used in Step C, we anticipate that most

PIPs will be derived from already existing causal discovery algorithms. Often,

these algorithms are statistical in nature and it may be inappropriate to apply them

directly to X̃XX due to the seams connecting each time chunk. For a statistical method,

which computes a p-value for each potential edge (smaller p-values leading to
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present edges), we suggest the following chunk testing modification:

1. For each chunk b ∈ {1, . . . ,(N−1)2}, let pb be the p-value resulting from the

PIP applied to that chunk.

2. Compute T =−2∑b ln pb

3. Let pagg = 1− χ2
2(N−1)2(T ) where χ2

k (x) is the cumulative distribution func-

tion (CDF) of a χ2 random variable with k degrees of freedom evaluate at x.

4. If pagg < p∗, identify a parent.

This method adapts Fisher’s classical method for combining independent p-values

to our setting. In practice, however, we have found that for sufficiently large T ,

this chunking is unnecessary as the proportion of seams in X̃XX goes to zero, and the

PIP identifies the correct causal structure despite the small fraction of points of

misspecification (1/T ).

F Limitations of Dimensionality Reduction for Space-Time Causal

Discovery

We demonstrate the limitations of dimensionality reduction approaches such as

PCA and PCA-varimax when applied to space-time causal discovery of advective-

diffusive processes. Causal discovery methods in Earth science often employ

these techniques to reduce the high dimensionality of gridded data before applying

causal discovery algorithms. While effective for identifying large-scale telecon-
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nections, we show that these approaches fail to capture the local causal structures

that are essential for understanding space-time dynamics at the grid-cell level.

To illustrate these limitations, we apply PCA and PCA-varimax dimension

reduction followed by PCMCI causal discovery–—the procedure described by

Runge et al. (2015c), Nowack et al. (2020a), and Tibau et al. (2022) and employed

in subsequent work—to each of our case studies: Burgers’ equation, HSW-V, and

E3SMv2-SPA. Our analysis reveals that while dimensionality reduction techniques

can identify dominant modes of variability, they struggle to preserve the spatial

relationships between neighboring grid cells, thus obscuring the local causal path-

ways that CaStLe is specifically designed to recover.

For the PCMCI step, we explored multiple lag values in our experiments and

found that the results were consistently unable to capture the directional advection

structure regardless of lag parameter choice. This suggests that the limitation is

a fundamental constraint of the dimensionality reduction approach. In the results

below, we show the simplest case with a maximum lag of 1.

Figure F1 shows the PCA analysis of Burgers’ equation, where four EOFs

capture approximately 91% of variance but the resulting PCMCI causal graph

fails to recover the directional advection process, demonstrating PCA’s inability

to preserve local causal structures. Figure F2 shows similar limitations with PCA-

Varimax applied to the same Burgers’ equation data, where despite the rotation

enhancing spatial localization of patterns, the causal graph still cannot represent

the known directional advection dynamics. Figure F3 illustrates PCA applied to
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the HSW-V volcanic aerosol dataset, where four EOFs explain 85% of variance

but produce a causal graph that misrepresents the known transport mechanisms.

Figure F4 demonstrates that even with varimax rotation, which provides more spa-

tially distinct patterns in the HSW-V dataset, the resulting causal graph cannot

capture the directional flow of volcanic aerosols. The EOFs were reordered ac-

cording to the identified centroids’ longitude to improve interpretability. Figure F5

shows the application of PCA to the E3SMv2-SPA climate model data, where nine

EOFs account for 87% of variance, yet the PCMCI causal graph fails to detect the

underlying atmospheric circulation patterns. Figure F6 reveals that PCA-Varimax

rotation of the E3SMv2-SPA data, with EOFs similarly reordered by longitudi-

nal position for interpretability, still fails to recover the known directional trans-

port processes, further confirming the limitations of dimensionality reduction for

space-time causal discovery.

245



0 20 40 60 80
X

0

50Y

EOF 1 (44.2% of Variance)

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

PDE Value

0 20 40 60 80 100

0

2

4

EO
F 

1 
Sc

or
e

EOF 1 Time Series

0 20 40 60 80
X

0

50Y

EOF 2 (27.2% of Variance)

0.0
6

0.0
3

0.0
0

0.0
3

0.0
6

0.0
9

0.1
2

PDE Value

0 20 40 60 80 100
2

0

2

4

6

EO
F 

2 
Sc

or
e

EOF 2 Time Series

0 20 40 60 80
X

0

50Y

EOF 3 (13.4% of Variance)

0.0
75

0.0
50

0.0
25

0.0
00

0.0
25

0.0
50

0.0
75

PDE Value

0 20 40 60 80 100
4

2

0

2

4

EO
F 

3 
Sc

or
e

EOF 3 Time Series

0 20 40 60 80
X

0

50Y

EOF 4 (6.7% of Variance)

0.0
6

0.0
3

0.0
0

0.0
3

0.0
6

0.0
9

0.1
2

0.1
5

PDE Value

0 20 40 60 80 100
Time Step

2

0

2

4

6

EO
F 

4 
Sc

or
e

EOF 4 Time Series

1 2 3 4
EOF

20

40

60

80

%
 o

f v
ar

ia
nc

e

Explained Variance
Individual
Cumulative

PCMCI Causal Graph

1

2

3

4

0.8 0.4 0.0 0.4 0.8
MCI

0.8 0.4 0.0 0.4 0.8
auto-MCI

PCA Analysis of Burgers' Equation Solution

Figure F1: PCA study of Burgers’ equation solution (θ = 45◦, M = 6, c = 0.05). Four empirical
orthogonal functions (EOFs) capture ≈91% of variance, with spatial patterns (left) and tempo-
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graph, which fails to accurately represent the known directional advection process in the underlying
PDE, highlighting limitations of this approach for local causal structures in space-time systems.

246



0 20 40 60 80
X

0

50Y

EOF 1 (26.6% of Variance)

0.0
2

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

PDE Value

0 20 40 60 80 100

0

1

2

3

EO
F 

1 
Sc

or
e

EOF 1 Time Series

0 20 40 60 80
X

0

50Y

EOF 2 (32.1% of Variance)

0.0
0

0.0
3

0.0
6

0.0
9

0.1
2

0.1
5

0.1
8

0.2
1

PDE Value

0 20 40 60 80 100
0.0

2.5

5.0

7.5

EO
F 

2 
Sc

or
e

EOF 2 Time Series

0 20 40 60 80
X

0

50Y

EOF 3 (13.9% of Variance)

0.0
15

0.0
00

0.0
15

0.0
30

0.0
45

0.0
60

PDE Value

0 20 40 60 80 100
2

1

0

1

2

EO
F 

3 
Sc

or
e

EOF 3 Time Series

0 20 40 60 80
X

0

50Y

EOF 4 (19.0% of Variance)

0.0
0

0.0
3

0.0
6

0.0
9

0.1
2

0.1
5

0.1
8

PDE Value

0 20 40 60 80 100
Time Step

0

2

4

6

EO
F 

4 
Sc

or
e

EOF 4 Time Series

1 2 3 4
EOF

20

40

60

80

%
 o

f v
ar

ia
nc

e

Explained Variance
Individual
Cumulative

PCMCI Causal Graph

1

2

3

4

0.8 0.4 0.0 0.4 0.8
MCI

0.8 0.4 0.0 0.4 0.8
auto-MCI

PCA-Varimax Analysis of Burgers' Equation Solution

Figure F2: PCA-Varimax study of Burgers’ equation solution (θ = 45◦, M = 6, c = 0.05). Four
empirical orthogonal functions (EOFs) capture ≈91% of variance, with spatial patterns (left) and
temporal evolution (right). The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known directional advection process in the
underlying PDE, highlighting limitations of this approach for local causal structures in space-time
systems.
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PCA Analysis of HSW-V

Figure F3: PCA study of the HSW-V dataset, in the time interval 21 days post-eruption. Four
empirical orthogonal functions (EOFs) capture ≈85% of variance, with spatial patterns (left) and
temporal evolution (right). The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known directional advection process in the
underlying system, highlighting limitations of this approach for local causal structures in space-
time systems.
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PCA-Varimax Analysis of HSW-V

Figure F4: PCA-Varimax study of the HSW-V dataset, in the time interval 21 days post-eruption.
Four empirical orthogonal functions (EOFs) capture ≈85% of variance, with spatial patterns (left)
and temporal evolution (right). Since varimax rotation does not preserve the explained variance
ordering, we reordered EOFs according to the identified centroid’s longitude. The bottom panels
show explained variance distribution and PCMCI causal graph, which fails to accurately represent
the known directional advection process in the underlying system, highlighting limitations of this
approach for local causal structures in space-time systems.
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PCA Analysis of E3SM-SPA

Figure F5: PCA study of the E3SMv2-SPA dataset, in the time interval of days 15-35. Nine
empirical orthogonal functions (EOFs) capture ≈87% of variance, with spatial patterns (left) and
temporal evolution (right). The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known directional advection process in the
underlying system, highlighting limitations of this approach for local causal structures in space-
time systems.
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PCA-Varimax Analysis of E3SM-SPA

Figure F6: PCA-Varimax study of the E3SMv2-SPA dataset, in the time interval of days 15-35.
Nine empirical orthogonal functions (EOFs) capture ≈87% of variance, with spatial patterns (left)
and temporal evolution (right). Since varimax rotation does not preserve the explained variance
ordering, we reordered EOFs according to the identified centroid’s longitude. The bottom panels
show explained variance distribution and PCMCI causal graph, which fails to accurately represent
the known directional advection process in the underlying system, highlighting limitations of this
approach for local causal structures in space-time systems.
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G Additional experimental details for Section 7.7

CaStLe inherits several of the runtime parameters of the underlying PIP used. In

Section 7.7, we set these values at relatively stringent threshold to highlight the

most robust and important dynamics and to yield a highly interpretable graph;

additional weaker dynamics can be recovered by relaxing these choices at the (po-

tential) cost of additional false positive edges and less interpretability. Data-driven

optimization of these parameters is difficult, though the validation strategies sug-

gested by Allen et al. (2023) may be useful here. Specifically, we set a p-value

threshold of 1× 10−5 and removed estimated partial correlations of magnitude

less than 0.35; we note here that, due to the adaptive search heuristics used by

the PIP, the p-value threshold applied here is not a proper measure of statistical

significance, but only a heuristic measure of estimated strength. We note that our

resulting interpretations are generally quite robust to specific choices of these val-

ues.

H Analysis of Spatial Blocking

Here, we briefly investigate two impacts of spatial blocking, of the kind used in

Section 7.7. Spatial blocking is a process in which regions of the global space

are separated into blocks where CaStLe is applied individually and independently.

This can be done for the sake of interpretability and to help ensure the spatial causal

structure is uniform and homogeneous in the blocked space, satisfying Assumption
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S2.

First, we consider the impact of block size on the HSW-V case study. In our

demonstration in Section 7.7.1, we approached block size heuristically, and we

chose a relatively large block size to demonstrate correctness saliently. We found

that results are generally robust to larger and smaller block sizes in the HSW-

V case. In Figure H1, we show that the recovered dynamics in each stencil are

generally the same over space for each block size. We see that larger block sizes

are easier to interpret at a glance, while smaller sizes describe more nuance. We

also found that results were generally robust to block size in the E3SMv2-SPA

case.

Second, we consider the impact of a blocking strategy for causal discovery

generally by comparing results of the PC algorithm to one block in E3SMv2-SPA

to CaStLe-PC’s results from the same data. Our comparison of CaStLe and the

PC algorithm in Figure 4 make it clear that CaStLe captures the spatial evolution

of Mt. Pinatubo’s plume much more effectively and about 80,000 times faster.

However, one may be concerned that sparsity and correctness could be achieved

with blocking alone. In Figure H2a, PC struggles to estimate an interpretable and

physically meaningful graph of the dependence structure in this area because of

the signal redundancy between nonadjacent grid cells and that there are only 20

observations per grid cell and 25 grid cells. Figure H2b illustrates much better

performance from CaStLe, in which CaStLe learns a stencil from the region and

projects it back into the original grid space.
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Figure H1: Results of CaStLe applied to HSW-V 21 days after the Mt. Pinatubo eruption with
three different block sizes, 12°×12°, 20°×20°, and 60°×60°. We find that results are generally
consistent over the same area for each block size, with smaller block sizes allowing for additional
nuance in some areas. Note that the 20°×20° block panel is similar to the results shown in Figure
3, but more longitudes were added to get a space factorable by more integers, such as 12, 20, and
60.
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(a) PC algorithm results (b) CaStLe results

Figure H2: The PC algorithm and CaStLe applied to E3SMv2-SPA in the 15°×15° block between
15.00◦ to 30.00◦N and 75◦ to 90◦E. from the day of the eruption to 20 days later. PC struggles
to estimate an interpretable and physically meaningful graph of the dependence structure in this
area. In contrast, CaStLe is able to identify an interpretable dependence structure that represents
the local dynamics within the space.
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I Analysis of Assumption Violation Examples

Here, we evaluate the impacts of potential violations of CaStLe’s assumptions in

our study of E3SMv2-SPA from Section 7.7.2.

I.1 Time Resolution is Too Coarse (Assumption T1)

The dataset’s time resolution can determine if the temporal locality assumption

(T1) holds. If the time resolution is too coarse, the temporal causal structures may

be marginalized out or unmeasured. Dependencies between neighboring grid cells

may not be manifested in the sparse time sampling. Here, we explore how our

study of E3SMv2-SPA from Section 7.7.2 changes after coarsening the temporal

resolution.

We coarsened the time resolution by two, from a daily to a two-daily resolution.

Figure I1 demonstrates that CaStLe finds much fewer links when the time reso-

lution is too coarse. However, the links that are detected are mostly consistent with

known advective processes.

I.2 Time Interval is Too Long (Assumption T2)

When the time interval is too long, there may be too many causal structures in the

data. This violates temporal causal stationarity (T2). Here, we investigate such a

scenario.

We first computed causal stencils for an extended period, between day 15, the

day of the eruption, to day 65. This is 30 days longer than our initial analysis from
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Figure I1: Results of using a coarsened temporal resolution (two-daily) in the E3SMv2-SPA study.
CaStLe finds many fewer links in this setting. It is clear that when time is too coarse, causal
structures fail to be detected. However, the remaining links that are found are largely true positives,
suggesting that CaStLe is relatively robust to coarser time sampling.
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the start of the eruption.

Figure I2: Results of applying CaStLe to a longer time interval from day 15 to 65. CaStLe identifies
more links, indicating it is learning too many causal structures in the data, but still finds many of the
true positives we found in our initial study. This indicates that many of the blocks in this interval
have temporal causal stationarity, leading CaStLe to perform adequately.

We then computed causal stencils for the entire period between day 15 to day

215, roughly six months later.

Figure I3: Results of applying CaStLe to a time interval that is too long and contains too many
causal structures, day 15 to 200. We see that CaStLe identifies many links in each block. Compar-
ing them to the winds is ineffective because the wind arrows are averages over the whole period
rather than reflections of how they change in time, which CaStLe is learning from. With such a
density of links, it is further challenging to know which are correct and which are spurious.

Figure I2 shows that when the time interval is longer, CaStLe identifies more

links, indicating it is learning too many causal structures in the data, but still finds

many of the true positives we found in our initial study. Figure I3 demonstrates the

challenges of applying CaStLe to a time interval that contains too many difference
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causal structures. CaStLe identifies many links, creating uninterpretable stencils.

The winds are a poor comparison because each arrow is a temporal average for

that location, which is not representative over the entire interval. CaStLe may be

capturing many spurious links or capturing all of the many fluctuating dynamics

over the interval. Resulting is are uninterpretable stencils with unknown true and

false positives. However, there are some blocks in the equatorial regions with

sparse stencils. That indicates that dynamics were relatively stationary over the

period.

I.3 Grid Resolution is Too Coarse (Assumption S1)

An appropriate grid resolution is important for satisfying the spatial locality as-

sumption (S1). If the grid is too coarse then the underlying spatial structure may

be marginalized out or unmeasured. If it is too small, causal relationships may

appear outside the stencil neighborhood, requiring a radius-2 neighborhood imple-

mentation. Here, we investigate a grid resolution that is too coarse.

We coarsened the grid to 9◦, rather than the 3◦ used in Section 7.7.2. Given

that, to maintain 5×5 grid cells per block, each block is again 45◦×45◦.

In Figure I4, we see that CaStLe performs very well overall. There are few false

positives and it clearly captures the overall advection dynamics of the system.

We also coarsened the grid to 18◦, resulting in 90◦×90◦ blocks. In Figure I5,

CaStLe performs well in the early time interval, clearly identifying the east-to-west

advection pattern. However, in the later time interval, it finds no spatial structures
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Figure I4: Results of using a coarse grid (9◦) in the E3SMv2-SPA study. We find that CaStLe per-
forms very well overall. There are few false positives and it clearly captures the overall advection
dynamics of the system.

apart from autodependencies in each block. This is likely because the east-to-west

advection is weaker in this period and the grid is too coarse to capture the narrower

bands of northward advection that dominates the interval.

We find that CaStLe is very robust to this assumption violation. It captures all

of the most dominant advection patterns, while struggling to find smaller, weaker

ones.

I.4 Block Sizes are Too Large (Assumption S2)

In H, we found that CaStLe’s output was robust to very large and very small block

sizes. Spatial blocks are intended to isolate regions such that only one underlying

spatial causal structure exists in the block. If the blocks are too large, then As-
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Figure I5: Results of using a coarse grid (18◦) in the E3SMv2-SPA study. CaStLe performs well in
the early time interval, clearly identifying the east-to-west advection pattern. However, in the later
time interval, it finds no spatial structures apart from autodependencies in each block. This is likely
because the east-to-west advection is weaker in this period and the grid is too coarse to capture the
narrower bands of northward advection that dominates the interval.
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sumption S2 may be violated.

In Figure I6, we used block sizes equal to 45◦× 45◦. Here, each block has

15×15 grid cells. This is in contrast to the 5×5 grid cell, 15◦×15◦ blocks used

in Section 7.7.2.

Figure I6: Results of using block sizes too large in the E3SMv2-SPA study. We see that many true
positives are found, but many false positives as well. CaStLe seems to identify multiple contradic-
tory causal structures within many cells, which may lead to more spurious links discovered. Even
where links appear correct, they are largely uninterpretable in the presence of contradictions.

We find that while true positives remain, several false positives appear. Some

positives may be the result of identifying multiple causal structures correctly within

the space, while others may be confused results found because of the high density

of links. In further testing with intermediate block sizes, we found that CaStLe is

moderately robust to this assumption violation. As block sizes approach a more

appropriate size, false positives diminish and true positives remain.
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J Additional GCM Results

Figure J1 depicts results of implementing CaStLe with the Bayesian score opti-

mization causal discovery algorithm, DYNOTEARS. We also presented results of

DYNOTEARS applied to our VAR benchmark in Section 7.8.1. Here, we show

that CaStLe-DYNOTEARS is able to recover comparable results to the CaStLe-

PC-stable results shown in Section 7.7.1.

8.5 days post 
eruption

14.75 days 
post eruption

21 days post 
eruption

20°S

40°N

20°S

40°N

20°S

40°N

120°W 140°E0°

Figure J1: Application of CaStLe-DYNOTEARS to HSW-V simulation of the 1991 Mt. Pinatubo
eruption. The stencils estimated by CaStLe (white) capture the underlying high-altitude wind fields
(green) using only satellite-measured AOD, with near perfect accuracy in high aerosol regions (red-
orange). On longer horizons (bottom row), CaStLe is able to recover equatorial wind currents as
far away as South America, half-way around the world from Mt. Pinatubo (white triangle). CaStLe
accurately identifies the prevailing westerly atmospheric winds because it was able to identify the
space-time dependence between neighboring grid cells.
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K Additional VAR Results

In Section 7.8.1, we demonstrated the strong performance of CaStLe on VAR-

generated space-time data with fixed sparsity level d = 4; in particular, CaStLed

variants uniformly improve over the performance of equivalent unstructured causal

discovery algorithms. We repeat this analysis for a variety of sparsity levels in

Figures K1 and K2 for the MCC and F1 score similarity metrics, respectively. As

in Figure 7.6, the CaStLed variants continue to significantly outperform across

all sparsity levels, d; furthermore, as noted above, we observe that CaStLe can

correctly estimate the underlying grid even on as few as T = 10 time samples when

a sufficiently large grid is observed; non-CaStLe methods struggle on larger grid

sizes, consistent with our analyses in the previous section. A time limit of 48 hours

of wall-clock time was applied for each individual graph estimation: performance

properties of methods that did not terminate during this window are not shown

(e.g., DYNOTEARS with d = 6;T = 10;N = 10).
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Figure K1: Matthews correlation coefficient (MCC) comparison between CaStLed and non-
CaStLed causal discovery approaches on 2D VAR dynamics for each sparsity level, including
Granger causality (orange), PC (green), PC-Stable-Single (cyan), PCMCI (red), DYNOTEARS
(purple), and a statistical model of the data generating process (blue). See Section 7.8.1 for experi-
mental details.
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Figure K2: F1 score comparison between CaStLed and non-CaStLed causal discovery approaches
on 2D VAR dynamics for each sparsity level, including Granger causality (orange), PC (green),
PC-Stable-Single (cyan), PCMCI (red), DYNOTEARS (purple), and a statistical model of the data
generating process (blue). See Section 7.8.1 for experimental details.
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L PC-Stable-Single

For the convenience of the reader, we include pseudo-code for the PC-Stable-

Single algorithm of Runge et al. (2019a), itself an adaptation of the PC-Stable

algorithm of Colombo and Maathuis (2014). We use this as the PIP used for the

CaStLe-based analyses shown in Sections 7.7.1, 7.7.2, and D. As our experiments

in the proceeding section show, PC-Stable-Single exhibits small, but consistent

improvements over alternative PIP choices.

Open Research Section

The data generated and used for our HSW-V, VAR, and PDE experiments in Sec-

tions 7.7.1, 7.8.1, and D are available on Zenodo via https://doi.org/10.5281/

zenodo.12701546 with GNU Lesser General Public License v3.0 or later (Nichol,

2024). The data used for the E3SMv2-SPA experiments in Section 7.7.2 can be

found in Brown et al. (2024). The code for generating data, running experiments,

and generating figures can be found here https://github.com/jjakenichol/

CaStLe.
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Algorithm 2 PC-stable-single

Precondition: Time series dataset X = {X1,X2, ...,XN}, selected variable X j, maximum time lag
τmax (default τmax = 1), significance threshold αPC, maximum condition dimension pmax (de-
fault pmax = Nτmax), maximum number of combinations qmax (default qmax = 1), conditional
independence test function I.

1: function CI(X ,Y,Z)
2: Test X ⊥⊥ Y |Z using test statistic measure I
3: return p-value, test statistic value I
4: Initialize set of parents P̂(X j

t ) = {X i
t−τ : i ∈ {1, ...,N},τ ∈ {1, ...,τmax}}

5: Initialize dictionary of test statistic values Imin(X i
t−τ → X i

t ) = ∞ ∀X i
t−τ ∈ P̂(X j

t )
6: for p = 0, ..., pmax do
7: if |P̂(X j

t )|−1 < p then
8: Break for-loop ▷ Algorithm has converged
9: for all X i

t−τ in P̂(X j
t ) do

10: q =−1
11: for all lexicographically chosen subsets S ⊆ P̂(X j

t )\{X i
t−τ}, with |S |= p do

12: q = q+1
13: if q >= qmax then
14: Break from inner for-loop
15: Run CI test to obtain (p-value, I)←CI(X i

t−τ ,X
i
t ,S )

16: if |I|< Imin(X i
t−τ → X i

t ) then ▷ Store min. I of parent among all tests
17: Imin(X i

t−τ → X i
t ) = I

18: if p-value > αPC then ▷ Removed only after all X i
t−τ have been tested

19: Mark X i
t−τ for removal from P̂(X i

t )
20: Break from inner loop
21: Remove non-significant parents from P̂(X i

t )

22: Sort parents in P̂(X i
t ) by Imin(X i

t−τ → X i
t ) from largest to smallest

23: return P̂(X i
t )
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8 M-CaStLe: Uncovering Local Causal Struc-

tures in Multivariate Space-Time Gridded

Data

8.1 Publication Notes

Citation: Nichol, J. Jake, et al. “Space-Time Causal Discovery in Earth System

Science: A Local Stencil Learning Approach.” Unsubmitted.

Publication date: N/A

Conference: N/A

Formatting: The original text has been preserved as much as possible while still

adhering to the formatting requirements of this dissertation.

Data and Software Availability: The paper is currently being prepared for sub-

mission and is not yet publicly available.

8.2 Abstract

Causal discovery tools propose to solve one of science’s most important and chal-

lenging problems, the identification of underlying structure from observed phe-

nomena. Many systems prohibit the feasible or ethical application of more ro-
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bust methods, such as randomized control trials. In particular, space-time systems,

such as the Earth system or ecological systems, are attractive for causal discovery

because they could suffer costly alterations if they are manipulated haphazardly.

However, space-time systems are challenging to evaluate because their discretized

representation as gridded space-time data is often very high-dimensional—possessing

many more grid cells than temporal observations. The CaStLe meta-algorithm in-

troduced by Nichol et al. (2024) proposed to solve that problem in scenarios sat-

isfying their assumptions. However, it is limited to univariate analysis, identifying

the space-time structure underlying a single quantity.

In this work, we present Multivariate Causal Space-Time Stencil Learning (M-

CaStLe), a multivariate extension to CaStLe. We adapt the two phases of CaStLe to

first collect the multiple variables in the repeating local neighborhood information

in space-time gridded data, and second evaluate the causal parents of variables in

the local neighborhood structure. M-CaStLe produces a multivariate causal stencil

graph, which extends the CaStLe stencil to represent each variable at each location

of the Moore neighborhood. We’ve added a decomposition method for interpret-

ing the multivariate stencil in terms of just spatial dynamics or just inter-variable

dynamics with the spatial graph and reaction graph, respectively. To evaluate

M-CaStLe, we developed a multivariate space-time vector autoregression model

(VAR) benchmark methodology. The multivariate space-time VARs provide data

generation and ground-truth causal stencils for direct evaluation of M-CaStLe.

Our experiments demonstrate that M-CaStLe achieves high precision across
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varying numbers of variables and grid sizes, indicating reliable identification of

true positive links. However, recall decreases with an increasing number of vari-

ables, suggesting more complex systems have more challenging signals to identify.

Further analysis shows that recall improves with stronger signal strengths, even in

systems with up to 200 variables, indicating good performance in very high vari-

able regimes. Comparisons with the PC algorithm reveal that M-CaStLe-PC con-

sistently outperforms PC in high-dimensional settings, highlighting M-CaStLe’s

robustness in complex multivariate systems.

8.3 Introduction

Causal discovery is a set of causal inference tools for estimating the underlying

structure in observed phenomena. While optimal causal estimation requires ran-

domization, in many settings it is infeasible or unethical to apply (Runge et al.,

2019b; Glymour et al., 2019). Thus, causal discovery for space-time systems is

critical for scientific inquiry of complex emergent phenomena in physical systems

because they often present challenges for randomization. For example, we have

one Earth and randomly intervening in its systems is both prohibitively expensive

and unethical due to unknown downstream effects. Likewise, neuroscience and

ecology are prohibitive to random intervention.

Since the advent of Granger causality (Granger, 1969), the Rubin causal model

(Rubin, 2019), causal graphs (Pearl et al., 2016), and the PC algorithm (Spirtes

et al., 1993) (named for its authors, Peter and Clark), causal inference and causal
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discovery of observed data have developed into a rigorous mathematical frame-

work. Today, causal discovery has become a rich literature with many algorithms

and applications throughout the sciences (Glymour et al., 2019; Runge et al., 2023),

including the health, Earth, and social sciences (Ebert-Uphoff and Deng, 2012;

Cooper et al., 2015; Runge et al., 2019b; Nowack et al., 2020a; Feder et al., 2022;

Zanga et al., 2022; Sadeghi et al., 2023). Finally, causal representation learning

is an exciting nascent field is developing that merges the flexibility and predic-

tive power of machine learning with causal discovery techniques (Schölkopf et al.,

2021).

This work presents a causal discovery approach for space-time systems with

gridded data. Unlike space-time systems with point data, such as city-level data,

gridded datasets generally enable the analysis of continuous effects over space,

since they are regular and complete throughout the grid. However, such systems

come with dimensionality challenges. Frequently, the number of grid cells scales

faster than the number of temporal samples per grid cell (Runge et al., 2019b).

Further challenging their analysis, such systems usually have multiple interacting

variables per grid cell that are of scientific interest.

For example, in the Earth system, several interacting quantities may be mea-

sured over tens of thousands of grid cells, with hundreds of observations per vari-

able in each grid cell. Atmospheric data often contains hundreds of thousands of

grid cells, each with several orders of magnitude fewer observations in time. That

imbalance is one aspect of the curse of dimensionality (Bellman, 1957; Bühlmann
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and Geer, 2011), where high dimensionality relative to sample size challenges

conventional statistical methods and renders many forms of inference, including

causal discovery, unreliable without dimensionality reduction.

Dimensionality reduction, such as principal component analysis (PCA) (Greenacre

et al., 2022; Weylandt and Swiler, 2024), marginalizes large regions of grid cells

into several one-dimensional time series. Each time series is then used for indi-

vidual variables in the chosen causal discovery algorithm (Runge et al., 2015c).

This procedure is effective for identifying large-scale patterns such as climate tele-

connections (Tibau et al., 2022), but eliminates local grid-level interactions by

construction. While large-scale patterns are important aspects of study in com-

plex systems, the nature of their emergence is also important to understand. Local

interactions determine the location and magnitude of larger patterns and other mid-

scale phenomena, such as weather and seasonal patterns in atmospheric sciences.

Nichol et al. (2024) developed Causal Space-Time Stencil Learning (CaStLe),

which is capable of grid-level causal discovery of high-dimensional space-time

data. CaStLe can efficiently identify local causal relationships of a given quantity

in space-time systems where traditional approaches fail. However, many scientific

questions in complex space-time systems require analysis of multiple quantities

per grid cell, such as temperature and soil moisture in Earth system monitoring

of drought conditions (Sun et al., 2021) or infection dynamics in epidemiological

modeling using infection severity, duration of infection, and population age (Gane-

san and Subramani, 2021; Paul et al., 2021).

274



In this work, we propose an extension to the CaStLe meta-algorithm enabling

multivariate space-time causal discovery of grid-level data. We show that Multi-

variate Causal Space-Time Stencil Learning (M-CaStLe) can effectively capture

the causal relationships in multivariate space-time systems. Our results demon-

strate that M-CaStLe is capable of accurately estimating local multivariate space-

time structures from gridded data, outperforming the PC algorithm, especially in

high-dimensional settings. This suggests that M-CaStLe is a robust tool for causal

discovery in complex multivariate systems, providing valuable insights into the

underlying dynamics of such systems.

8.3.1 Background and Motivation

CaStLe is a meta-algorithm for causal discovery in high-dimensional space-time

systems. By leveraging local causal regularities, CaStLe transforms the causal

discovery problem from a high-dimensional space with many variables and lim-

ited observations to a low-dimensional embedding with fewer variables and more

abundant observations. This transformation enhances the efficiency and accuracy

of causal discovery, facilitating the identification of causal relationships in their

natural context. The present work extends of CaStLe, aiming to broaden its appli-

cability to multivariate space-time dynamics, making it a versatile tool for analyz-

ing various space-time systems in the physical sciences.
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8.3.2 Foundations of the CaStLe Framework

In many natural and engineered systems, complex global behaviors emerge from

simple local interactions that follow consistent physical dynamics. Nichol et al.

(2024) called such systems partial differential equation (PDE)-like because they

exhibit consistent dynamics defined by interactions between adjacent points in

space, with smooth transitions between dynamical boundaries and equilibria. These

are characterized by a set of fundamental assumptions that constrain their dynam-

ics:

T1) Temporal Locality: for any τ ̸= 1, Xi,t−τ ̸→ X j,t for any spatial coordinates

(i, j)

T2) Temporal Causal Stationarity: the dynamics governing the evolution of XXX t do

not change over time. That is, Xi,t−1→ X j,t⇔ Xi,t−1+τ → X j,t+τ for any time

offset τ .

S1) Spatial Locality: if (i, j) are not neighbors (in a problem-specific sense) then

Xi,t1 ̸→ X j,t2 for any t1, t2.

S2) Spatial Causal Stationarity: the dynamics governing the evolution of XXX t do

not change over space. That is, Xi,t−1 → X j,t ⇔ Xi+s,t−1 → X j+s,t for any

spatial offset s.

Here, ̸→ denotes the absence of a direct causal relationship between two variables.

Nichol et al. (2024, Appendix A) describes these assumptions in detail, including
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ways they may be violated and their Appendix I demonstrates some examples of

their violations and CaStLe’s robustness to them. To apply causal discovery, the

causal assumptions the causal Markov condition and faithfulness (Spirtes et al.,

1993) must be additionally assumed. Because of the locality assumptions, the

commonly required causal sufficiency assumption may be relaxed (Nichol et al.,

2024).

Such systems exhibit both temporal and spatial locality. Temporal locality (T1)

dictates that state transitions depend only on the immediate past, preventing “back-

ward causation” and respecting the arrow of time. Spatial locality (S1) ensures that

interactions occur only between proximate elements, eliminating action at a dis-

tance.

The governing dynamics in these systems demonstrate invariance across both

time and space. Temporal causal stationarity (T2) means the rules of evolution re-

main constant throughout the analysis period—the same causes produce the same

effects regardless of when they occur. Spatial causal stationarity (S2) implies that

these rules apply uniformly across the domain—the physical location of an ele-

ment does not alter how it responds to its neighbors. While many macro-scale

spaces contain multiple sets of equilibrium dynamics, there are typically micro-

scale regions containing stationary spatial causality.

These systems can be represented through structural causal models (SCM) of

the form:
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Xi,t = fi(XN (i),t−1,ηi,t) (8.1)

Where XN (i),t−1 represents the states of elements in the neighborhood of i at the

previous time step, and ηi,t captures stochastic innovations. Under spatial causal

stationarity, the functional form fi is identical for all i, reducing to a single function

f that applies throughout the domain. In short, this space-time SCM implies grid

cells exhibit Granger-causal dynamics, which imply that each grid cell’s temporal

information content encodes the past-history of itself and its immediate neighbors.

This framework encompasses numerous well-studied systems including those

governed by partial differential equations, cellular automata, and various lattice

models in statistical physics. The approach provides a powerful foundation for

both forward simulation and inverse problems—identifying the underlying causal

structure from observed spatiotemporal data.

CaStLe not only seeks to identify local causal dynamics but also to do so for

high-dimensional systems. In some cases, it may be enough to apply causal dis-

covery independently to small groups of local grid cells; however, in many systems

of study, more grid cells are present than observations within each. To accomplish

discovery in this regime, we need to efficiently use all the dynamical information

in a system.

CaStLe leverages the inherent locality and stationarity to collect time series

representing the space-time replicates in such systems. Every grid cell’s time series

encodes the causal influence of its neighbors, and they can be used as informative
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replicates of the system’s local dynamics. CaStLe processes a set of grid cells,

collecting each one’s data on its local dependence, then learns the causal structure

of the grid cells and their neighborhoods.

CaStLe’s first phase is to form the Locally Encoded Neighborhood Structure

(LENS), an embedding representing the Moore neighborhood–a 3×3 matrix of

a grid cell and its eight immediate neighbors. The LENS contains concatenated

time series from each grid cell’s Moore neighborhood so that the local dynamics

from each neighbor is repeated. The embedding is a 3×3 matrix, with each entry

representing the North West, North, North East, West, center, East, South West,

South, and South East grid positions of the Moore neighborhood. Each entry of

the embedding contains long concatenated time series collected from throughout

the original grid space. Each time series is of length T ×(N−2)2, for the grid’s di-

mension N and T time samples per grid cell. The embedding does not marginalize

any data, so no information loss occurs, as would happen during other dimension-

ality reduction techniques. Figure 8.1 is a conceptual diagram depicting using the

local Moore neighborhood to construct the LENS.

Once the embedding is constructed, CaStLe’s second phase, the Parent-Identification

Phase (PIP) applies an adapted causal discovery algorithm to the embedding. Any

time series causal discovery algorithm may be adapted by requiring it to treat the

embedding’s center grid cell as special: it may be the only child in the result-

ing causal graph; parents are unrestricted. This adaptation has multiple effects: it

creates a graph of the generalized ancestry for each grid cell, eliminates would-be
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Locally Encoded Neighborhood Structure

Moore 
Neighborhood

Smaller Spatial Representation

Figure 8.1: A conceptual diagram of the LENS that CaStLe constructs for learning underlying
local causal dynamics in gridded data. This encoding transforms the original grid space into a
local neighborhood structure without marginalization, preserving all of the local relationships in
the gridded time series data.

unobserved confounding between the embedding’s outer grid cells and their neigh-

bors beyond the embedding, and increases computational and statistical efficiency,

which is detailed below. The result of the PIP on the embedding is the causal sten-

cil graph, a representation of the local causal dynamics between all grid cells in

the system.

8.3.3 Theoretical Properties and Empirical Validation of CaStLe

Nichol et al. (2024) showed that CaStLe exhibits significant performance and effi-

ciency improvements for grid-level causal discovery. It successfully reconstructed

known volcanic aerosol dynamics, driven by stratospheric winds, in the weeks after

the Mount Pinatubo eruption of 1991. We demonstrated its general performance
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Figure 8.2: A demonstration of the full CaStLe process to produce a causal stencil graph on an
example input 4×4 gridded space-time system. In the LENS phase, neighborhood information
is collected from each of the interior grid cells, which are then concatenated to form the LENS.
Finally, the PIP phase applies an adapted time series causal discovery algorithm to learn the space-
time parents of the center node. The learned stencil depicts the underlying space-time structure of
each grid cell in the original data.

on advective-diffusive dynamics with a Burgers’ equation simulation study. We

compared it to existing causal discovery algorithms with ground-truth defined by

space-time vector autoregression model (VAR) models.

Because CaStLe constructs the LENS, a lower spatial-dimension embedding,

and the PIP limits potential causal children to only the center node, the number

of variables and possible links are both fixed to nine. That property enables much

more efficient causal discovery. Computational complexity is a measurement of

the asymptotic bounding on how many computational resources are required for

increasingly large input sizes. The PC algorithm has a computational complexity

bounded by O(T p32p), when applied to an p grid cells, with T time samples per

cell. We showed that CaStLe is bounded by O(T p).

CaStLe also exhibits improved sample complexity, which measures the asymp-

totic bounds on how many samples are required to ensure correct graph estima-
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tion. The probability of the PC algorithm incorrectly estimating the true graph is

bounded by≈O(pp). In contrast, we find that CaStLe’s error probability scales as

≈ O
(

pT
epT

)
. From this, as the grid size grows larger, we find that PC is less likely

to estimate the correct causal graph, while CaStLe is more likely to estimate the

correct graph.

Nichol et al. (2024) also demonstrated several empirical results of CaStLe with

benchmarks and realistic climate model output studies. It was shown that CaS-

tLe can robustly capture the transport patterns of volcanic aerosols emitted by the

1991 Mount Pinatubo eruption. It outperformed the PC algorithm in terms of ac-

curacy and execution time, largely because PC naively sought causal relationships

between all grid cells without the benefits of the LENS. CaStLe was also robust to

moderate assumption violations. The VAR benchmark study compared CaStLe to

popular time series causal discovery methods, including the PC algorithm (Spirtes

and Glymour, 1991), PCMCI (Runge et al., 2019a), and DYNOTEARS (Pamfil

et al., 2020). They found that CaStLe variants performed well, with better re-

sults on larger grids, while non-CaStLe algorithms struggled and performed more

poorly on larger grids. The Burgers’ equation study evaluated CaStLe’s perfor-

mance in different advection speed and diffusivity regimes via advection-diffusion

partial differential equation (PDE) model output. CaStLe performed well except

in settings where diffusion dominated, making advection signals unrecoverable.
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8.3.4 Research Gap and Motivation for Multivariate Extension

Nichol et al. (2024) showed that CaStLe can reconstruct the local space-time causal

structure between grid cells of one quantity, e.g., atmospheric aerosols. While

helpful in understanding the underlying dynamics of a species transporting or prop-

agating in a complex environment, it leaves learning impacts of that transport to

later inference and analysis. Such a manual or post-hoc multivariate inference be-

comes complex as the number of variables increases.

For example, in Nichol et al. (2024), CaStLe identified the space-time evo-

lution of volcanic aerosols in the stratosphere from the Mt. Pinatubo eruption.

Given the rich literature of that eruption, we know that the volcano’s SO2 out-

put increased stratospheric temperatures and decreased tropospheric temperatures

for two-to-five years (Dutton and Christy, 1992; Labitzke and McCormick, 1992;

Parker et al., 1996a; Soden et al., 2002). The eruption’s SO2 did not directly im-

pact temperature, the plume of gas underwent chemical and physical evolutions,

forming H2SO4 and advecting and diffusing around the globe. However, univariate

CaStLe needs to analyze each chemical species separately and cannot determine

interactions between species.

To estimate the space-time dynamics of each variable separately and then in-

fer variable interactions afterward potentially introduces errors and does not have

the benefit of joint estimation, which is available in time series causal discovery,

such as PCMCI (Runge et al., 2019a). Furthermore, learning space-time causal
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structures from each variable independently may miss cross-variable confounding,

leading to space-time estimation errors and incorrect inference of the underlying

physical process.

Joint estimation of space-time dynamics and variable interactions can enable

more complex analyses. For example, SO2 follows a chemical and physical causal

pathway to mediate temperature. SO2 reacts with water molecules to become

H2SO4. Finally, H2SO4 interacts with incoming solar radiation, which impacts

temperatures. Understanding the local space-time dynamics of these aerosol species

as they transport around the globe may help explain local temperature impacts. Do-

mains outside of atmospheric chemistry and Earth systems science where estimat-

ing grid-level multivariate interactions in space-time systems (MacEachren et al.,

1999; Haas, 2002) would be valuable are computational fluid dynamics (Wimer

et al., 2023), spatiotemporal pharmacokinetics (Guarin et al., 2021; Klingelhuber

et al., 2024), and computational chemistry (Higham, 2008; Owen et al., 2024).

Multivariate interactions are challenging to estimate at the grid-level because

the high-dimensionality of datasets observed from space-time systems becomes

more challenging with more variables because each variable entails p more grid

cells to estimate for the same T observations per grid cell per variable. CaStLe

solves the high-dimensional challenge in many univariate space-time systems. Ex-

tending its capabilities to discover variable interactions simultaneously with space-

time dynamics for each variable enables robust discovery of how they interact in

space and time. Doing so while maintaining the interpretability of the graphs at
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Figure 8.3: A schematic diagram of the input, computational phases, and output of M-CaStLe.
Similar to CaStLe’s procedure (c.f. Figure 8.2), the first phase collects local neighborhood infor-
mation into the LENS, which now collects information for each variable’s time series in each grid
cell. The second phase applies the PIP to every variable at every position in the LENS to determine
which variables cause the center variables from each location in the LENS. Finally, the resulting
multivariate stencil graph can be decomposed into the spatial graph and reaction graph for im-
proved interpretability and potential analysis.

scale is also challenging. Multivariate stencil graphs need to contain many more

nodes for each variable and still describe local structures.

8.3.5 Contributions

M-CaStLe solves these challenges by adapting both phases of the original CaStLe

meta-algorithm. The first phase, which restructures the given gridded data into the

LENS, is adapted to restructure multivariate data to preserve space-time and inter-

variable relationships. The univariate PIP sought causal relationships terminating

in only one node (the center). The multivariate PIP is adapted to find parents and

children of multiple sets of nodes for each variable.

These advances enable the simultaneous estimation of space-time dynamics and
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inter-variable interactions, providing a more comprehensive understanding of com-

plex systems. This capability is particularly valuable in fields such as atmospheric

science, where understanding the interplay between different chemical species and

their impact on climate is crucial. We validated M-CaStLe through extensive

experiments on synthetic benchmarks. Our results demonstrate that M-CaStLe

outperforms existing methods in terms of accuracy and computational efficiency,

particularly in high-dimensional settings. The empirical validation shows that M-

CaStLe can robustly capture the causal structure of multivariate space-time sys-

tems, making it a powerful tool for scientific discovery and analysis.

8.3.6 Paper Organization

The remainder of this paper is organized as follows: in Section 8.4 we introduce

M-CaStLe, our multivariate extension to CaStLe; Section 8.5 discusses our bench-

mark’s experimental setup with VARs; Section 8.6 presents a rigorous analysis

of the multivariate results of M-CaStLe benchmarked on multivariate models of

space-time dynamics; and finally we discuss the presented work and future direc-

tions in Section 8.7.

8.4 Methods

Multivariate CaStLe (M-CaStLe) extends CaStLe’s capabilities to discover local

space-time causal structures in multivariate data. M-CaStLe produces the mul-

tivariate causal space-time stencil graph, which describes how a set of variables
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interact within their Moore neighborhood over time. The multivariate stencil is

often challenging to interpret immediately. To improve interpretability, we present

the multivariate stencil the reaction graph and the spatial graph, which decom-

pose the multivariate stencil output by M-CaStLe into a graph of inter-variable

relationships (without a spatial aspect) and a graph of spatial relationships (with-

out variable relationships).

M-CaStLe adapts both phases of the CaStLe meta-algorithm to enable construc-

tion of a LENS containing multiple variables and successful causal discovery of

space-time and inter-variable dependencies within the LENS. Input data consists

of V variables measured on an N ×N grid over T time steps, yielding a tensor

X ∈ RN×N×V×T . Figure 8.3 depicts each step of M-CaStLe. In this example, we

illustrate a simple 4×4 original grid space, G, which has V = 3 locally interacting

variables, a, b, and c, with T = 500 time samples.

8.4.1 Phase 1: The Locally Encoded Neighborhood Structure (LENS)

Phase 1 collects neighborhoods in the same fashion as the univariate CaStLe, but

it now collects multiple time series per spatial location in the Moore neighborhood

for each variable. The univariate LENS is a 3×3 matrix where each element con-

tains one time series of length T × (N−2)2. Since M-CaStLe has V variables, the

multivariate LENS is a 3×3 matrix where each element contains V time series of

length T×(N−2)2. In short, it is a tensor in R3×3×V×L, where L = T×(N−2)2 is

the length of each concatenated time series. In Figure 8.3, Phase 1 depicts the pro-
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cess the LENS construction follows to collect time series from each Moore neigh-

borhood as the window slides across G. It collects all three variables from each

grid cell within the neighborhood window and concatenates them to the LENS,

according to their position relative to the center of the neighborhood window and

the respective variable in each position. Like the univariate LENS, there is no

marginalization or loss of data, and its structure allows it to be fully invertible. We

do not have a reason to invert the procedure in this analysis, but it illustrates that

no information loss occurs.

8.4.2 Phase 2: The Parent-Identification Phase (PIP)

In univariate CaStLe, the PIP adapts a given time series causal discovery algo-

rithm, such as DYNOTEARS (Pamfil et al., 2020), to seek the parents of only the

center node in the LENS. To adapt this approach to M-CaStLe, we do the same

for each variable in the center node. Rather than allowing one child in the dis-

covery process, we now allow V children. This has the effect of every variable in

every position in the LENS having a potential causal effect on every variable in the

center position. Resulting is a multivariate stencil, such as the one depicted in the

third panel of Figure 8.3. This example illustrates a stencil of three variables with

dependencies between each over space and time.
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8.4.3 Interpretability: Decomposing the Multivariate Stencil

While the stencil in Figure 8.3 may be interpretable after careful viewing, multi-

variate stencils of more variables or with more dependencies can be challenging to

parse visually. For that reason, we have developed a decomposition scheme to an-

alyze the variable interactions and the spatial structure of all variables separately.

The far right of Figure 8.3 illustrates the spatial graph and reaction graph corre-

sponding to the stencil to their left.

Computing the stencil decomposition is straightforward and similar for both

the spatial and reaction graphs. To compute the spatial graph, the stencil links

are aggregated along the variable dimension, and the location from which they

originate is preserved. For example, in Figure 8.3, two links are coming from

the NE position to the center, a negative dependence (light blue) via a→ a and a

positive dependence (orange) via a→ c, and both of those are aggregated to find

one weakly negative link NE→C in the spatial graph. Note that there is a bcenter→

acenter link in the stencil and that it is represented as an autodependence link in the

spatial graph, illustrated by the center node’s coloring. The node and link colors

directly associate with continuous link dependence strength that is output by M-

CaStLe, but we omit that detail for the example in Figure 8.3.

The reaction graph is computed by aggregating stencil links along the spatial

dimension while preserving the variable dimension. For example, in Figure 8.3,

there are two links c→ c in both the N and E locations, strongly negative (blue)
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from the N and weakly positive (red) from the E. Those are aggregated to form

the light-blue c node in the reaction graph. Resulting is a graph of variables that

represents the aggregate strengths of dependencies from any direction.

To aggregate the stencil link coefficients, we use Fisher’s z-transformation. It

stabilizes the variance of the correlation coefficients, making them more suitable

for averaging. The process involves converting each coefficient into a z-score,

computing the arithmetic mean of the z-scores, and then converting the average z-

score back to a correlation coefficient using the inverse Fisher’s z-transformation.

This method ensures that the combined value accurately reflects the underlying

dependencies between variables.

8.5 Benchmarking M-CaStLe with VARs

We developed random and stable multivariate space-time systems with two spa-

tial dimensions using mathematically defined ground-truth causal stencil graphs to

evaluate the performance of M-CaStLe with a variety of system parameters.

8.5.1 Background: Univariate Space-Time VARs

Our methodology for generating data builds upon the work used by Nichol et al.

(2024), which is fully detailed by Nichol et al. (2023). They developed a procedure

for generating benchmark datasets of stable 2D space-time systems through the

systematic construction of coefficient matrices parameterizing VARs of order 1

(VAR(1)s). Causal graphs have a direct mapping from VARs (Peters et al., 2017;
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Runge et al., 2019a), which enables precise benchmark comparisons between VAR

modeled data and causal discovery estimated graphs.

A system on an N×M grid with T time samples, XXX ∈RN×M×T with elements Xi, j,t ,

can be modeled by a VAR(1) with

XXX t = AAAXXX t−1 +ηηη t , (8.2)

where AAA is the coefficient matrix encoding linear dependencies between all vari-

ables in the system and ηηη represents independent innovations on XXX for each vari-

able at each time step. In this case, innovations are modeled with a unit normal

distribution.

The space-time VAR methodology initializes a 3×3 matrix defining local grid-

level dynamics between neighbors, called the neighborhood dependence matrix

(NDM). Random NDMs of predetermined sparsity, d, are generated to describe

how every grid cell in the space is dependent on the grid cells in its Moore neigh-

borhood. To simulate an entire grid, the NDM can be structurally mapped to an AAA

matrix for the entire grid. For an N×M grid space, AAA∈RNM×NM. Finally, most 2D

VARs are not numerically stable. To ensure stability, ρ(AAA) < 1.0, where ρ(AAA) is

the spectral radius of AAA (Strang, 2016, p.307). Through the NDM definition, VARs

can simulate locality in physical systems.
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8.5.2 Multivariate Space-Time VARs

To adapt the space-time VAR procedure for multivariate systems, we grow the

NDM in a new variable dimension, which gets mapped to a larger, flat, AAA matrix.

The multivariate NDM describes interactions between multiple variables at the

local grid-level, enabling VAR modeling of multivariate space-time dynamics.

For a system of VVV variables, the multivariate dynamics are represented by set of

V×V 3×3 matrices. Each 3×3 matrix corresponds to the space-time dependence

structure of a particular pair of parent and child variables. Like the univariate

NDM, each entry in each 3×3 matrix is a coefficient value representing the in-

fluence of the entry’s spatial location in the Moore neighborhood on the center

location.

The NDM is mapped to an AAA matrix, which represents the interactions of every

grid cell-variable on every other grid cell-variable. For a grid of size N×M spa-

tial dimensions and V variables, the matrix AAA ∈ RNMV×NMV . With the computed

AAA matrix, we again enforce stability by ensuring ρ(AAA) < 1.0, where ρ(AAA) is the

spectral radius of AAA.

With a stable AAA matrix, experimental data can be generated for any number of

grid cells, time samples, local dependencies, and variables. Although AAA is larger,

the VARs still have the form of Equation 8.2. Since most AAA matrices will be un-

stable, our implementation uses an accept-reject scheme similar to the univariate

approach of Nichol et al. (2024) to generate stable AAA matrices:
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1. Generate a random set of 3×3 local dynamics matrices, {Ci j}, for each pair

of child and parent variables, resulting in V ×V matrices. Each Ci j has d

non-zero elements, including the central element (autocorrelation), where 1≤

d ≤ 9. Each of the d non-zero elements, {ai}d
i=1, have a random value 1.0≥

coefficienti ≥ s∗.

2. Expand {Ci j} to form the matrix AAA for a grid of size N ×M, resulting in

AAA ∈ RNMV×NMV .

3. If |λmax(AAA)| ≥ 1, scale AAA by |λmax(AAA)|.

4. If c < s∗ ∀c ∈ AAA, reject, else accept.

where |λmax(AAA)| is the maximum absolute eigenvalue of AAA. This is used to sample

from the set of statistically stationary & spatially homogeneous VARs on a 2D

grid with minimum signal strengths s∗ ≥ 0.1 and fixed sparsity levels in the range

d ∈ {1,2, . . . ,9}.

8.6 Results

We present empirical results of M-CaStLe’s performance on our VAR benchmarks

varying: the number of variables, grid sizes, the number of graph dependencies

(graph edges), and the magnitude of coefficients. These demonstrate that M-

CaStLe is suitable for estimation of local multivariate space-time structures from

gridded data. Additionally, we compare M-CaStLe’s performance to the popular

PC algorithm for causal discovery.
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Figure 8.4: Showing precision and recall alongside predicted positive rate, a measure of how often
a positive is predicted among all other predictions. As variables increase, the predicted positive rate
decreases, which diminishes recall.

8.6.1 Metrics

Since VARs map directly to ground-truth causal graphs, we measured M-CaStLe’s

performance using binary classification measures. Let G = (V,E) be the ground-

truth graph where V is the set of nodes and E ⊆V ×V is the set of edges. For any

node pair (i, j) ∈ V ×V , a positive instance is defined as (i, j) ∈ E and a negative

instance as (i, j) /∈ E. This enables our usage of precision, recall, and F1 score,

defined as follows:

Precision =
TP

TP+FP
(8.3)

Recall =
TP

TP+FN
(8.4)

F1 =
2 ·Precision ·Recall
Precision+Recall

(8.5)

where TP, FP, TN, and FN denote true positives, false positives, true negatives, and

false negatives, respectively. Put simply, precision is the proportion of correctly

detected positives to all detected positives, with a range of [0,1], where 1 is a

perfect precision; recall is the proportion of correctly detected positives to how
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many positives should have been detected, with a range of [0,1], where 1 is a

perfect recall; and the F1 score is the harmonic mean of precision and recall, with

a range of [0,1], where 1 indicates perfect graph estimation.

8.6.2 Data Generation

We used the following data generation parameter ranges with 30 replicates each:

• Time samples T = 1000

• N×N grid sizes where N ∈ [4,5,6,7,8,9,10]

• Number of variables V ∈ [1,2,3,4,5,6]

• Density d ∈ (0, . . .0.5]

• Coefficients c ∈ [0.1,1.0]

where density is relative to the stencil graph density: d = L
(3×3×V 2)

with L links,

such that d ≤ 1. Since a V = 1 system can have up to L = 9, the most allow-

able here are L = 4. A V = 6 system may have L ∈ [1, . . .162]. However, not all

densities produced 30 stable systems after 48 hours of the accept-reject scheme

described in Section 8.5.2. It is clear that there are zero systems in the limit of in-

creasing density with a given minimum coefficient size. Appendix A details which

of the above combinations successfully produced 30 systems for analysis. In total,

56,283 experiments were generated, with more experiments for systems of more

variables.
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8.6.3 Multivariate Performance

Figure 8.4 illustrates precision, recall, and positive prediction rate (PPR) in our

experiments as the number of variables increases, with individual lines for each

of the grid sizes. All available densities are marginalized in each line, with 95%

confidence intervals. We found that precision is very high in all cases, regardless

of the number of variables or grid size, with an average value of ≈ 0.94. This

indicates that when M-CaStLe identifies a positive link, it is likely to be a true

positive. We found that recall is very high for V = 1 and decreases as the number

of variables increase, with the mean value ≈ 0.62. This indicates that M-CaStLe

may be relatively conservative, identifying a little more than half of the true links

in the systems with more variables. However, it may also indicate limitations of

the synthetic data model.

To shed some light on the recall results, we considered PPR. PPR is the fraction

of all possible connections that were predicted as positive, regardless of correct-

ness, given by

PPR =
TP+FP

TP+FP+TN+FN
, (8.6)

with a range of [0,1], where 1 indicates all possible edges were estimated (a fully

dense graph). No particular PPR value necessarily indicates good performance,

because it is a measure of the estimated graph’s density.

In Figure 8.4, we see that recall and PPR are both decreasing as graph size in-

creases (larger grid size and more variables). This possibly indicates that as the
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graphs are getting larger, signals are more challenging to detect. We investigated

the data generation model’s apparent limitations in Appendix A. Figure A7 demon-

strates that fewer stable systems could be generated for larger graphs, relative to

their potential. A8 demonstrates that as the number of links increases among all

systems, the maximum and minimum coefficients in each system quickly decrease.

This indicates that the systems may be more challenging to correctly estimate, sug-

gesting that M-CaStLe’s recall may be more reflective of the data generating model

than being a conservative estimator.

8.6.4 Comparison to the PC Algorithm

Nichol et al. (2024) compared CaStLe to several prior causal discovery methods

and found CaStLe outperformed the others, particularly has the data dimensional-

ity increased. In the multivariate regime, the data’s dimensionality is multiplied by

the number of variables. Multivariate systems should be far more challenging for

causal discovery without dimensionality reduction. Here, we compare M-CaStLe

to the PC algorithm, which is still in popular (Glymour et al., 2019) use and is the

predecessor to most constraint-based causal discovery algorithms.

Figure 8.5 shows the F1 score of M-CaStLe-PC and PC with increasing links,

with the number of variables held constant to V = 4. The remaining V variables

are given in Appendix B.1. We see that M-CaStLe-PC’s F1 score is consistently

much higher than PC’s. PC struggles with the very high dimensionality of the

system since it is naive to the spatial and variable structure. Given that F1 score is
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Figure 8.5: A comparison between M-CaStLe-PC and PC considering the F1 score for V = 4 as
the number of links increases on a 4×4 grid. M-CaStLe-PC outperforms PC in every case because
PC struggles with the very high dimensionality of the systems since it is naive to the spatial and
variable structures.

the harmonic mean of precision and recall, we can see that M-CaStLe’s aggregate

performance is between the very high precision and relatively low recall described

above.

8.6.5 Exploring Recall

To better evaluate the reason for M-CaStLe’s relatively low recall, we tested it on a

separate set of benchmark systems. In these, we constructed simple systems with

many more variables and a range of coefficient magnitudes. The systems model

a chain of dependence between each variable where there is one link per variable.

The link is assigned a random parent location in the Moore neighborhood, and

points to the center of the next variable. With this, we model different spatial

relationships between variables but only one between variables. We explored V ∈
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{10,50,100,200} and a set of 20 coefficients {ci}19
i=0 logarithmically spaced from

0.01 to 2.0, where ci = 0.01×102i/19. Every link had the same coefficient for each

realization. Each realization had T = 1000 time samples and we restricted the grid

size to 4×4, which is the most challenging for M-CaStLe because there are fewer

spatial replicates to leverage.

Figure 8.6: In simple chains of multivariate stencils, even with an extremely large number of
variables, recall can be captured perfectly if the signal strength is large enough.

Figure 8.6 illustrates that recall increases proportionately with coefficient mag-

nitude for all numbers of variables. Recall is 0 when coefficients are too small

and 1 when they are large enough. There is an inflection interval in the coefficient

magnitudes in which recall increases sharply. The three-parameter sigmoid func-

tions fit to each set set of V s shows that recall is ordered by V . That means that,
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while high recall is achievable for up to 200 variables, systems with more variables

are marginally more challenging to estimate, which conforms to our expectations.

These results show that high recall is possible in high variable regimes if signals

are strong enough.

8.7 Discussion

We have proposed M-CaStLe, a multivariate extension to space-time grid-level

causal discovery with CaStLe (Nichol et al., 2024). M-CaStLe adapts both the

Locally Encoded Neighborhood Structure construction and Parent-Identification

Phase to learn inter-variable relationships in gridded space-time data. To repre-

sent these complex relationships, M-CaStLe produces a multivariate causal stencil

graph that depicts which variable at each location in a Moore neighborhood causes

each variable. To aid interpretation of the multivariate stencil, we introduced a de-

composition method to extract spatial relationships and inter-variable relationships

separately with the spatial graph and reaction graph.

Like CaStLe, M-CaStLe overcomes the limitations of high-dimensional grid-

ded space-time systems, where there are more grid cells to estimate that time se-

ries samples in each. The inclusion of multiple variables exacerbates the high-

dimensional challenge, but M-CaStLe includes variable structures in the spatial

replicates it leverages to form the LENS. The LENS collects repeating multivari-

ate spatial structures to form a 3×3 spatial data representation of the underlying

dynamics. With that, the PIP recovers the multivariate stencil describing the un-
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derlying causal relationships that define the system’s grid-level behavior.

We developed a multivariate gridded space-time benchmark framework, build-

ing upon the work by Nichol et al. (2023). The benchmark defines mathematical

structures (VAR models) representing the space-time relationships between grid

cells with multiple variables per grid cell. The structures directly translate to causal

graphs for ground-truth evaluation.

M-CaStLe performed well in the benchmark experiments. Its precision and

recall were near 1 in systems with multiple variables when signal strengths were

large enough. We applied the time series adapted PC causal discovery algorithm

to the same benchmarks. We found that M-CaStLe had much better performance

on multivariate systems than the PC causal discovery algorithm.

Recall suffered in highly complex systems cases because more complex sys-

tems exhibited smaller signal strengths per interaction. This supports our hypothe-

sis that larger and more complex systems with many interacting components have

fewer stable parameterizations. That is additionally supported by recent work in-

vestigating the piranha problem (Tosh et al., 2025), which describes the inevitable

consequence that large complex systems will converge to weaker signals to main-

tain stability.

While we have demonstrated that M-CaStLe can identify multivariate space-

time dynamics, more work is needed to understand its application in real-world

settings. Nichol et al. (2023) demonstrated CaStLe on the advective, transient

dynamics of the Mount Pinatubo eruption’s volcanic plume. A natural next step
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would characterize the atmospheric chemistry of the SO2→ H2SO4 pathways and

how it mediates solar radiation and surface temperatures. One challenge described

by Nichol et al. (2023) was having sufficient spatial and temporal data resolutions

to capture the effects of interest on the grid-level. Earth system models can out-

put data at sufficiently high resolutions, as they must compute in them to model

realistic physics (Golaz et al., 2022), but input/output speeds and storage limita-

tions may sometimes be bottlenecks. Nonetheless, as technologies improve, more

expressive datasets will be available and more meaningful analysis methods will

be critical for their evaluation. Further, satellite imagery now produces very high

spatial resolutions, but, depending on the quantities and regions of interest, may

have lower temporal sampling rates. However, as more satellites are deployed

and technologies continue to improve, they will provide a greater wealth of data.

Other application domains, such as computational chemistry, fluid dynamics, and

spatiotemporal pharmacokinetics can modeled or observed at sufficiently high res-

olutions given their smaller scale in comparison to the Earth system.

While some dataset limitations still exist, Nichol et al. (2023) proposed other

future research directions that may yield value in spite of those limitations. In

particular, where spatial resolution is insufficiently matched temporal resolution,

extending CaStLe and M-CaStLe to collect and evaluate larger neighborhoods,

such as a radius-2 Moore neighborhood, could enable finding causal relationships

that skip over immediately adjacent grid cells.

In this work, we have introduced M-CaStLe, a multivariate extension to the

302



grid-level space-time causal discovery meta-algorithm, CaStLe. M-CaStLe ad-

dresses the significant challenge of estimating causal relationships in high-dimensional

space-time systems with multiple interacting variables, which traditional approaches

struggle to handle effectively. By enabling the simultaneous estimation of space-

time dynamics and inter-variable interactions, M-CaStLe can enable advances in

our understanding of complex systems, particularly in fields such as atmospheric

science, computational fluid dynamics, computational chemistry, spatiotemporal

pharmacokinetics, and epidemiological modeling. Our benchmark experiments

demonstrate that M-CaStLe outperforms existing methods in accuracy, making it

a robust and valuable tool for scientific discovery and analysis. Univariate CaStLe

made a significant step in the analysis of high-dimensional grid-level dynamics and

M-CaStLe makes multivariate space-time analysis possible. As a powerful tool for

uncovering intricate causal relationships, M-CaStLe paves the way for more in-

formed decision-making and deeper insights into the underlying mechanisms of

complex phenomena.
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Appendices
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A Completed Data Generation Parameters

As noted in Section 8.6, not all parameter combinations generated stable systems.

Here, we present the parameter ranges that did successfully generate 30 replicates

to produce out results. We additionally evaluate the range of coefficient sizes gen-

erated, demonstrating the difficulty of creating complex systems with strong sig-

nals and many interdependencies.

Figure A7: Parameter ranges used in our experimental design, showing the link count distribu-
tion for each grid size and variable count combination. Each horizontal line represents the span of
network links tested, with each parameter combination having at least 30 replicate experiments (n
values shown). Our experiments covered grid sizes from 4×4 to 10×10 and 1-6 variables per grid.
All experiments used 1000 time samples and coefficient values between 0.1 and 1.0. The network
density, d, defined as the ratio of actual links, L, to maximum possible links d = L

(3×3×V 2)
, where

d ∈ (0, . . .0.5]. Not all density values produced 30 stable systems within our computational con-
straints, particularly at higher densities. This visualization shows which parameter combinations
successfully generated sufficient replicates for statistical analysis.

Parameter ranges used in our experimental design, showing the link count dis-
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tribution for each grid size and variable count combination. Each horizontal line

represents the span of network links tested, with each parameter combination hav-

ing at least 30 replicate experiments (n values shown). Our experiments covered

grid sizes from 4×4 to 10×10 and 1-6 variables per grid. All experiments used

1000 time samples and coefficient values between 0.1 and 1.0. The network den-

sity, defined as the ratio of actual links (L) to maximum possible links in a 3×3

stencil graph (d = L/(3×3×V²)), ranged from near zero to 0.5. Not all theoretical

density values produced 30 stable systems within our computational constraints,

particularly at higher densities. This visualization shows which parameter combi-

nations successfully generated sufficient replicates for statistical analysis.

Figure A8: The relationship between link coefficients and the number of links present. As the
number of links increases, maximum (blue) and minimum (green) link coefficients show a clear
decreasing trend, with their distribution becoming narrower and centered around lower values. This
reveals that networks with more links have weaker signals, suggesting that highly interconnected
systems cannot be stable with large dependencies.
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B Additional VAR Results

In this appendix, we present additional results related to the performance of our

proposed method, M-CaStLe, with VAR benchmarks. We delve into various met-

rics that evaluate the effectiveness of M-CaStLe.

B.1 PC Comparison Results

We examined the impact of the number of variables on key performance indicators

such as F1 score, precision, and recall. We provide a comparison between M-

CaStLe-PC and the time series PC algorithm. This analysis, illustrated in Figure

B9, emphasizes how M-CaStLe-PC consistently outperforms PC across various

scenarios, particularly as the number of links increases in a 4×4 grid. The results

underscore the challenges faced by PC in high-dimensional environments, where

its naive approach to spatial and variable structures limits its effectiveness.
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Figure B9: Comparisons between M-CaStLe-PC and PC considering the F1 score, precision, and
recall for all V as the number of links increases on a 4×4 grid. M-CaStLe-PC outperforms PC in
every case because PC struggles with the very high dimensionality of the systems since it is naive
to the spatial and variable structures.
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9 Conclusion

This dissertation’s research rests upon the shoulders of 100 years of data-driven

knowledge discovery. It does so by advancing our understanding of what contem-

porary methods are capable of for complex systems and filling a critical research

gap in the discovery of underlying local dynamics. The Causal Space-Time Stencil

Learning (CaStLe) meta-algorithm developed here enables scalable causal discov-

ery of grid-level dynamics in multiple variables for high-dimensional data—an

important and elusive advancement in causal discovery research, particularly for

the Earth sciences. These contributions equip scientists to approach more nuanced

problems to explain the complex systems that rule our environment.

This chapter first summarizes Parts I and II of the work detailed in this disser-

tation and then explores exciting future avenues of research. Part I explored the

foundational work I completed in exploring the capabilities of machine learning

feature importance and state-of-the-art causal discovery for structure learning in

the Earth sciences. Part II described my contributions to grid-level causal discov-

ery with CaStLe and M-CaStLe.
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9.1 Part I: Synthesis of Foundations Work

9.1.1 Machine Learning Feature Importance for Climate Models

Chapter 3 sought to learn if machine learning (ML) feature importance can be used

to identify differences between climate model ensemble members’ output data and

observed data from satellite reanalysis products. In particular, I wanted to under-

stand if I could predict and explain the Arctic’s minimum yearly sea ice extent.

Sea ice extent measures the square area of sea covered by ice, an important factor

in Arctic life and trade vessel navigation. I trained ML models on 10 Arctic fea-

tures that predict yearly sea ice extent minimums. Comparing ML model outputs

between Arctic datasets gave us an understanding of their differences.

My methodology used separate random forest regression (RFR) (Breiman, 2001)

models to learn from an observational dataset and five Energy Exascale Earth Sys-

tem Model (E3SM) (E3SM Project, 2018) simulation ensemble members. Random

forests are ML models formed from aggregated decision trees. As RFR models

train, they simultaneously build Gini importance values as part of the tree struc-

tures. It determines which features provide the most predictive power and encodes

them in its Gini importance values. Thus, Gini importance describes how impor-

tant each training feature is for the model’s predictive power.

With the six trained models, I compared the calculated feature importance val-

ues to understand differences in the datasets. The baseline was data collected from

satellite reanalysis products, which are observational datasets that use sophisticated
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models to interpolate missing data where clouds obstructed satellites. With that,

I could compare its feature importance values with those of RFR models trained

on the climate model simulation runs. I found important similarities between the

datasets, suggesting that the models captured some fundamental dynamics in the

Arctic climate. The E3SM model runs were the most similar to each other and had

some noticeable differences with the observational dataset. While both datasets

identified the same six important features, the E3SM datasets consistently over-

weighted these features, with both ranking and magnitude discrepancies.

This work contributes to the broader climate analysis toolset by demonstrating

how explainable machine learning can be used to learn about complex datasets.

The work shows how physics-based models and ML can be used in tandem to

learn more about critical systems in the Earth’s climate. ML analyses like this

can enhance climate model evaluation to improve existing model development and

tuning practices. While more complex ML models proliferate, this work illustrates

one important reason to maintain interpretability and explainability. Rather than

simply demonstrating that discrepancies exist, analyses like this can help pinpoint

potential sources of the discrepancies and lead climate model developers to the

right place for refinement.

However, ML feature importance metrics are limited (Mandler and Weigand,

2024). The models themselves are subject to critical failures, such as various biases

(Mehrabi et al., 2021), Simpson’s paradox (Selvitella, 2017), and the Clever Hans

effect (Lapuschkin et al., 2019), which can harm prediction performance or even
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make them appear to have high predictive skill, whereas it performs poorly outside

the given training and testing datasets (Lee and Chen, 2025). Feature importance

itself can be misleading and failure-prone due to issues such as multicollinear-

ity between features (Cammarota and Pinto, 2021). Even when everything works

as intended, it is important to know that ML feature importance is not a causal

description of the data’s underlying generating process. However, it is rather a de-

scription of the trained model itself. (Parr and Wilson, 2021; Parr et al., 2024)

This research has been significantly extended and advanced with follow-on

work by Brown et al. (2025), where several coauthors from our original study de-

veloped a novel pathway detection methodology. They went beyond a comparative

analysis to create networks of connected features based on random forest feature

importance to relate climate quantities. Their work builds on our initial claim that

ML feature importance can be used to obtain insights into systems’ underlying

structure. The progression from feature importance comparisons to network con-

struction demonstrates the continued impact of our initial insights.

The work in this chapter has become a part of a broader literature on machine

learning for the Earth sciences (Labe and Barnes, 2022; Konya and Nematzadeh,

2024; Lao et al., 2024). In the subsequent chapters, I investigated causal inference

frameworks to understand underlying dynamics better.
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9.1.2 Causal Discovery for Climate Model Evaluation

Chapters 4 and 5 are complementary works where I explored applying a state-

of-the-art causal discovery algorithm for the Arctic sea ice system. Chapter 4

discusses the research framework and methodology, and Chapter 5 discusses the

implementation and results. This work extends the RFR feature importance ap-

proach in Chapter 3 to a causal discovery framework.

The PCMCI (Runge et al., 2019a) time series causal discovery algorithm was

applied to Arctic climate features that may explain sea ice extent. PCMCI produces

causal directed acyclic graphs (DAGs) that if its assumptions are satisfied, repre-

sent the estimated causal relationships between given features. While the RFR fea-

ture importance values describe what features are important, causal discovery can

help answer why relationships exist between features. Comparing causal graphs es-

timated from different datasets and data sources enables a more mechanistic com-

parison. It can answer whether two data sources are structurally similar.

I used the F1 score, the harmonic mean of precision and recall, as a similar-

ity metric for comparing estimated causal graphs. I found that all data sources

(observed and E3SM simulated) had similar graphs. However, the E3SM graphs

were more dense, implying that more features were interconnected. This seems

to corroborate our RFR feature importance finding that E3SM feature importances

were over-weighting features, but more rigorous analysis is needed to confirm that

connection more generally.
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While the F1 score is a good starting point for graph similarity, it cannot pin-

point where the graph differences are. I proposed further work to develop more

node-level comparison metrics to better understand structural similarities and dif-

ferences. I additionally recommended more subregional analyses—both the RFR

and causal analyses evaluated quantities spanning the entire Arctic, and more

meaningful insights may be gleaned from relating smaller regions within the Arc-

tic.

Developing a better understanding of the smaller-scale processes that accumu-

late to produce emergent phenomena in the Earth system was the impetus for the

work in Part II.

9.2 Part II: Discovery of Local Dynamics

9.2.1 Grid-Level Benchmarking of PCMCI

Chapter 6 developed grid-level space-time benchmarks for causal discovery meth-

ods and evaluated the PCMCI (Runge et al., 2019a) time series causal discovery

algorithm. PCMCI was developed for highly autocorrelated time series data. It

has been applied extensively in the Earth sciences (Runge et al., 2019c). How-

ever, its application methodology has been limited to regional analyses in which

Earth science time series are obtained from dimensionality reduction methods such

as weighted averages, principal component analysis (PCA), and related methods

(Runge et al., 2015c; Tibau et al., 2022).
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Our grid-level benchmark began with a 1D spatial grid and was extended to a

2D grid, for which each grid cell contained a time series with defined dependencies

on its immediate neighbors. Both were structured as vector autoregression models

(VARs), which enables a mathematically defined model that generates data and

maps directly to a ground-truth causal graph. Using graph similarity metrics to

compare PCMCI’s estimated causal graph with each dataset’s underlying VAR, I

found PCMCI struggled to estimate the graphs well, except when it had unreal-

istically high amounts of time samples per grid cell. In short, I determined that

significant algorithmic advances would be needed to apply causal discovery like

PCMCI at the grid-level.

The work presented computational advances as well. While using VARs for

systems modeling and causal discovery benchmarking is not new (Runge et al.,

2019d), my innovation was using them to model stable space-time dynamical sys-

tems with locally dependent grid cells. I produced gridded space-time data using a

sliding dot product with a local neighborhood dependence matrix (NDM). In that

way, they are similar to how cellular automata are defined, in which a single grid-

level rule determines complex global behavior.

9.2.2 CaStLe: Grid-Level Causal Discovery

In Chapter 7, I introduced CaStLe, a grid-level causal discovery meta-algorithm.

CaStLe addresses the fundamental challenge of causal discovery that I identified

previously: many space-time gridded datasets are high-dimensional in practice.
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High sample complexity reduces the power of causal discovery’s statistical esti-

mators. CaStLe remedies this by two central premises: underlying dynamics act

locally, each grid cell influences only its neighbors, and neighboring grid cells gen-

erally exhibit similar dynamics. Through these, CaStLe leverages locality and sta-

tionarity to collect informative spatial replicates for local causal structures, which

boosts efficiency and efficacy of the causal discovery task.

CaStLe produces a novel causal graph type, the causal stencil graph, which is

a spatially structured graph representing a Moore neighborhood of nodes, which

represent grid cells. The Moore neighborhood is a grid cell and its eight immediate

neighbors. The stencil graph describes which neighbors are causal parents of the

center node, enabling full representation of local causal structure.

CaStLe has two phases to estimate local grid-level structures. The first phase

reorganizes the data into a smaller spatial representation, which I name the Locally

Encoded Neighborhood Structure (LENS) in later work, which forms a 3×3 spa-

tial embedding without marginalizing any data points. This embedding captures

local causal structures by representing the Moore neighborhood allowing the de-

tection of dependencies from all adjacent directions. The LENS phase multiplies

the number of available samples through its collection of spatial replicates. Math-

ematically, this phase maps RM×N×T → R3×3×L on an M×N grid over T time

steps; L = T (M−1)(N−1) concatenated time series points.

The second phase is the Parent-Identification Phase (PIP), which applies an

adapted time series causal discovery algorithm to target identification of the causal
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parents of the LENS’s center cell. Through that, the it can be determined which

spatial neighbors influence the center cell. Any time series causal discovery algo-

rithm may be implemented in this phase, given that it can be adapted. While not

exhaustive of all existing algorithms, the adaptation has been trivial in our expe-

rience. Finally, once the PIP is applied to the LENS, the causal stencil graph is

estimated.

I demonstrated the efficacy of CaStLe on three benchmark problems: atmo-

spheric aerosol advection, the VAR benchmark presented in Chapter 6, and Burg-

ers’ equation, a partial differential equation (PDE) model of advection and dif-

fusion. First, CaStLe correctly reconstructed the stratospheric aerosol advection

dynamics from the 1991 Mount Pinatubo eruption with data from two climate

models. VAR benchmarks enabled a careful parameter study of many different

gridded systems with exact ground truth. It also contained a comparison of CaS-

tLed methods and alternative causal discovery approaches, in which CaStLe out-

performed all others. Finally, the study of Burgers’ equation demonstrated that

CaStLe can generally filter out diffusion “noise” to recover the primary transport

mechanism. It shows that CaStLe can be applicable in many advection-transport

systems, which are common in the Earth system.

Theoretical analysis showed marked improvement over the stat-of-the-art. Al-

gorithms based on the PC algorithm will be bounded by a computational complex-

ity of O(T p32p), whereas CaStLe is bounded by O(T p), for T time samples per

p grid cells. Our analysis of CaStLe’s sample complexity shows that its accuracy
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does improve as grid sizes increase. This is in contrast to traditional approaches,

which struggle more as grid sizes get larger.

CaStLe is generally applicable to physics-governed space-time systems that

satisfy the locality and stationarity assumptions. These include many processes

in Earth science, fluid dynamics, and other fields where effects propagate locally

through space and exhibit consistent or smoothly changing dynamics across re-

gions. It can be applied in extremely data-poor settings, where only short time

intervals are observed. It is especially valuable in settings in which grid-level dy-

namics define the phenomena under study and marginalization would destroy that

information. These include advective, transient, and non-periodic phenomena such

as volcanic eruptions, wildfires, and traveling weather fronts. CaStLe is a flexible

meta-algorithm, enabling implementation with today’s best causal discovery al-

gorithms and those of the future, including causal representation learning. It is

highly extensible, being adaptable to multiple variables, more than two spatial di-

mensions, longer time lags, and larger local neighborhoods.

CaStLe provides another path for physical model evaluation by elucidating

where and why behavior does not match intended dynamics. For the first time,

grid-level processes are recoverable with causal discovery, which opens the door

to future multi-scale analyses to determine how local structures give rise to emer-

gent global patterns. However, this initial version of CaStLe is univariate—it can

only estimate space-time dynamics of one quantity, such as aerosols. It would be

significantly more valuable estimating the space-time dynamics of multiple vari-
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ables and their interactions. This is precisely what Chapter 8 addresses.

9.2.3 M-CaStLe: Multivariate Grid-Level Causal Discovery

I followed the development of CaStLe with an extension enabling multivariate

analyses simultaneously with space-time structure discovery. Chapter 8 details

the methodological innovations making that possible. We adapted both phases of

CaStLe, developed a method for interpretability, and benchmarked M-CaStLe.

CaStLe’s LENS was adapted to include multiple variables per time series. The

mapping from the given gridded space to the multivariate LENS is represented by

the transformation RN×N×V×T →R3×3×V×L, where L= T (M−1)(N−1) denoted

the length of each concatenated time series. With this, multiple variables’ space-

time structures are captured. CaStLe’s PIP was adapted by allowing each of the

variables in the center grid cell of the LENS to be children and no other grid cells.

That allows for an adapted time series causal discovery algorithm to estimate the

multivariate space-time dynamics underlying the given data.

M-CaStLe was validated using the spatial VAR benchmark detailed previously

with a multivariate extension. I found that M-CaStLe significantly outperforms

the PC algorithm for grid-level multivariate causal discovery. It had remarkably

high precision, and its recall was mediated by the size of coefficients in each VAR.

Systems with more dependencies require smaller coefficients in order to be stable,

but the signals become more challenging to detect amid the noise.

M-CaStLe is the first causal discovery approach to enable grid-level causal dis-
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covery of multiple variables. This new capability can facilitate new research di-

rections in physical systems such as the Earth sciences, computational chemistry,

ecology, fluid dynamics, and pharmacokinetics. It presents many opportunities for

interdisciplinary collaborations to analyze systems in a new way.

9.3 Connections and Research Frontiers

The research detailed in this dissertation traces a methodological journey from cor-

relative machine learning approaches to mechanistic causal discovery frameworks

for complex physical systems, with an emphasis on Earth science. The work spans

multiple scales, progressing from regional analyses to tackling high-dimensional

grid-level dynamics. The primary contribution, CaStLe, accomplished grid-level

discovery for the first time by leveraging locality and stationarity principles—

simplifying the causal discovery task without sacrificing spatial information through

dimensionality reduction. Instead, CaStLe maintains critical spatial structure by

collecting informative spatial replicates. The resulting causal stencil graph de-

scribes local causal structures between grid cells in a highly interpretable format.

M-CaStLe enables a more comprehensive system understanding by extending ca-

pabilities to multiple variables. This work provides scientists with new tools to

discover how local dynamics give rise to emergent global phenomena by bridging

statistical learning with physical interpretation. The following explores these con-

nections and highlights promising research frontiers that build upon these method-

ological foundations.
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