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ABSTRACT

Complex systems are difficult to study because of their many interacting parts,
emergent phenomena, and feedback loops. These systems underpin all life on
Earth. We need improved tools for seeking an understanding of them. This body
of research presents my investigations into data-driven methods for understand-
ing complex systems, including my invention of a novel causal discovery meta-
algorithm for space-time gridded data. I demonstrated machine learning feature
importance and causal discovery capabilities for comparing simulated and ob-
served climate data. I developed a new benchmark for modeling space-time dy-
namics of locally driven phenomena and examined a prominent causal discovery
algorithm. Finding that contemporary causal discovery struggles with the high-
dimensionality of space-time gridded data, I developed Causal Space-Time Stencil
Learning (CaStLe), a causal discovery meta-algorithm for recovering the space-
time evolution of advective phenomena. Finally, I extended CaStLe to recover
multivariate space-time dynamics. This research enhances scientists’ capabilities

to explore and understand complex systems in our universe.
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7.1 Schematic overview of the key elements of CaStLe and the process
followed in its application to Mount Pinatubo’s eruption of strato-
spheric aerosols. Beginning with Earth system model output, Step
1. 1is to collect stratospheric wind and aerosol data. Step 2. is to
apply our novel CaStLe meta-algorithm to the aerosol data to obtain
a causal graph describing the space-time evolution of the aerosols.
Finally, we use the wind fields to help validate the causal graph re-

sultsin Step 3.. . . . ...

Xvi



7.2 Ilustration of CaStLe (Algorithm 1) as applied to space-time data
on a 4x4 grid. Step A (§7.6.3): for every interior grid cell, its 3x3
(Moore) neighborhood is selected. (Note, all four 4x4 grids in the
second panel are identical.) Step B (§7.6.3): Data are represented in
a reduced coordinate space obtained by appending time series from
each neighborhood according to its position relative to the neighbor-
hood’s center. Step C (§7.6.3): during the Parent Identification Phase
(PIP), a causal discovery algorithm is used to estimate the parents of
the center time series; the resulting graph forms the causal stencil.
Step D (§7.6.3): the estimated stencil is expanded to its equivalent
representation in the original space. Note that each time chunk (col-
ored intervals in the center panel) in the reduced space corresponds
to an interior grid cell of the original data, and that each edge in the
final causal graph reflects to a stencil edge learned during the PIP.

See §7.6.3fordetails. . . . . . . .. ... ...
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7.3 Application of CaStLe-PC-Stable to HSW-V simulation of the 1991
Mt. Pinatubo eruption. The stencils estimated by CaStLe (white)
capture the underlying high-altitude wind fields (green) using only
satellite-measured AOD, with near perfect accuracy in high aerosol
regions (red-orange). Autodependencies are shown with black nodes
where grid cells cause themselves, and gray nodes where there is
no autodependence. All links represent a six hour time lag, the
time resolution of the HSW-V dataset. On longer horizons (bottom
row), CaStLe is able to recover equatorial wind currents as far away
as South America, half-way around the world from Mt. Pinatubo
(white triangle). CaStLe accurately identifies the prevailing west-
erly atmospheric winds because it was able to identify the space-
time dependence between neighboring grid cells. Additional details

are givenin Section 7.7. . . . . ... oo
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7.4 Causal maps inferred from the PC algorithm applied naively to all
grid cells and CaStLe’s equivalent results immediately to the west
of Mt. Pinatubo; a 35 x 35 grid between —20.00° to 50.00°N and
55.00° to 125.00°E in a 8.5 day span after the eruption. All links
represent a six hour time lag, the time resolution of the HSW-V
dataset. As expected, PC struggled with the high dimensionality
and the discovered dependencies do not conform to the ground-truth
understanding that aerosols advected towards the west. It also fails
to identify local dynamics, instead drawing most connections over
great distances. The PC analysis was computed in 729 minutes on
1,600 grid cells, while the CaStLe analysis was computed in 0.46

secondsS. . . . . . .
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7.5 Application of CaStLe-PC-Stable to E3SMv2-SPA simulation of the
1991 Mt. Pinatubo eruption. The stencils estimated by CaStLe
(white) capture the underlying high-altitude wind fields (green) us-
ing only total aerosol optical depth (AOD). Autodependencies are
shown with black nodes where grid cells cause themselves, and gray
nodes where there is no autodependence. All links represent a one
day time lag, the time resolution of the E3SMv2-SPA dataset. The
heatmap depicts AOD from any source at 50 hPa. The top panel
depicts learning from the first 20 days after eruption, which began
on day 15. The bottom panel depicts learning approx 6 months af-
ter the eruption over a 20-day time period. In the more challenging
setting of the fully-coupled E3SMv2-SPA model, our results in the
first weeks are still generally consistent with those in HSW-V pre-
sented in Section 7.7.1, showing that CaStLe is largely robust to
greater complexity. In the bottom panel, the aerosols and winds are
in a different regime. CaStLe stencils are still consistent in the trop-
ics and now begin to recover dynamics pushing aerosols northwards
above central Asia and southwards through western North America.
A more complex model and smaller block sizes illustrate more nu-
anced dynamics, and there is more to learn from these, however, we

leave deeper atmospheric dynamics analysis to future work. . . . . .

XX



7.6 Comparison of CaStLed and non-CaStLed causal discovery approaches
on linear-Gaussian dynamics, including Granger causality or FullCI
(orange), PC (green), PCMCI (red), and DYNOTEARS (purple), as
well as a statistical model of the data generating process (blue) pre-
sented with both MCC and F; metrics. In the low-sample size regime
(T=10, left) CaStLed approaches can accurately recover the under-
lying causal graph, with performance increasing on larger grid sizes
(solid lines); by contrast, non-CaStLed approaches are unable to per-
form better than mere chance (dashed lines). Even a model based on
the underlying data generating process (Sparse VAR, blue) is signifi-
cantly outperformed by its CaStLed counterpart. In the high-sample
size regime (7=150, right), non-CaStLe approaches have improved
performance but still compare unfavorably with their CaStLed coun-

terparts. . . ... L e e e 218
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D1 Application of CaStLe-PC to advection estimation from non-linear

PDE dynamics. In the left panel, the first three columns depict real-
izations of Burgers’ equation under different advection-to-diffusion
regimes; the fourth column depicts the causal stencil identified by
CaStLe-PC; and the final column compares the estimated advection
angle with the true advection angle. The right panel depicts the accu-
racy of CaStLe-PC under various signal-to-noise conditions. Each
combination of advection and diffusion rates were tested with 500
angles sampled uniformly from [0°,360°). In low-diffusion (high
SNR) scenarios, CaStLe-PC can identify the underlying advection
clearly (top row of left panel and yellow-green columns in right
panel). By contrast, in low-advection (low SNR) scenarios, CaStLe-
PC struggles to accurately identify the underlying advective dynam-
ics (bottom row of left panel and blue bars in right panel). Even
in highly diffusive scenarios, CaStLe-PC is able to accurately esti-
mate the underlying advection when it is sufficiently strong (around
M /c > 20) as shown in the middle row of the left panel. Additional

detailsare giveninD. . . . . . . .. ...
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Fl

F2

PCA study of Burgers’ equation solution (6 = 45°, M =6, ¢ =
0.05). Four empirical orthogonal functions (EOFs) capture ~91% of
variance, with spatial patterns (left) and temporal evolution (right).
The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known direc-

tional advection process in the underlying PDE, highlighting limita-

tions of this approach for local causal structures in space-time systems.246

PCA-Varimax study of Burgers’ equation solution (6 = 45°, M =
6, ¢ = 0.05). Four empirical orthogonal functions (EOFs) capture
~91% of variance, with spatial patterns (left) and temporal evolution
(right). The bottom panels show explained variance distribution and
PCMCI causal graph, which fails to accurately represent the known
directional advection process in the underlying PDE, highlighting
limitations of this approach for local causal structures in space-time

SYSIBIMIS. . . v v i e e e e e e e e e e e e e
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F3

F4

PCA study of the HSW-V dataset, in the time interval 21 days post-
eruption. Four empirical orthogonal functions (EOFs) capture ~85%
of variance, with spatial patterns (left) and temporal evolution (right).
The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known direc-
tional advection process in the underlying system, highlighting limi-

tations of this approach for local causal structures in space-time sys-

PCA-Varimax study of the HSW-V dataset, in the time interval 21
days post-eruption. Four empirical orthogonal functions (EOFs)
capture ~85% of variance, with spatial patterns (left) and tempo-
ral evolution (right). Since varimax rotation does not preserve the
explained variance ordering, we reordered EOFs according to the
identified centroid’s longitude. The bottom panels show explained
variance distribution and PCMCI causal graph, which fails to accu-
rately represent the known directional advection process in the un-
derlying system, highlighting limitations of this approach for local

causal structures in space-time systems. . . . . . . . .. . .. ...
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F5

F6

PCA study of the E3SMv2-SPA dataset, in the time interval of days
15-35. Nine empirical orthogonal functions (EOFs) capture ~87%
of variance, with spatial patterns (left) and temporal evolution (right).
The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known direc-
tional advection process in the underlying system, highlighting limi-

tations of this approach for local causal structures in space-time sys-

PCA-Varimax study of the E3BSMv2-SPA dataset, in the time interval
of days 15-35. Nine empirical orthogonal functions (EOFs) capture
~87% of variance, with spatial patterns (left) and temporal evolution
(right). Since varimax rotation does not preserve the explained vari-
ance ordering, we reordered EOFs according to the identified cen-
troid’s longitude. The bottom panels show explained variance distri-
bution and PCMCI causal graph, which fails to accurately represent
the known directional advection process in the underlying system,
highlighting limitations of this approach for local causal structures

In space-time Systems. . . . . . . . . ...l e e

XXV



H1

H2

I1

Results of CaStLe applied to HSW-V 21 days after the Mt. Pinatubo
eruption with three different block sizes, 12° x 12°, 20° x 20°, and
60° x 60°. We find that results are generally consistent over the same
area for each block size, with smaller block sizes allowing for addi-
tional nuance in some areas. Note that the 20° x 20° block panel is
similar to the results shown in Figure 3, but more longitudes were

added to get a space factorable by more integers, such as 12, 20, and

The PC algorithm and CaStLe applied to E3SMv2-SPA in the 15° x
15° block between 15.00° to 30.00°N and 75° to 90°E. from the
day of the eruption to 20 days later. PC struggles to estimate an
interpretable and physically meaningful graph of the dependence
structure in this area. In contrast, CaStlLe is able to identify an in-
terpretable dependence structure that represents the local dynamics
withinthe space. . . .. . ... ... ... ... ... ...
Results of using a coarsened temporal resolution (two-daily) in the
E3SMv2-SPA study. CaStLe finds many fewer links in this setting.
It is clear that when time is too coarse, causal structures fail to be
detected. However, the remaining links that are found are largely
true positives, suggesting that CaStLe is relatively robust to coarser

time sampling. . . . . . . ...

XXVi



I2  Results of applying CaStLe to a longer time interval from day 15 to
65. CaStLe identifies more links, indicating it is learning too many
causal structures in the data, but still finds many of the true positives
we found in our initial study. This indicates that many of the blocks
in this interval have temporal causal stationarity, leading CaStLe to
perform adequately. . . . . . . . .. ... oL 258
I3 Results of applying CaStLe to a time interval that is too long and
contains too many causal structures, day 15 to 200. We see that
CaStLe identifies many links in each block. Comparing them to
the winds is ineffective because the wind arrows are averages over
the whole period rather than reflections of how they change in time,
which CaStLe is learning from. With such a density of links, it is
further challenging to know which are correct and which are spurious. 258
[4 Results of using a coarse grid (9°) in the E3SMv2-SPA study. We
find that CaStLe performs very well overall. There are few false
positives and it clearly captures the overall advection dynamics of

the system. . . . . . .. .. L 260
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16

Results of using a coarse grid (18°) in the E3SMv2-SPA study. CaS-
tLe performs well in the early time interval, clearly identifying the
east-to-west advection pattern. However, in the later time interval,
it finds no spatial structures apart from autodependencies in each
block. This is likely because the east-to-west advection is weaker in
this period and the grid is too coarse to capture the narrower bands
of northward advection that dominates the interval. . . . . . . . ..
Results of using block sizes too large in the E3SMv2-SPA study. We
see that many true positives are found, but many false positives as
well. CaStLe seems to identify multiple contradictory causal struc-
tures within many cells, which may lead to more spurious links dis-
covered. Even where links appear correct, they are largely uninter-

pretable in the presence of contradictions. . . . . . . ... ... ..
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J1

K1

K2

Application of CaStLe-DYNOTEARS to HSW-V simulation of the
1991 Mt. Pinatubo eruption. The stencils estimated by CaStLe
(white) capture the underlying high-altitude wind fields (green) us-
ing only satellite-measured AOD, with near perfect accuracy in high
aerosol regions (red-orange). On longer horizons (bottom row), CaS-
tLe 1s able to recover equatorial wind currents as far away as South
America, half-way around the world from Mt. Pinatubo (white tri-
angle). CaStLe accurately identifies the prevailing westerly atmo-
spheric winds because it was able to identify the space-time depen-
dence between neighboring gridcells. . . . .. ... ... .....
Matthews correlation coefficient (MCC) comparison between CaS-
tLed and non-CaStLed causal discovery approaches on 2D VAR dy-
namics for each sparsity level, including Granger causality (orange),
PC (green), PC-Stable-Single (cyan), PCMCI (red), DYNOTEARS
(purple), and a statistical model of the data generating process (blue).
See Section 7.8.1 for experimental details. . . . . . .. .. ... ..
F1 score comparison between CaStLed and non-CaStLed causal dis-
covery approaches on 2D VAR dynamics for each sparsity level, in-
cluding Granger causality (orange), PC (green), PC-Stable-Single
(cyan), PCMCI (red), DYNOTEARS (purple), and a statistical model
of the data generating process (blue). See Section 7.8.1 for experi-

mental details. . . . . . . . . .. ...
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8.1

8.2

A conceptual diagram of the Locally Encoded Neighborhood Struc-
ture (LENS) that CaStLe constructs for learning underlying local
causal dynamics in gridded data. This encoding transforms the orig-
inal grid space into a local neighborhood structure without marginal-
ization, preserving all of the local relationships in the gridded time
seriesdata. . . . ... Lo
A demonstration of the full CaStLe process to produce a causal sten-
cil graph on an example input 4x4 gridded space-time system. In
the Locally Encoded Neighborhood Structure (LENS) phase, neigh-
borhood information is collected from each of the interior grid cells,
which are then concatenated to form the Locally Encoded Neighbor-
hood Structure (LENS). Finally, the PIP phase applies an adapted
time series causal discovery algorithm to learn the space-time par-
ents of the center node. The learned stencil depicts the underlying

space-time structure of each grid cell in the original data. . . . . . .
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8.3

8.4

A schematic diagram of the input, computational phases, and output
of Multivariate Causal Space-Time Stencil Learning (M-CaStLe).
Similar to CaStLe’s procedure (c.f. Figure 8.2), the first phase col-
lects local neighborhood information into the Locally Encoded Neigh-
borhood Structure (LENS), which now collects information for each
variable’s time series in each grid cell. The second phase applies the
Parent-Identification Phase (PIP) to every variable at every position
in the Locally Encoded Neighborhood Structure (LENS) to deter-
mine which variables cause the center variables from each location
in the Locally Encoded Neighborhood Structure (LENS). Finally,
the resulting multivariate stencil graph can be decomposed into the
spatial graph and reaction graph for improved interpretability and
potential analysis. . . . . . . . ... ... Lo
Showing precision and recall alongside predicted positive rate, a
measure of how often a positive is predicted among all other predic-
tions. As variables increase, the predicted positive rate decreases,

which diminishesrecall. . . . . . . . . . . . . .. ... ... ...
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8.5 A comparison between Multivariate Causal Space-Time Stencil Learn-
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ing (M-CaStLe)-PC and PC considering the F; score for V =4 as
the number of links increases on a 4x4 grid. Multivariate Causal
Space-Time Stencil Learning (M-CaStLe)-PC outperforms PC in ev-
ery case because PC struggles with the very high dimensionality of
the systems since it is naive to the spatial and variable structures. . .
In simple chains of multivariate stencils, even with an extremely
large number of variables, recall can be captured perfectly if the sig-
nal strength is large enough. . . . . . . ... ... ... .. ....
Parameter ranges used in our experimental design, showing the link
count distribution for each grid size and variable count combination.
Each horizontal line represents the span of network links tested, with
each parameter combination having at least 30 replicate experiments
(n values shown). Our experiments covered grid sizes from 4 x4 to
10x 10 and 1-6 variables per grid. All experiments used 1000 time
samples and coefficient values between 0.1 and 1.0. The network
density, d, defined as the ratio of actual links, L, to maximum possi-

ble links d = , where d € (0,...0.5]. Not all density values

L
(3x3xV?)
produced 30 stable systems within our computational constraints,
particularly at higher densities. This visualization shows which pa-
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A8 The relationship between link coefficients and the number of links
present. As the number of links increases, maximum (blue) and min-
imum (green) link coefficients show a clear decreasing trend, with
their distribution becoming narrower and centered around lower val-
ues. This reveals that networks with more links have weaker signals,
suggesting that highly interconnected systems cannot be stable with
large dependencies. . . . . . . . .. ..o oo

B9 Comparisons between Multivariate Causal Space-Time Stencil Learn-
ing (M-CaStLe)-PC and PC considering the F; score, precision, and
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tivariate Causal Space-Time Stencil Learning (M-CaStLe)-PC out-
performs PC in every case because PC struggles with the very high
dimensionality of the systems since it is naive to the spatial and vari-
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1 Introduction

The principal function of science is to explore and explain our universe. To
fulfill this charge, scientists seek to answer the questions of 'how?’ and 'why?’
In this pursuit, we strive to expand human knowledge, improve the well-being
of all life, and develop practical applications that transform our world. Complex
systems are fundamental to science because they represent the intricate reality of
our world. By their nature, complex systems are difficult to study because of their
many interacting parts, emergent phenomena, feedback loops, and tipping points.
While many complex systems underpin life on Earth, our tools for studying them
are limited.

This dissertation investigates the state of the art in data-driven structure learn-
ing methodologies for explaining and understanding complex systems, particularly
for space-time Earth systems. As I use it in this work, structure learning is a class
of methods that identify underlying dynamics, or structure, from data. In Part I,
I outline the basics of the structure learning task and study how machine learning
feature importance and causal discovery can be used to estimate structure in the
Earth system.

Finding that the state-of-the-art primarily tackles global-scale emergent struc-

tures, Part II focuses on identifying local-scale structures in gridded datasets. This



work begins with benchmarking causal discovery algorithms for learning grid-level
space-time dynamics. It corroborates that causal discovery algorithms struggle
with datasets containing hundreds of thousands of grid cells, each with several
orders of magnitude fewer observations in time. This imbalance is one aspect of
the curse of dimensionality (Bellman, 1957; Bithlmann and Geer, 2011), where
many variables relative to sample size limits conventional statistical methods and
renders many forms of inference, including causal discovery, unreliable without
dimensionality reduction.

To resolve that challenge, I developed a novel method, Causal Space-Time Sten-
cil Learning (CaStLe), that significantly improves the performance and efficiency
of causal discovery in local space-time dynamics. It does so via two parts: (i) the
Locally Encoded Neighborhood Structure (LENS) reorganizes the given data such
that the high-dimensionality of gridded data is eliminated and the sample com-
plexity of the underlying grid-level structure is maximized; and (ii) the Parent-
Identification Phase (PIP), which selectively applies causal discovery to minimize
the search space while side-stepping spatial confounding. The initial implementa-
tion of CaStLe was univariate, in that it could only identify the space-time struc-
ture of a single quantity of interest. This work concludes with extending CaStLe to
Multivariate Causal Space-Time Stencil Learning (M-CaStLe), which adapts the
LENS and PIP to capture space-time structure between multiple quantities of in-

terest.



1.1 The Pursuit of Causal Discovery

The scientific method provides consistent rigor to answer the "how?’ and 'why?’
questions. With it, we design experiments, collect data on what we observe, and
determine what we can learn from those data. Causal inference is the process
of answering these questions and determining when such an answer is attainable.
Pearl and Mackenzie (2018a) suggest that causal inference is conducted via three

operations, which he calls the Ladder of Causation:
rung one: seeing (observing and collecting information)
rung two: doing (intervention and experimentation)
rung three: imagining alternatives (counterfactual analysis)

Causal discovery is an algorithmic methodology for finding causal hypotheses and
eliminating spurious correlations in data, grounded in strict assumptions that repre-
sent domain expertise. Machine learning is typically classified as rung one, seeing;
it produces observational distributions from which predictions of future states can
be made. Causal graph discovery is rung two, doing; it produces interventional
distributions in the form of causal models. These can be used to reason about the
effects of intervention. Finally, structural causal models and digital twins are ex-
amples of rung three, because they enable one to reason about the implications of
alternative scenarios. (Peters et al., 2017)

Statistical and machine learning are standard toolsets to quantify and predict



relationships when only observational (non-manipulated) data is available. Statis-
tics can describe data and inform us of the underlying distribution, but it generally
defers further inference (Pearl and Mackenzie, 2018a). Correlated relationships
between variables are bidirectional and often ambiguous. Since correlation does
not imply causation, one can only make stronger inferences with stronger assump-
tions.

Machine learning models capture patterns rather than learn to understand under-
lying mechanisms by computing statistics and fitting functions that separate data.
The algorithms learn functions that map input to output, predicting a probabilistic
distribution. Its primary goal is to model the given data to predict the classification
or future values, 1.e., regression. Machine learning has proven to be an informative
and useful tool, but prediction is only correlation and, thus, also does not imply
causation. The nascent field of explainable machine learning is bearing fruit in
some domains. However, it is also limited to descriptive statistics and correlated
information. Using explainable machine learning for elucidating the dynamics in
a system may be a promising starting point towards finding causality when ground
truth is nebulous. Later, in Chapter 3, I will discuss an analysis with random forest
feature importance (Nichol et al., 2021).

The most reliable, though still imperfect, method of estimating causal rela-
tionships 1s with the randomized control trial (RCT) framework. In conducting
an RCT, scientists make tacit assumptions called identifiability conditions: the

causal Markov condition, ignorability/exchangeability, positivity/overlap, no in-



terference, and consistency. Ideal RCTs meet these assumptions by design; how-
ever, errors or biases, such as selection bias, may break identifiability. Hernan and
Robins (2020) explain the remaining assumptions for causal inference in detail. I
define the causal assumptions important for causal discovery in Section 1.3.1.

RCTs are a powerful tool, but they are not feasible in many cases, such as when
randomizing treatment is unethical, impossible, or too expensive or inconvenient.
One such example is the Earth science domain. In geophysics, many natural events
are impossible to conduct ourselves, i.e., we cannot make an earthquake occur. In
other fields, such as atmospheric science, we cannot ethically intervene randomly
without fully understanding the downstream impacts of each intervention, e.g.,
stratospheric aerosol injection for solar radiation management. We have one Earth,
and we cannot afford to disrupt it carelessly.

In some cases where RCTs are infeasible, we can conduct observational stud-
ies with frameworks like the target trial (Rubin, 1974; Robins, 1986; Dorn, 1953;
Feinstein, 1970; Dawid, 2000). However, this relies upon enough sampling to mea-
sure a representative distribution of possible outcomes, posing another challenge
for causal inference in Earth sciences: we can only observe one instance of the
possible outcomes of the Earth’s dynamics. One solution may lie in simulations,
and numerical Earth system models (ESMs) are an ongoing research area. How-
ever, their complexity makes models imperfect, computationally expensive, and
challenging to evaluate.

Founded on principles from path analysis (Wright, 1921), contemporary causal



discovery is developing into a rigorous mathematical framework, primarily due to
work by Rubin (1974); Spirtes, Glymour, and Scheines (1993); Pearl (1995a); Pe-
ters, Janzing, and Schlkopf (2017). This framework can mathematically describe
the causal questions asked, counterfactuals, interventions, relevant variables to
measure, and potential answers to the causal questions. In the past two decades, al-
gorithms have been designed to leverage this framework for reconstructing causal
graphs or, interchangeably, causal networks. We can compute statistical relation-
ships and make strict assumptions with observational data and the true underly-
ing causal structure to reconstruct the causal structure that generated the observed
data. These assumptions are also known as the identifiability conditions in causal
inference. Algorithmically reconstructing causal graphs is called causal discovery,

causal network learning, or causal learning.

1.2 Statistical Learning

Peters et al. (2017, p.46) write that “formally, learning causal models is substan-
tially different from the [statistical] learning scenario because it aims at inferring
a model that describes the behavior of the system under interventions and not just
observations taken from the same distribution. Therefore, there is no straightfor-
ward way to adopt arguments from statistical learning theory, to obtain a learning
theory for causal relations.” Statistical machine learning generally aims to learn a
function that fits given data, and we hope it can extrapolate from unseen data. Ex-

plainability tools, either derived directly from the model (e.g., decision trees and



random forest Gini importance) or many models trained on permuted data, funda-
mentally describe the models alone, rather than the true underlying dynamics in
the data.

Tautologically, if the goal is to identify and learn about the dynamics in a sys-
tem, then causality is fundamentally the only way to reason about those dynamics.
As Pearl and Mackenzie (2018a) state, contemporary machine learning fundamen-
tally cannot consider the causality in a system because it lacks a language for
causality, i.e., counterfactuals and interventions. While we hope a trained model
has learned some true underlying function in the data’s generating process, it is
causally unverifiable. Showing that a model consistently handles new data well in-
creases the confidence that the model has generalized the true causal process, but

the error in a model is merely a correlated observation; it does not verify causality.

1.2.1 Explainability in Machine Learning

The black-box nature of most machine learning models poses a big challenge for
interpreting and validating their results. Trustworthy machine learning and fair-
ness in machine learning efforts have turned to uncertainty quantification and ex-
plainability methods to validate further, and to understand how and why a particu-
lar model has been fit. Some machine learning methods have an inherent explain-
ability, such as decision trees and random forests (Breiman, 2001; Nembrini et al.,
2018). Because these models are built iteratively, Gini impurity, the probability of

misclassifying an observation, is computed for every node split in the trees. Gini



impurities can be aggregated after learning to produce a Gini importance, or fea-
ture importance, for each feature. These importance values measure how much
each feature contributed to reducing the model’s error on average.

Other machine learning models must use ad hoc and post hoc methods to mea-
sure the importance of features for model learning. Examples include Shapley
values (Lundberg and Lee, 2017), Locally Interpretable Model-Agnostic Explana-
tions (LIME) (Krishnapuram et al., 2016), SHapley Additive exPlanations (SHAP)
(Lundberg and Lee, 2017), and DeepLIFT (Shrikumar et al., 2017). Shapley val-
ues, LIME, and SHAP, are model agnostic methods, so they can be applied to sup-
port vector machines, random forests, neural networks, etc. DeepLIFT is a mem-
ber of a class of methods specifically for neural networks. All of these function by
measuring the contribution of each feature to the model or a specific prediction.
They train many models and vary whether each feature is included by permuting
each feature.

Explainability may illuminate causality with respect to the model, but it cannot
illuminate causality within the studied system. That is evident because explainabil-
ity methods make no assumptions about the system itself, nor the data observed.
The methods and the models have no way of knowing whether the data and fea-
tures are representative of the system. They are only aware of the models and data
given. Because of this, inferences from these will always fail to rise above making
purely associational observations of the given data.

In general, it is acceptable that explainability methods fail to elucidate causality



within a system because they make no claims beyond a rigorous attempt at ex-
plaining the given model. To these methods, the generating process is not what
created the input data but the model itself. They fundamentally address a different

question from causal discovery.

1.2.2 Bayesian Networks

Judea Pearl wrote in his book, The Book of Why, that he initially made the same
mistake as many philosophers and economists, and that I would suggest is made
by many in machine learning now: putting probability first and causality second
(Pearl and Mackenzie, 2018a, p.50). He thought that uncertainty was the most
important thing missing from artificial intelligence and insisted that uncertainty be
represented by probabilities. With that in mind, he developed Bayesian networks
to reason under uncertainty.

Bayesian networks encode conditional probabilities between events. Given that
we observe certain probabilities of events, Bayesian networks can compute the
likelihood of other events or whether certain facts are true or false. This computa-
tion is called belief propagation.

Pearl says that while Bayesian networks are still popular for reasoning under
uncertainty, they fail to accomplish what he was after: identifying and quantify-
ing causality. Bayesian networks fail to climb beyond rung one in his Ladder of
Causation. He says, “Bayesian networks inhabit a world where all questions are re-

ducible to probabilities, or degrees of association between variables...” (Pearl and



Mackenzie, 2018a, p.51). Pearl solved this problem after putting aside Bayesian
networks to develop structural causal models (SCM) and the Do notation which
provide a mathematical language for writing down what we know and what we
want to know. His Do-Calculus (Pearl, 2012) enables us to compute counterfactual
and interventional distributions from observational data, as opposed to probabilis-
tic distributions alone.

Bayesian networks are quite similar to causal networks, however. Pearl (1995b)
and Pearl and Mackenzie (2018a) write about how to transition from a Bayesian
network to a causal network in. Bayesian networks’ probabilistic and belief prop-
agation properties are still valid in causal networks. The main difference is in how
they are constructed. Bayesian networks are a graphical form of conditional prob-
ability tables.

A causal network changes the language of the relationships between nodes; the
meaning of their construction and interpretation change. Rather than a relationship
between nodes indicating that they probabilistically coincide, in a causal network,
it indicates which node another node “’listens’ to before choosing its value,” (Pearl
and Mackenzie, 2018a, p.129). The listening analogy describes the causal assump-
tions, i.e., the knowledge one has of the system. A missing link between nodes de-
notes that the two are independent in both Bayesian networks and causal networks.
Though, in a causal network, a missing link may also indicate two nodes are in-
directly independent. As Pearl notes, this implies that causal assumptions cannot

be made-up and can be falsified against the observed data. Pearl’s transition from
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Bayesian networks to causal networks coincided with the work of Spirtes and Gly-
mour’s (1991) development of causal discovery, which is the reconstruction of the

causal network from observational data.

1.3 Causal Network Learning

In this work, I will focus on conditional independence-based causal network learn-
ing! (Spirtes et al., 1993; Runge et al., 2019a) for reconstructing causal graphs.
Time series adaptations are well suited for the stochastic, highly autocorrelated,
and high-dimensional data in Earth science (Runge, 2018a; Runge et al., 2019a).
Other forms of causal discovery include nonlinear state-space methods (Arnhold
etal., 1999; Sugihara et al., 2012), and structural causal models (Spirtes and Zhang,

2016a; Peters et al., 2017).

1.3.1 Definitions, Notations, and Key Causal Assumptions

Causal Graphs

For a multivariate time series X, X! denotes the time series of the i variable,
X/ _ denotes the time series lagged by 7 time steps, and X;” = (X;_1,X;_»,...) are
lagged time series of X, representing its temporal parents.

A causal graph, or a causal network, is a directed acyclic graph (DAG) or
partially-directed acyclic graph (PDAG) that encodes the causal structure between

variables in a system. Using DAGs to represent causal relationships is credited to

ICausal network learning is also known as “causal discovery,” “causal graph discovery,” and “structure learning,”
and I will use these terms interchangeably throughout this dissertation.
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Pearl (1995a, 1998). A causal time series graph adapts the causal DAG to incorpo-
rate time lags. Each variable has a node for the original, present time ¢, and every
time lag, t — 7. This is theoretically an infinite graph, but in practice, we truncate
the graph to a maximum time lag, T,4x.

A link between variables in a causal graph, G, marks a dependence between
two variables. Variables X! _ and X,j are connected by a lag-specific directed link,

X . — th € G for 7 > 0, if and only if
XX | (XX eD), (1.1)

where 4 denotes statistical dependence (L would denote independence). Thus,
Equation 1.1 can be read as “th is dependent on X' __, conditional on [X;, ex-
cluding the set {X! _}].” Autodependencies are links where i = j. Links from X/
to th are called contemporaneous links. Some algorithms represent these with an
undirected edge in the graph, others can use collider rules to possibly orient these
(Runge, 2020; Spirtes et al., 1993).

The parents of a node, X, i in G, are mathematically written as

2(X)={x} .. x*cX,t>0xF = X}. (1.2)

D-separation

Independence between nodes within a graph is called d-separation, for directed-

separation, or sometimes just separation. It tells us where and when association
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can flow, or be measured, between two nodes. If two nodes are not d-separated,
then their data will be correlated. This is an important property for interpreting
graphs, but with the assumptions detailed in the following section, we can infer the
graph from measured dependencies in data.

To explain d-separation, we first need to explain how association flows between
variables in a causal graph. The rules of d-separation operate on the three main
components in a causal DAG: the chain, (X - Y — Z — ...) and (... < X «
Y < Z); the fork, (X <~ Y — Z); and the collider or V-structure, (X — Y < Z).
In chains and forks, association flows between all variables. For the chains/fork
example above, X 'Y 7. Note that the two chains and the fork all have the
same independence relationships. This set of independence relationships represent
a Markov equivalence class of causal graphs.

Dependence is transitive, so we also have that X MZ. In colliders, association
flows only between the parents (i.e., X and Z here) and the child (i.e., Y) node.
Thus, in the collider example above, X Il Z, but X MZand ZHY.

When we condition on variables, we say they are blocking variables because
they may block the flow of association. When a variable is conditioned on, or
blocked, in chains and forks, they no longer allow the flow of association between
the variables. In this way, we can “close” chains and forks. In the case of the
chains and fork above, if we condition on Y, then Y is blocked, and we get the
dependence relation X Il Z | Y. On the other hand, when the child node in a col-

lider is conditioned upon, we have the opposite; colliders “open,” and association
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flows between parents. In the example above, when we condition on Y, we get the
relationship X 47 | Y.

From this, the definition of d-separation is as follows:
Nodes X and Y are d-separated given a conditioning set S, with X,Y ¢ S, if and

only if all paths between X and Y are blocked, denoted

XY |8, (1.3)

where S may be empty. D-separation applies to the children of nodes as well. If Z
in the collider above had a child node, W, then Z and W would be d-separated just

as X and Z are d-separated.

Causal Assumptions

Like many statistical machine learning approaches, causal discovery has specific
assumptions, some that depend on the algorithm and the data. In addition, there are
three untestable assumptions and require domain expertise to safely assume: the
causal Markov condition, faithfulness, and causal sufficiency. These assumptions
represent the domain expertise required to infer beyond mere statistical inference
to answer causal questions. They are summarized below, and are detailed further in
Runge (2018a), which includes clear examples for each assumption that illustrate
how algorithms can infer incorrect links when assumptions are not met.

The causal Markov condition is necessary for all independence-based meth-

ods. It states that if and only if the joint distribution of a time series process, X,
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with the true causal graph G,

X, \Py, =Yy | Py, = X\ Py, LY | Py, (1.4)

for all ¥; € X;, with parents &,. Essentially, this states that d-separation in the

graph implies independence in the data. The contraposition is implied:

X \ P ALY, | Py, = X7\ Py, AT, | Py, (1.5)

The faithfulness assumption guarantees that the graph contains all conditional
independence relationships that the causal Markov condition implies. A causal
graph is faithful if and only if for the joint distribution of a time series process, X,

with the true causal graph G, for all disjoint subsets of nodes Y,Z,S C G

XY_J_LXZ|XS:>Y[><IZ|S. (16)

This states that d-separation is implied by independence. The contraposition is
also implied,

YHZ|S = Xy MXz|X;s. (1.7)

Causal sufficiency is often the more difficult to assume in open and complex
systems. It assumes that all common causes of two or more variables are included
in the analysis. Formally, a set of variables, S, is causally sufficient for a process,
X, if and only if every common cause, or parent, of any two or more variables in

W, is included in W, or has some value for all units in the population.
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In this work, we are primarily interested in time series data and time-lagged
relationships, and these methods require the time-order assumption: that the past
causes the future, causality cannot travel faster than the speed of light, and that the
future cannot cause effects in the past. Depending on the algorithm, assumptions
for stationarity and dependency type are necessary. Glymour et al. (2019) argue
that assuming nonstationarity may be allowed in some cases and could even be
leveraged as more information. However, as Runge (2018a) notes, stationarity

may be indicative of a confounding variable that violates causal sufficiency.

1.3.2 Consistency

Consistency is an important trait of a causal discovery algorithm. If an algorithm
is consistent, it has been proven to converge to the true causal graph in the limit
of infinite sample sizes. Each algorithm will be defined in part by a set of causal
assumptions that are integral to the proof. A common set of those assumptions are
described in Section 1.3.1.

Some algorithms, such as conditional independence-based approaches, require
additional statistical assumptions. For example, conditional independence-based
algorithms testing with a non-parametric regression independence test will need to
assume that the function estimator converges correctly, that the noise in the model
1s additive and independent, and that the unconditional independence test of the
residuals converges.

Universal consistency is defined for iterative causal algorithms (Runge, 2018a):
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Denoted by G,,, the estimated graph of some causal estimator from a sample of dis-
tribution P, with sample size n, and by the true causal graph G. A causal estimator
is said to be universally consistent if G,, converges in probability to G for every
distribution P,

lim Pr(G, # G) = 0. (1.8)

n—3o0
This says that the probability of misestimating the true graph becomes arbitrarily
small for large sample sizes for any distribution P.

Universal consistency is weaker than uniform consistency, which “bounds the
error probability as a function of the sample size, giving a rate of convergence”
(Runge, 2018a). For a merely universally consistent algorithm, the sample size re-
quired for a given error threshold will be different for each distribution, P. Runge
(2018a) notes that uniformly consistent conditional independence-based algorithms

can only exist under additional assumptions.

1.3.3 Validation and Falsifiability

As discussed by Runge et al. (2019b), method development in causal discovery
requires benchmark datasets with ground truth causal structures. CauseMe.net is a
website the authors have made for collecting benchmarking datasets for validating
causal discovery algorithms. Ground truth for those data sets must come from ex-
pert knowledge or randomized experiments. Observational causal networks can be
falsified with experimental results. Unfortunately, much of the motivation to use

causal discovery is in cases where experimental results do not exist, when random-
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ized control trials are infeasible. When expert knowledge of a causal structure and
experimental results do not exist, causal models must be validated by validating
each of the causal assumptions made by the algorithm. Since causal discovery al-
gorithms can be proven to be consistent, as defined in Section 1.3.2, validating the
assumptions can show that the resulting causal network is asymptotically correct
to infinitely large sample sizes.

Peters et al. (2017, p.120) also discuss the falsifiability of causal models. They
state that traditional machine learning algorithms build probabilistic models, struc-
tural causal models can be used for counterfactual models, and causal graphical
models can be used for interventional models. They write that two models are
equivalent if their corresponding predictions agree. Likewise, we can falsify a
probabilistic or interventional model if the corresponding distributions disagree
with the observed data. In the case of traditional machine learning, this is com-
monly computed with validation datasets to ensure that prediction distributions
agree with unseen data. In the case of interventional, causal graphical models, if
a model correctly predicts the observational distribution but fails to predict the in-
terventional distribution, from a randomized trial, for example, then the model is
falsified. Peters et al. (2017, p.120) state that falsifying counterfactual models is

difficult in general.
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1.3.4 Time Series Causal Discovery

Temporal information is critical to inferring the Earth system’s dynamics because
the Earth system is a temporal process. Many causal discovery methods imply
the inherent temporal aspects of causality without representing it explicitly. Peters
et al. (2017, p.10) note that although it is sometimes said that causality discus-
sions must account for time, usually time is not necessary to discuss the effect of
interventions. They write that both statistical learning and causal learning can be
thought of as “abstractions of an underlying more accurate physical model that de-
scribes reality more fully.” This is quite obviously true for numerical Earth system
models in which differential equations define the dynamics of hundreds of quanti-
ties around the globe. It is even more so for the natural system that Earth system
models attempt to estimate.

Peters et al. (2017, p.26) note that “an event can only influence events lying in
its light cone, since no signal can travel faster than the speed of light in a vacuum.”
That is, physics explicitly excludes causation from the future to the past. They ex-
plain that although this is true, it is widely believed that microscopic and quantum
mechanical systems are invertible. They say that the asymmetry of time-order is
less critical for describing a causal relationship than the asymmetry of the infor-
mation carried causal function between events. This is why time is not included in
descriptions of physical laws, such as F = m x a. However, the time-order asym-

metry is sometimes essential for inferring the direction of causal dependence from
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data alone (Runge, 2018a).

The consequence of discarding time-order asymmetries in data is that tempo-
ral information for interpreting dependence relationships is lost and cannot inform
inference. If no other asymmetry is captured in the data, then we need temporal in-
formation to elucidate. Some systems, such as climatological processes, are often
best summarized in data by time series. Rather than a set of independent samples, a
summary in time is necessary to describe Earth system dynamics accurately. Con-
ditional independence-based causal discovery is flexible enough to be adapted for
time series input (Runge et al., 2019a).

Many causal discovery algorithms are designed for independent and identically
distributed samples. The causal graph can include temporally lagged variables to
capture temporal relationships between variables. Each node is multiplied into
nodes for each time step. Theoretically, this creates an infinitely large time series
graph, which each variable, X, is represented as many nodes, {X;, X;_1,X;—2,X;_3, ...
In practice, we limit the number of lags to a time step that is large enough to cap-

ture the theoretical temporal dependence between the variables of interest.

1.4 Earth Science Challenges

A critical problem in Earth science is identifying the causal pathways from an in-
tervening Earth system event, such as a wildfire, volcanic eruption, or atmospheric
injection, to the many impacts on climate, weather, ecology, and human livelihoods

in various places on Earth. Causal pathways are paths through a graph of nodes
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representing various climate impacts or quantities of interest. There is a critical
need for analyses that trace the causal path from an intervention, through medi-
ating effects, to impacts that affect life, economic systems, natural resources, and
more.

Climate interventions of interest include anthropogenic climate change and nat-
ural and artificial stratospheric aerosol injection (SAI). Volcanoes are an occasional
source of natural interventions in the climate, injecting teragrams of gases into the
stratosphere (Guo et al., 2004a); though eruptions of that magnitude are rare, only
occurring every 50 to 100 years. Artificial SAI events are manufactured efforts
to change climate regionally or globally. Examples include geoengineering ideas,
such as reducing global mean temperatures with sulfuric gas injection. A related
example is weather interventions, such as China’s rain-making effort, Sky River
(Gimeno et al., 2014; Wang et al., 2018), which attempts to bring more rain to a
historically arid region. Understanding the downstream impacts of these interven-
tions is vital for evaluating the risks of geoengineering and predicting the impact
on neighboring regions.

Reconstructing the causal space-time pathways from intervention to impact will
provide critical insights to understand intentional and unintentional interventions.
If the global community decides to attempt geoengineering to mitigate climate
change impacts, experiments may start small and localized. We need tools to un-
derstand the effects of the experiments. If another country decides to implement

geoengineering for itself, perhaps at the expense of its neighbors’ moisture, then
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causal analysis will be critical for understanding those impacts.

Many Earth science problems, particularly those considering a relatively short
time window, are very data-sparse. Measurement frequency can vary depending
on the variable, quality needs, and equipment. Sometimes daily or sub-daily ob-
servations are available, but not for very far into the past, often weekly or monthly
data is most abundant. The dataset may contain hundreds of variables on millions
of grid cells. Frequently, one may want to understand the interdependence of a few
variables in several hundred positions with an order of magnitude fewer observa-
tions per variable/position pair. This presents a high-dimensional problem, posing

poor statistical power and high sample complexity for statistical methods.

1.4.1 Earth Science Data

Earth system data is obtained from several different sources, such as station mea-
surements, satellites, data-fused reanalysis products, and Earth system model out-
put. The data is multimodal and can have a large variety of spatial and temporal
resolutions. Station measurements can poll a quantity very often, but only pro-
vides data for a point in space. Satellites cover large strips of space over the globe,
but measurements can be less frequent, particularly in a specific area of interest,
and still often have missing data due to cloud cover. Reanalysis products combine
station measurements, satellite data, and weather or climate modeling to produce
a hybrid of fused, interpolated data that generally covers all space on the globe.

Reanalysis products and Earth system model output are most convenient be-
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cause they are spatially complete and temporally consistent, but come with more
assumptions than raw measurements. Spatially, the data from these sources is gen-
erally arranged on a discrete 3D grid. Grids can take many forms, most common
are cubed latitude-longitude grids. Geodesic grids are also used in order to achieve
better geometric regularity between cells. (Ebert-Uphoff and Deng, 2014). Earth
system model output is frequently analyzed on a per-run basis, a per-model basis
with ensembles of runs, or with Coupled Model Intercomparison Project (CMIP)
output. CMIP is a collaboration project that combines output from over 100 mod-
els, sourced from over 50 modeling centers.

The research in this dissertation addresses many of the ideas and challenges
above. It examines the capabilities and limitations of contemporary data-driven
modeling. After identifying a key research gap in grid-level causal discovery, this
work introduces two novel methodologies for causal discovery of local grid-level
dynamics, CaStLe and M-CaStLe, that advance the state-of-the-art in performance
and efficiency. I demonstrate these advances with new benchmarking approaches
and realistic applications in the Earth sciences. The following chapters detail
the path from explainable machine learning for Earth system model evaluation to
causal discovery of Earth system dynamics to novel causal discovery approaches
for gridded space-time data. With these advances, this work contributes to toolsets

for further scientific discovery.
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2 Related Work

The RCT was the first innovation to measure causal effects in experiments di-
rectly. Ronald A. Fisher is credited with first using randomization for experiments
in 1925 (Fisher, 1925; Hall, 2007). Around the same time, Wright (1921) wrote
about using what he called path analysis to evaluate and represent directed sta-
tistical dependencies. According to Pearl and Mackenzie (2018a), path analysis
is a direct ancestor to modern causal inference techniques, though it was not rec-
ognized as such until the 1950s. Splawa-Neyman et al. (1923) were the first to
publish on a potential outcomes framework, providing a notation for causal effects
in a randomized setting (Rubin, 2005).

In the 1970s, Donald Rubin’s potential outcomes framework opened the door
to causal inference in non-randomized observational studies (Rubin, 1974). Po-
tential outcomes try to address the fundamental problem of causal inference: once
treatment is given to an individual, we can no longer observe what could have
occurred had the individual not received treatment. More specifically, as Holland
(1986) writes, “it is impossible to observe the value of ¥;(«) and Y,(«) on the same
unit and, therefore, it is impossible to observe the effect of r on u” for potential
outcomes, Y, of treatment, ¢, and control, ¢, on the individual unit, # (Holland,

1986). While these quantities cannot be observed or computed, this framework
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allows us to compute other causal quantities based on certain assumptions in non-
randomized studies.

Pearl (2012) added to Rubin’s potential outcomes notation with the do-calculus,
a way of clarifying the notation for describing the change in probability distribu-
tions of a given quantity from doing an intervention on that quantity. In 2000,
Pearl presented the structural causal model (SCM), which is a nonparametric form
of structural equation models (SEM) (Pearl, 2000, 2001). Economists and sociol-
ogists have used SEMs for decades, and they trace their conceptions to Spearson
(Tarka, 2018).

Among many other contributions, Robins (1986) introduced a graphical ap-
proach to causal inference, the finest fully randomized, causally interpretable struc-
ture tree graph. Pearl (1995b) improved on this approach by introducing directed
acyclic graphs (DAGs) from computer science and graph theory to causal infer-
ence. In that work, Pearl shows how independencies can be described in a Bayesian

network graph and how we can similarly represent causal relationships.

2.1 Causal Discovery

Causal discovery, or causal learning, is the pursuit of computing the causal struc-
ture from observational data. It intends to outline when an association is causal
or merely correlated (Peters et al., 2017). Many algorithms do this by detecting
spurious correlations in data, and after making strict assumptions, the causal struc-

ture can be found (Runge et al., 2019b). The necessary assumptions are derived
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from decades of previous causal inference literature. They can be used to prove
consistency, which is the property that an algorithm converges to the true causal
graph in the limit of infinite sample data (Runge, 2018a).

Wiener (1956) published the idea that a variable could be considered causal to
another if the ability to predict the second is improved by including information
about the first. Granger (1969) later published a practical method for computing
on this notion, now known as Granger causality. Typically, Granger causality
refers to linear bivariate analysis using linear regression models (Peters et al., 2017)
or vector autoregressive models (Runge, 2018a). Granger causality has several
limitations, outlined in Peters et al. (2017), including an inability to detect indirect
causes, failure in the presence of deterministic dependencies, a limitation to only
detecting lagged dependencies, and problems with sub-sampled time series (Runge
et al., 2019b).

A nonlinear, multivariate approach to Granger causality is called transfer en-
tropy (Peters et al., 2017; Runge, 2018a; Runge et al., 2019b). Peters et al. (2017)
state that transfer entropy fails in many of the same scenarios as Granger causality.
However, they write, “we emphasize that the qualitative statement about presence
or absence of causal inference in the case of two causally sufficient time series
only fails for a rather artificial scenario, while quantifying the causal influence via
transfer entropy can be problematic also in less artificial scenarios,” (Peters et al.,

2017, p.207).
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2.1.1 Causal Network Learning

In the 1990s, Peter Spirtes, Clark Glymour, and Richard Scheines developed graph-
ical causal discovery, also known as causal network learning (Spirtes et al., 1993).
Spirtes and Glymour invented the PC algorithm, named for their first names (Spirtes
and Glymour, 1991). This algorithmically attempts to reconstruct the causal struc-
ture from observational data. The main underlying idea stems from Reichenbach’s
Common Cause Principle (Reichenbach, 1956): that if two variables are statisti-
cally dependent, there must be a causal relationship between the two or a third
common driver of the two.

The full description and pseudocode for PC can be found in Spirtes et al. (1993),
and I will provide a brief outline here. It begins with a fully connected graph in
which each node is assigned a variable. To leverage Reichenbach’s principle, PC
iteratively tests each pair of variables, X and Y, for independence, conditioned on
a set of one or more variables, Z, denoted X Il Y | Z, while dependence would
be denoted X Y. If two variables are conditionally independent, their link is
removed. This first phase results in an undirected skelefon graph. In short, the
second and third phases use rule sets to orient edges based on principles of how
association flows between nodes in a graph. See d-separation, detailed here in
Section 1.3.1 and in Spirtes et al. (1993). To accurately estimate causal effects, PC
relies on strict assumptions, including faithfulness, the causal Markov condition,

and causal sufficiency.
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Causal sufficiency is one of the more challenging and commonly violated as-
sumptions in causal inference. Spirtes, Glymour, and Scheines’ fast causal infer-
ence algorithm (FCI) does not require the causal sufficiency assumption (Spirtes
et al.,, 1993). This algorithm does not require the causal sufficiency assumption
and, as a consequence, will only produce a Markov equivalence class of partially
directed acyclic graphs. The consistency of PC and FCI is shown in Spirtes et al.
(1993).

Runge et al. (2019a) published an adaptation to the PC algorithm called PC
momentary conditional independence (PCMCI). PCMCI is specifically written for
reconstructing lagged-causal time-series graphs (Runge, 2018a). This two-phase
algorithm first uses a modified PC algorithm adapted for time series, called PCy,
which attempts to construct a sparse partially directed graph. In the second phase,
momentary conditional independence (MCI) is computed for each connected vari-
able pair to reduce the graph further to converge on the estimated causal graph.
MCI conditions on both the parents of a given variable, X, as well as the lagged,
or time-shifted, parents of X.

Each phase of PCMCI serves a specific purpose in identifying the causal struc-
ture. PC; removes irrelevant conditions of each variable via iterative conditional
independence tests. PC; tests only the condition subset with the largest associa-
tion instead of testing all possible combinations like PC (Runge, 2018a). The MCI
phase then controls the relatively high false-positive rate for highly interdependent

time series. Conditioning on lagged parents of each variable controls for highly
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autocorrelated time series data and makes MCI an estimator of causal strength.
Both PC; and MCI can be implemented with any conditional independence test.
Tests for linear models, nonlinear additive noise models, and nonparametric mod-
els exist (Peters et al., 2017; Runge, 2018a; Runge et al., 2019b).

Runge (2018a); Runge et al. (2019a) show empirical results from tests on syn-
thetic data to benchmark PCMCI against several other algorithms, including PC,
FCI, convergent cross-mapping, LINGAM (Shimizu et al., 2006), and Granger-
causality. They show that PCMCI performs best or above average in terms of high
true positive rates and low false positive rates on time series data in several tests
with dynamical noise, autocorrelation, and high dimensionality. After identifying
the graph, PCMCI was also able to compute true causal effects well (Runge et al.,
2019a).

The PC, FCI, and PCMCI algorithms are examples of causal discovery’s con-
ditional independence (CI) based causal network learning pillar. These are highly
adaptable algorithms because they can be implemented with any conditional inde-
pendence test. Choosing the correct one depends on specific assumptions about
the data and the functional form of the dependencies within. These range from
the linear partial correlation test, nonparametric residual-based tests for nonlinear
dependencies with additive Gaussian noise (Ramsey, 2014; Runge et al., 2019a),
kernel-based approaches (Zhang et al., 2011a), information-theoretic conditional

mutual information (Runge, 2018b), and neural networks (Sen et al., 2017).
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2.1.2 Structural Causal Models

Because Granger causality and many causal network learning algorithms require a
time delay between cause and effect, they cannot easily determine contemporane-
ous dependencies (Runge et al., 2019b). Contemporaneous dependencies primarily
exist when causation occurs faster than the available time-sampling interval. SCMs
typically ignore the time-order of causal dynamics; instead, they operate on the as-
sumption that the past is already coded into covariates (Peters et al., 2017). They
can estimate contemporaneous effects because they make additional assumptions
about the functional forms between dependencies (Runge et al., 2019b).

As SEM'’s causal-descendant, SCMs are used to model nonlinear causal rela-
tionships and require added assumptions for correct estimation (Peters et al., 2017).
These allow for the estimation of direct and indirect causal effect, a quantitative
estimate of causal strength, without further assumptions on the functional forms
interdependencies or distribution of error terms in the data (Tarka, 2018). Peters
et al. (2017) overview SCMs in the bivariate and multivariate cases. They describe
SCMs’ uses for causal discovery and applications to machine learning. Despite
their advantages, SCMs have not yet been applied to Earth system sciences (Runge

et al., 2019b).
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2.2 Attribution in Climate Science

While the climate science literature does not broadly use causal discovery or causal
inference techniques explicitly, a primary interest in climate science is detecting
and attributing changes in our climate. Detection and attribution have precise def-
initions in climate science. Detecting a signal change requires demonstrating that
the observed signal differs in a statistically significant way from natural variabil-
ity. Detection does not imply an attribution of that change. Attribution requires
(1) showing that an observed signal is unlikely in natural variability, (2) consistent
with estimated changes to the signal given anthropogenic and natural forcing, and
(3) not consistent with alternative, plausible explanations of the observed signal
(Houghton et al., 2001).

In 1996, Klaus Hasselmann published one of the first attempts to quantitatively
attribute climate changes (Hasselmann, 1997). Until then, there was mounting evi-
dence that global warming could be attributed to anthropogenic forcing, but it was
largely qualitative or circumstantial. He provides a multi-pattern fingerprinting
framework for statistically attributing climate signals.

Hasselmann states that for the attribution problem, further hypotheses regard-
ing the cause of a detected change need to be considered. This demonstrates the
counterfactual theory required for causal inference (Pearl and Mackenzie, 2018a).
He further writes that an obstacle for quantitative signal-to-noise analyses is that

they require information on the space-time structure of the predicted climate signal
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and the climate variability. This implies the same expert provided causal structural
knowledge that Runge, Pearl, Peters, and others suggest is critical for effective
causal inference (Runge et al., 2019b; Pearl and Mackenzie, 2018a; Peters et al.,
2017). He then describes an idea similar to causal sufficiency: “A discrimination
between competing forcing mechanisms can clearly be meaningfully attempted
only if all candidate mechanisms and their associated climate change signals are
specified.”

Finally, because of the finite nature of real data, Hasselmann states that it can
never be ruled out that there may be other overlooked forcing mechanisms that
would generate the observed signal. The consequences of this fact are “unequiv-
ocal attribution is achieved only in the hypothetical infinite-sequence limit ... We
must, therefore, restrict ourselves in principal to a statistical definition of attribu-
tion that applies only in the limited sense of establishing a ranking within a given
finite set of candidate forcing mechanisms.” This essentially iterates the same lim-
itations of finite data in causal discovery (see consistency in Section 2.1), detailed

by Runge (2018a) and Peters et al. (2017) and described in Section 2.3.1.

2.3 Causal Discovery for Earth Systems Science

Causal discovery has been applied to Earth systems science several times recently.
Runge et al. (2019b) cite several papers in which Granger causality, causal net-
work learning algorithms, and nonlinear state-space methods have been applied

to climate science problems. Causal network learning applications are relatively
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recent and primarily focused on climate science (Ebert-Uphoff and Deng, 2012;
Kaufman et al., 2020; Kretschmer et al., 2016; Nowack et al., 2020a; Runge et al.,
2014). These will be detailed further in Section 2.4.

Runge et al. (2015a) present a framework for identifying gateways, mediators,
and causal effects in Earth systems. First, they use varimax-rotated principal com-
ponent analysis on gridded sea-level pressure data to identify localized areas of
variability, such as the El Nifio Southern Oscillation and the Quasi-biennial Oscil-
lation climate modes, as described in Vejmelka et al. (2014). With those, they can
project the original data onto the selected components to create a time series signal
for the given quantity in several regions. They then use the regions as nodes in their
time series causal discovery algorithm, which identifies the causal relationship be-
tween nodes and removes spurious associations found in the data. With that, they
are able to identify teleconnections between climate modes and sea level pressure
components. Beyond that, they use their established causal networks to compute
causal effect metrics for how much a component impacts others in the space-time
system.

Runge et al. (2019b) give an overview of causal discovery methods for Earth
systems science problems. They identify several classes of causal discovery meth-
ods suited for several classes of problems. The classes of problems they list are
causal hypothesis testing, complex network analysis, analysis of the causes of ex-
treme events, and causal model comparisons. They also provide examples of these

methods used to solve various space-time problems, including an Arctic climate
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problem, an ecology problem, and a cardiology problem. They discuss the many
challenges in applying causal discovery to Earth systems science, from method-
ological to data to computational and statistical challenges. These are discussed in
detail in 2.3.1. Finally, they present future research directions for causal discovery
and call for more scientists to work on using causal discovery to solve the chal-
lenges in Earth systems science.

Eyring et al. (2019) published a perspective paper on climate model evaluation
tools. In it, they say that better tools are required to effectively evaluate the quality
of climate models. Climate models are our primary means of studying and ex-
perimenting with climate dynamics, and understanding how well they perform is
critical to that research. They say, “other promising diagnostic developments on
the horizon that should be further advanced include studies that assess responses to
perturbations rather than mean climate, and the application of innovative data sci-
ence methods in Earth system science such as neural networks, machine learning-

based anomaly detection techniques, graphical models and causal discovery.”

2.3.1 Specific Application Challenges

Runge et al. (2019b) overview the process, data, and computational and statistical
challenges faced in applying causal discovery to Earth sciences. The following is

a recapitulation of the relevant challenges in that overview.
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Process Challenges

The time-dependent processes in Earth systems give rise to strong autocorrela-
tion and time delays for processes to act on one another. Nonlinearities and
state-dependencies and synergies make selecting an estimation method critical.
The wrong method may struggle to disentangle the autocorrelation and internal
dynamics and thus fail to achieve the correct causal structure. Various geoscience
time series may be acting on different time scales, which can be separated to
incorporate and interpret different relationships. Many statistical methods make
assumptions about the noise distribution in the data. Many methods assume ad-
ditive Gaussian noise, but nonlinear and model-free solutions exist (Peters et al.,
2017; Runge, 2018a; Runge et al., 2019b). Processes with heavy tails and extreme

outliers may violate linearity and normality assumptions.

Data Challenges

Climate data is space-time, meaning it is measured and computed on a 3-dimensional
grid over the Earth’s land, oceans, and atmosphere. Hundreds of individual quan-
tities can be collected, leading to a very high-dimensional problem. Extracting
features from this data can be a big challenge.

Observational data is incomplete; some processes cannot be adequately mea-
sured and quantified. It comes from satellite and station measurements and can
include several forms of measurement error, such as measurement noise, instru-

mental biases, and missing data. Often, observational data comes in the form of
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reanalysis data. Reanalysis is a data assimilation effort to fill data gaps and mean-
ingfully represent quantities of interest via observed data and model output. Fi-
nally, satellite measurements only date to 1979, so observational time series are
often short. If problems with the observational data are directly related to the pro-
cesses of interest, then selection bias may be a problem.

Simulation data is vast. Although its spatial resolution is generally smaller than
observational data, it is typically 0.5 degrees to 1.0 degrees latitude and longitude.
The temporal resolution and timescales of simulations are often higher than obser-
vational datasets. They can span hundreds of years and include hourly data.

Because of the high-dimensional and complex data, variable extraction is dif-
ficult. Time series variables need to be extracted from space-time data; some-
times, feature construction techniques are necessary to form causally relevant fea-
tures. To do this, fingerprinting (Hasselmann, 1997) and dimensionality reduction
techniques (Vejmelka et al., 2014), such as empirical orthogonal functions (EOF)!
(Hannachi et al., 2007) and varimax-rotated principal component analysis (PCA)
(Hannachi et al., 2007), are often necessary. Additionally, these features should be
interpretable, representing physical processes in the system.

Often, causal drivers cannot be measured, which leads to latent, or unob-
served, variables in the analysis. The absence of common causes, or a variable
that causes two or more other variables, can lead to spurious links detected in

the causal discovery algorithm. Runge notes that failing to account for important

!The climate community refers to principal components as EOFs.
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drivers, such as anthropogenic climate forcings, may render time series stationary.

Like latent variables, subsampling is when a time series is too infrequently
sampled. If the causal mechanism acts on a smaller time scale than measured, the
mechanism may not be detectable. On the other hand, Time-aggregation may
reduce the data size and algorithm’s computational complexity, but it can make

relationships appear contemporaneous or cyclic.

Computational and Statistical Challenges

Sample size and dimensionality is an issue for the scalability and time complex-
ity of many causal discovery methods. While many methods are proven to be
correct in the limit of unlimited data by consistency, they are typically relatively
slow, some polynomially and some cubically (Runge et al., 2019b). The oppo-
site problem is more likely in observational climate science because, as mentioned
earlier, the observed record is still short. When sample sizes are too small, causal
relationships may not be reliably estimated. In the case of PC and related meth-
ods, conditional independence tests may produce incorrect results, and orientation
rules may contradict each other if sample sizes are too small. If dimensionality is
high and the sample size is small, conditional independence tests may be under-
powered. Lastly, uncertainty quantification, which includes statistical test uncer-
tainties and data measurement uncertainties, is an ongoing research challenge for

causal inference.

37



Rejoinder to the Challenges

Most of these challenges discussed are also challenges for traditional correlation,
regression, and machine learning methods. However, interpretation of those re-
mains nebulous and often leads to incorrect conclusions. The assumptions made
by causal inference and causal discovery merely require subject matter expertise;
they encode the domain knowledge to infer causal dependencies and reject spuri-
ous association from observational data. Likewise, it is a mistake to embark on
traditional statistical and machine learning endeavors without subject matter ex-
pertise because of the propensity to mishandle data and make spurious inferences.
Because of these factors, Runge et al. (2019b) note that there is “no strong reason
to avoid adoption and exploration of modern causal inference techniques.”

It seems clear that climate attribution, described in Section 2.2, and causal dis-
covery are fundamentally equivalent endeavors, from intent to results and limita-
tions. Given that both are approached correctly, they are equally valid in assert-
ing the causal dependence between climatological processes. This further iterates
Runge’s assertion that there is no reason to avoid the exploration of modern causal

inference for learning about the Earth’s climate.

2.3.2 Recent Efforts to Overcome Application Challenges

As described above, one of the challenges in statistical and causal inference in
climate science 1s the amount of data available. It is common for observational and

simulated datasets to be available on a coarse temporal resolution, such as monthly.
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When we seek to discover causal dependencies that occur on a finer resolution
than measured, we may only find contemporaneous or undirected dependencies.
In fact, one of the basic assumptions of the PC, FCI, and PCMCI algorithms is
no instantaneous effects (Spirtes et al., 1993; Peters et al., 2017; Runge, 2018a).
That is, no two variables may act on one another instantly or, practically speaking,
within one observed timestep.

To detect contemporaneous links, rather than assume they do not exist, Runge
published an adapted version of his PCMCI algorithm, which he calls PCMCI+
(Runge, 2020). Runge notes that autocorrelation is key to increasing contempo-
raneous link orientation recall. PCMCI+ also “improves the reliability of CI tests
by optimizing the choice of conditioning sets and yields much higher recall, well-
controlled false positives, and faster runtime than the original PC algorithm for
highly autocorrelated time series.” Empirically, it maintains performance for time
series with low autocorrelation.

Similar to FCI, Runge’s Latent PCMCI (LPCMCI) is an implementation of
PCMCI to handle the case in which causal sufficiency cannot be assumed, when
latent variables exist (Gerhardus and Runge, 2020). This algorithm is tolerant
of latent variables while possibly illuminating their existence. Tolerating latent
confounding is critical in many open systems in which it is impossible to observe
and account for all confounding. The downside of these methods is that they can

only estimate the causal structure up to a Markov equivalence class.
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2.4 Applications of Causal Network Discovery for Climate Sci-

ence

Ebert-Uphoff and Deng (2012) may have been the first to apply causal networks to
climate science in 2012. They cite inspiration from seminal papers from Tsonis and
Roebber (2004) and Tsonis et al. (2006) for their initial work on correlated climate
teleconnections, and from Pearl and Mackenzie (2018a) and Spirtes et al. (1993),
for their causal discovery work. Ebert-Uphoff and Deng apply the PC algorithm
to 500 millibars geopotential height at individual grid cell locations. Geopotential
height is the height above sea level of a specific pressure level in a specific location,
adjusted for the variations in gravity due to changes in latitude.

Ebert-Uphoff and Deng’s work is similar to previous work identifying corre-
lated teleconnections by creating a network of dependencies between grid cells on
the globe of one variable. Their contribution is to apply causal inference to those
teleconnections, removing spurious relationships and identifying a causal network.
There are a couple of limitations to their approach. Without including a time series
implementation of the PC algorithm, their method treats each day’s observation as
an independent sample rather than a time-dependent process. They also use neigh-
boring grid cells in the network, possibly violating independence assumptions in
the conditional independence tests. Major modes of climate variability may not
be adequately captured in single grid cells either, so a weaker signal may lead to

undetected links. Still, grid cell level nodes may increase the total captured spatial
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variability because spatial aggregation and dimensionality reduction techniques
can reduce variance.

Kretschmer et al. (2016) applied causal discovery to detect causal effects in
Arctic midlatitude winter circulation. They apply a version of the PC algorithm
adapted for time series and use seven different variables in the Arctic. They are
regional ice, ocean, and atmospheric quantities. They aggregated daily data into
monthly means because they were specifically looking for processes acting on a
monthly scale. Finally, they used weighted spatial averaging to convert the data
into 1-dimensional time series. They validated their findings by careful analysis of
the variable selections. They selected variables from work conducted in previous
Arctic climatological studies and included proxies for some unmeasurable com-
plex phenomena.

Nowack et al. (2020a) used PCMCI to evaluate how similar climate model runs
were to observed dynamics. Specifically, they developed graphs depicting how
sea level pressure in 50 regions on the globe relates to each other region. In the
correlation setting, a relation between variables across space on the globe is called
a teleconnection. They discovered causal graphs for 20 models in the Coupled
Model Intercomparison Project Phase 5 (CMIPS). Each model was represented by
several simulation runs, each used to generate their own graph. They used the F}
score to measure the similarity between graphs.

Using spatial sea level pressure data, Nowack et al. (2020a) detected 50 regions

of interest using a common technique in climate science. First, PCA identified
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the first 100 orthogonal components. Then, they use the varimax rotation algo-
rithm, which has been found to increase the interpretability of components and
localize them in space. They note, “principal components without rotation con-
secutively maximize variance and therefore often mix contributions of physically
defined modes such as the El Nifio Southern Oscillation, Pacific Decadal Oscil-
lation, or the North Atlantic Oscillation, whose time-behavior is not orthogonal,
making patterns more difficult to interpret.”

Finally, they select 50 of the 100 components based on spatial separability and
frequency spectra. Resulting are 50 discrete regions with high variability and in-
dependent patterns. They used the 50 components for each node in the causal
discovery analysis. Lastly, they note that “the selection of components defining
the network nodes will typically be guided by expert knowledge in conjunction
with dimension reduction techniques.”

Tibau et al. (2022) built on the dimensionality reduction approach, augmenting
it to output grid-cell-level networks. They specifically delineate mode-level (di-
mensionality reduction or cell aggregation) and grid-level causal discovery. Their
augmentation is called Mapped-PCMCI, which first applies dimensionality reduc-
tion, then computes a mode-level causal network with PCMCI, and finally maps
the grid cells within the modes to each other using the network previously con-
structed. Their resulting network consists of edges between grid cells, but the
method assumes that cells within modes are fully connected, i.e., each cell is de-

pendent on all of its neighbors. In contrast, our work specifically seeks inter-cell
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spatial relationships. Finally, they also describe the failure of a traditional causal
discovery approach for grid-cell-level data, “[if] we apply PCMCI directly at the
grid-level, the low power of this high-dimensional and redundant estimation prob-
lem (see Section 2.2.2) leads to most links being missing.”

Recently, a new tradition, causal representation learning, developed out of ma-
chine learning to leverage causal reasoning for their models (Scholkopf et al.,
2021). While still a developing field, it shows particular promise for estimating
relationships in the presence of latent confounding. Boussard et al. (2023) and
Brouillard et al. (2024) developed the Causal Discovery with Single-parent De-
coding (CDSD) algorithm within the causal representation learning framework and
applied it to the climate science field. CDSD performs well in high-dimensional
data settings but through a different mechanism. It performs dimensionality reduc-
tion by learning latent variables and enforcing a “single-parent” constraint where
each grid cell belongs to exactly one latent factor. This naturally clusters grid cells
into coherent, often contiguous regions and enables the discovery of causal rela-
tionships between these larger-scale patterns. In contrast to grid-level structure
learning, CDSD identifies broader teleconnection pathways between regional cli-
mate modes. Thus, CDSD abstracts to a higher level by mapping the native grid
space to an identifiable latent representation before performing causal discovery.

Several studies have addressed local-scale phenomena. Pfleiderer et al. (2020)
applied causal discovery to identify precursors to seasonal hurricane frequency.

They utilized the precursors to inform a predictive model. Polkova et al. (2021)
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identified local drivers of marine cold-air outbreaks in the Barents Sea. These
demonstrate that existing causal discovery approaches can be valuable for seasonal
and sub-seasonal phenomena. However, both marginalized large regions prior to
analysis, reducing the space’s dimensionality, and did not evaluate the space-time
evolution of phenomena nor grid-level dynamics.

There are some examples of causal discovery algorithms leveraging spatial in-
formation. Zhu et al. (2016) developed pg-Causality that applies space-time pat-
tern mining and a Gaussian Bayesian Network to seek local dependencies in the
space-time propagation of air quality data. Sheth et al. (2022) developed STCD
for understanding hydrological systems. They constrained the discovery of spatial
structures by only allowing higher elevation nodes to be parents of lower elevation
nodes because water follows the gravity gradient. While both cleverly use mined
or known spatial structure to inform their causal discovery, they are both limited
to use in sparse point-measured data from static base stations rather than gridded
data. Further, these methods enforce constraints as filtering mechanisms. Neither

address the scalability challenges in high-dimensional gridded data.

Parallel Approaches in Neuroscience: Causal Discovery for High-Dimensional Spatial-Temporal
Data

Other scientific domains face similar challenges with high-dimensional space-time
data. Neuroscience, for example, needs to study mechanisms in brain interactions,
and fMRI 1images may contain thousands to millions of pixels. The anatomy of

the brain also exhibits locality constraints. Ramsey (2014) made computational
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optimizations to the Greedy Equivalence Search algorithm, including sparsity con-
straints and limiting the distance of potential parents, to recover graphs with mil-
lions of nodes. Saetia et al. (2021) marginalized regions of interest in the brain
using spatial averaging and then applied the PCMCI algorithm to construct causal
graphs. There is a common interest in recovering graphs of high-dimensional grid-
level data throughout the sciences. Developing more tools that enhance the esti-
mation and interpretability of causal graphs in these spaces will help advance our
understanding of space-time structures across the sciences.

What is clear from prior work is that grid-level analyses are challenging, both
statistically and computationally, due to how many grid cell dependencies need
to be estimated, the enormous number of observations needed, and the redundant

information content of nearby cells.
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3.2 Abstract

In September of 2020, Arctic sea ice extent was the second-lowest on record. State
of the art climate prediction uses Earth system models (ESMs), driven by systems
of differential equations representing the laws of physics. Previously, these models
have tended to underestimate Arctic sea ice loss. The issue is grave because accu-
rate modeling is critical for economic, ecological, and geopolitical planning. We
use machine learning techniques, including random forest regression and Gini im-
portance, to show that the Energy Exascale Earth System Model (E3SM) (E3SM
Project, 2018) relies too heavily on just one of the ten chosen climatological quan-
tities to predict September sea ice averages. Furthermore, E3SM gives too much
importance to six of those quantities when compared to observed data. Identifying
the features that climate models incorrectly rely on should allow climatologists to

improve prediction accuracy.

3.3 Introduction

We have observed dramatic declines in Arctic sea ice since the advent of satellite
imaging (Stroeve and Notz, 2018). This change is of critical importance to global

economic, social, political, and ecological landscapes, not least because of the
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opening of new navigable sea routes and the impact on wildlife (Arc, 2019; Smith
and Stephenson, 2013). As an essential component of the Earth’s climate, sea ice
loss drives the positive feedback between surface albedo and Arctic warming and
may contribute to changes in ocean circulation and mid-latitude weather (Goosse
et al., 2018; Sevellec et al., 2017; Cohen et al., 2018; Cvijanovic et al., 2017).

Earth system models (ESMs) provide state of the art simulations of the global
climate. They include general circulation and thermodynamic models for ocean
and atmosphere, and models for land, sea ice, and land ice processes. Collect-
ing an ensemble of parameterized ESM runs produces a distribution of forecasts
that provide bounds on predictions. Simulations of Arctic sea ice in these models
include complex interactions between the ice, ocean, and atmosphere. However,
limitations in ESMs, such as the inability to resolve critical small-scale processes,
can lead to biases when compared to observations. It is, therefore, critical to iden-
tify sources of bias.

Previous generations of ESMs have, on average, underestimated the rate of sea
ice loss in the Arctic (Rosenblum and Eisenman, 2017). This is apparent in data
from the Coupled Model Intercomparison Project (CMIP), which includes sim-
ulation results from a broad array of ESMs from modeling centers around the
globe. CMIP phases mark improvements in the state of the art. The extent of
sea ice loss has been a consistent problem, first identified in phase 3 (Meehl et al.,
2007; Stroeve et al., 2007). By phase 5 (CMIP5), overall model bias had improved

(Taylor Karl E., Stouffer Ronald J., 2012). However, Rosenblum and Eisenman
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(Rosenblum and Eisenman, 2017), in an analysis of 118 simulation runs from 40
CMIPS5 simulations, found that 89% of CMIP5 model runs underpredicted the rate
at which sea ice extent is lost (kmzldecade) by more than a standard deviation; and
2014 loss by an average of 2 million km?. The disagreement with observation may
imply that ESMs’ parameters are not well-tuned. Stroeve et al. (Stroeve et al.,
2007) suggest this discrepancy is due to missing key causal mechanisms or repre-
sent a misunderstanding of underlying physical processes.

The Energy Exascale Earth System Model (E3SM) (E3SM Project, 2018), de-
veloped by the United States Department of Energy (DOE), is included in phase
6 (CMIP6) (Eyring et al., 2016) (March 2019). E3SM is a new state of the sci-
ence climate modeling and prediction project. In CMIP5 and E3SM, the rates of
pan-Arctic sea ice change are similar to observation before 1996 but deviate from
observation afterward. In CMIP5’s case, the rate of loss is less than observed
(Rosenblum and Eisenman, 2017), while E3SM’s is greater than observed (Sec-
tion 3.5.1: Data). These differences in sea ice loss rates lead to inaccurate long
term predictions about absolute sea ice extent in the Arctic. To our knowledge, our
work is the first mechanistic analysis of E3SM accuracy.

We use random forest regression (RFR) (Breiman, 2001) and Gini importance
(Nembrini et al., 2018) to determine which E3SM features drive climate predic-
tions. We perform an identical study of historical observations to identify the fea-
tures that are most influential on prediction of actual sea ice loss. By comparing

the two, we determined that E3SM relies too heavily on some features, to the detri-
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ment of others, resulting in a divergence from observation. This work elucidates
differences in sea ice response between observational data and E3SM simulations

and can help improve sea ice prediction.

3.4 Related Work

Stroeve et al. (Stroeve et al., 2012) analyze the agreement between simulated Arc-
tic models, CMIP3 and CMIPS5, and observed data. They report that while phase 5
models are an improvement over phase 3 they consistently overestimate forecasted
ice extent in the Arctic. The authors suggest that modeling may be improved by in-
cluding more complex mechanisms such as sea ice albedo parameterization, thick-
ness distributions, and melt ponds.

Rosenblum and Eisenman (Rosenblum and Eisenman, 2017) examined CMIP5’s
sea ice extent predictions in the Arctic and found overprediction of sea ice ex-
tent. Correcting the models required an increase in warming well above observed
rates, leading the authors to conclude that the current methods were systematically
flawed.

Ionita et al. (Ionita et al., 2018) presented a method for using multiple linear
regression to predict the September sea ice extent minimums in the pan-Arctic
region and the East Siberian Sea. Notably, they used step-wise regression because
it may highlight the underlying coupled physical mechanisms between factors. For
the pan-Arctic region, their model was able to predict sea ice extent anomalies for

May, June, and July fairly accurately (reporting r-values between 0.84 and 0.9).
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Although they found a “skillful” model could be built from their list of Arctic
features, they did not analyze the relative importance of those features for their
models.

Reid and Tarantino used support vector regression (SVR) to predict the Arctic
sea ice extent (Reid and Tarantino, 2014). SVRs were able to construct predictive
models, but they only considered sea ice extent as a predictor and could not ana-
lyze any other features for their importance. They chose SVRs because they are
successful in predicting complex dynamical systems such as climate. The authors
reported the comparative results of tuning the SVR, and compared them to CMIP5

ensembles but not to observation.

3.5 Data and Methods

Our methods were able to account for discrepancies in climate simulations and
observations. Like multiple linear regression and its associated term-weights, ran-
dom forests are a machine learning method that is wholly transparent (Breiman,
2001), unlike many other so-called “black box” methods, such as SVRs. We used
RFRs and their corresponding Gini importance measure to determine how much
influence each input feature has on E3SM predictions. With those tools, we ana-
lyzed each feature’s impact on historical sea ice extent and used that information

to highlight discrepancies with E3SM.
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3.5.1 Data

Our machine learning (ML) models used monthly averages of June, July, and Au-
gust data from the atmosphere, ocean, and sea ice to predict September sea ice
extent for a given year. Results from observational and reanalysis data products
are then compared against results from five ensemble members of the E3SM his-
torical dataset. The features our ML models are trained on are a subset of physical
quantities simulated by E3SM in the Arctic. We chose these features because they
match observable features in nature and that we hypothesized would be good pre-
dictors of sea ice loss. Each feature of each dataset is a time series beginning with
the start of the satellite era in 1979 and ending with the last year of available E3SM
output, 2014.

The observational data included monthly sea ice extent computed from gridded,
daily, passive-microwave satellite observations of sea ice concentration provided
by the National Snow & Ice Data Center (NSIDC) (Peng et al., 2013). Sea ice
concentration is a percentage value of ice in each grid cell, and sea ice extent
(SIE) is computed as the total area of cells containing more than 15% ice. Sea ice
volume reanalysis data were provided by the Pan-Arctic Ice Ocean Modeling and
Assimilation System (PIOMAS) (Schweiger et al., 2011). Atmospheric data (total
cloud cover percentage (CLT), downward longwave flux at surface (FLWS), pres-
sure at the surface (PS), near-surface specific humidity (SSH), temperature at the

surface (TS), wind u component/zonal (uwind), and wind v component/meridional
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(vwind)) were from an atmosphere reanalysis provided by the National Centers
for Environmental Prediction (NCEP) (NOAA et al., 2019a). Sea surface temper-
ature (SST) was provided by the National Oceanic and Atmospheric Administra-
tion (NOAA) (NOAA et al., 2019b). For each of the atmospheric data variables, as
well as SST, monthly Arctic area averages were computed from the global gridded
fields.

We used the DOE’s E3SM for climate simulation data in this work (E3SM
Project, 2018; Golaz et al., 2019). E3SM version 1 was a fork of the community
Earth system model (Kay et al., 2015), which was a part of the CMIP5 collection
analyzed by Rosenblum and Eisenman (Rosenblum and Eisenman, 2017). E3SM
1s a global model comprised of submodels for land, atmosphere, land ice, sea ice,
oceans, and rivers. Specifically, we used data from E3SM’s historical ensembles
1-5 at one-degree global resolution.

E3SM published five historical ensemble runs to offer a distribution of fore-
casts. The runs were initialized from different years of a 500-year pre-industrial
control simulation. The historical runs start in 1850, running for 165 years to 2014.
The final 36 years, 1979 to 2014, were used in our analysis to match the years of
observed data. Small differences in each run’s initial conditions can significantly
impact long-term results, though average behavior between runs is expected to be
consistent.

Table 3.1 summarizes the observed features we collected; an excerpt of June

values is included. Each feature is a time series of the feature’s mean in a given
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Table 3.1: Training Features and June Data Excerpt: total cloud cover percentage (CLT), down-
ward longwave flux at surface (FLWS), pressure at the surface (PS), sea ice extent (SIE), sea ice
volume (SIV), near-surface specific humidity (SSH), sea surface temperature (SST), temperature
at the surface (TS), wind u component/zonal (uwind), and wind v component/meridional (vwind).
Values listed are means over the pan-Arctic grid for each day of the month, rounded to two-decimal
places for display only.

June Sept.
CLT FLWS PS SIE SIV SSH SST TS uwind uwind SIE
Year| (%) (W/m?) (Pa) (10°km?) (10%m?®) (mg/kg) (°C) (°C) (m/s) (m/s) |(10°km?)
1979|42.08 256.56 97930.00 12.53  29.79 431 0.56273.46 0.94 0.48 | 5.90
1980(40.89 259.51 97901.00 1220  29.15  4.44 0.68274.67 099 047 | 6.83
1981/40.47 258.13 98098  12.43  26.82 427 0.6527427 0.06 0.06 | 6.40

2012140.36 271.60 98105.00 10.67 16.00 5.12 1.39277.28 —0.03 —0.06 | 3.55
2013]40.66 266.93 97989.00 11.36 17.54 498 1.26276.50 0.93 0.42 5.27
2014|39.84 263.94 98.19 11.03 17.68 472 147 275.67 0.00 0.04 5.38

month from 1979 to 2014. Values in the time series are an area-sum over the
pan-Arctic oceanic region. Each feature’s monthly data is a mean of every Arctic
sample in the given month, resulting in a single value per month. Generally, the
observational and reanalysis datasets have similar magnitudes to the simulation
data. However, for CLT, the NCEP reanalysis is significantly lower than the E3SM
data. This is a known bias in the NCEP reanalysis data, and future work could
investigate feature analyses of alternative reanalysis datasets (Zib et al., 2012).
The data used in this work is publicly available on the E3SM website. The
five historical ensemble runs were retrieved from the v1 one-degree data CMIP6
release. To disambiguate them from our machine learning models and observed
data, we will refer to E3SM’s historical ensembles 1-5 as simulations 1-5, simula-
tion runs, or simply E3SM runs for the remainder of this paper. Figure 3.1 shows

a comparison of the observed and simulation datasets evaluated in this work.
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Figure 3.1: Comparison of observed, pan-Arctic mean September sea ice extent with predictions
from E3SM’s historical ensembles 1-5. The mean of E3SM simulations is shown with 95% confi-
dence interval (shaded).

3.5.2 Random Forests

We found that linear models performed poorly on our data. For this work, we
used RFR models because they are relatively simple, intuitive models that can
learn nonlinear relationships between features. As a part of their training, the
decision trees in random forests generate Gini impurity measures. These measures
are aggregated after training to determine the Gini importance of each feature. In
our case, we computed importance as the total reduction in mean absolute error
(MAE) caused by each feature.

RFR is an ensemble learning technique, similar to a combination of bootstrap
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aggregation (bagging (Breiman, 1996)) and decision tree regression. Bagging is a
method to combine the knowledge of many naive estimators, or trees in our case,
by providing a subset of the full sample set to each estimator. The result is the av-
erage of many noisy, but unbiased, estimators, reducing overall variance. Random
forests improve the bagging method by choosing random subsets of the feature set
for each node split in every tree (Banfield et al., 2007). The number of random
features each node considers, and when to split are tuned hyper-parameters. The
final forest’s estimate is the average prediction from the random trees.

For N trees, Ti,..., Ty, random forest regression prediction is computed as fol-

lows:
N

RF(N) :]lv . 7

n

given the training sample, x.

The random forest implementation we used was the random forest regressor
from Python’s sci-kit learn package (Pedregosa et al., 2011). The implementation
uses a perturb and combine technique (Breiman, 1998a) made for tree regressors.
Perturb and combine reduces test set error by introducing a diverse set of regres-
sors via randomized regressor construction. For the rest of the data analysis, we
used Python’s Numpy package (Van Der Walt et al., 2011). We utilized Python’s
Seaborn package (Waskom and the seaborn development team, 2020) for data vi-

sualization.
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3.5.3 Pre-Processing

To prepare the data for training, we split it into training and testing years. Our goal
was not to develop predictive models for next year’s sea ice extent. We were more
interested in finding models that have learned the data well that we then used for
feature analysis. Thus, we split the training and testing data randomly.

Because some years are easier to forecast than others, we should model every
combination of training and testing years. For 36 total years and 18 testing years,
we computed Gg) = 9075135300.00 total combinations of training and testing
years. Since it is infeasible to train that many models and evaluate each feature’s

importance, we used this standard method to compute a sample size:

(z-score)? x 6 x (1 — o)
2

e
with a z-score computed with 95% confidence, e = 5% margin of error, and stan-
dard deviation o, which yielded 385 sample sets on which to train and test our
models. We illustrate with 18 testing years because it is the maximum value of
(3).X €[1,36].

Decision trees, and thus random forests, are scale-invariant (Breiman et al.,
1984). This means that although our data varies greatly in scale between, for ex-
ample, sea ice extent, in millions of kmz, and wind speeds, less than 1.00 m/s, the
models’ accuracy is unaffected. This is an advantage over many other ML models,

and we can leave the data generally untouched. However, random forests extrap-
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olate poorly for data outside of their training’s minimum and maximum values
(Hengl et al., 2018). This presented a problem for our analysis of the dataset be-
cause, as shown in Figure 3.1, the latter third of the data has values generally lower
than any in the first two thirds. We detrended training and testing data separately to
mitigate that problem by forcing the data to have a zero mean. After training and
fitting our models, we retrended the data and the model’s predictions to evaluate

their error.

3.5.4 Model Training and Hyper-Parameter Tuning

Finally, we trained RFR models on the data the training splits provided. Note that
the trees in our forests were allowed to grow until all leaves were pure, even if they
contained a single sample. Decision trees are often pruned to reduce overfitting,
but Breiman (Breiman, 1998b) suggests letting trees grow fully in random forests
to boost accuracy and increase ensemble diversity. Banfield et al. (Banfield et al.,
2003, 2007) also discuss ensemble size in random forests and conclude that many
more trees are necessary than are typically used. Ensemble size is an important
hyper-parameter to tune because the number of trees in the forest directly impacts
the possible feature sets the forest can explore, and too many trees can reduce a ran-
dom forest’s performance while also sacrificing run-time. Our forests comprised
250 decision trees. The number of trees was determined empirically. Forests of
size 10, 50, 100, 250, 500, and 1000 trees were evaluated and their performance

was measured on the basis of the test R2 (average R?) and average test anomaly
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correlation coefficient (ACC), which are detailed in Section 3.5.6. We found that
250 tree models maximized R? and ACC. Lastly, the trees in each forest used mean

squared error as their nodes’ splitting criterion.

3.5.5 Feature Importance Measurement

We used Gini importance because of the non-linearities in climate data; in partic-
ular, Gini importance is not susceptible to data multicollinearities. Given that all
of our features come from the same complex system, it would be difficult to elim-
inate features by simple correlation measures. In standard usage, Gini importance
is normalized to compare relative importance within a single dataset. We chose to
preserve the absolute importance values, letting us compare across datasets.

We also considered drop-column and permutation importance methods (Breiman,
2001). However, we found them to be unsuitable because they are highly suscep-
tible to multicollinearity. Because many physical processes are directly acting on
each other, Arctic features are inherently correlated, and any leave-one-out impor-
tance method will highlight that correlation. We found that the correlation leads
these methods to attribute more importance to the least correlated feature, and it

becomes difficult to glean meaningful insights.
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3.5.6 Model Evaluation

We used the R? (coefficient of determination) from the Nash-Sutcliffe efficiency

definition, given by:
Y(y—J)
Y(y-3*

where y are the true values, y are the predicted values, and y is the mean of y. This

R*($,y)=1-

definition has a range of (—inf, 1] where 1 is the best possible score.

In addition to R2, we evaluated model performance with average MAE (MAE)
and ACC. Again, average here means the mean value measured in 385 models with
random training and testing year splits. Since MAE is in millions of km?, we took
the Sea Ice Outlook’s 2019 season report (Bhatt et al., 2020) as a baseline. This
report includes several different types of data-driven models and presents one-year
forecasts. These should have less error than ours, given how many more years we
forecasted at once. With the exception of a few outliers between 2008 and 2019,
sea ice forecast error was between —0.4 and 0.6 million km?.

ACC 1s the Pearson’s correlation coefficient (r-value) of sea ice extent anoma-
lies. A time series’ anomaly is a measure of the data’s deviation from its climatol-
ogy. In our case, the climatology is the mean value of the true values the models

are attempting to forecast. This function is defined by:

0-y0-y)

MxoyAxcry

ACC(3,y) =

where y are the true values, ¥ are the predicted values, M is the number of samples
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Figure 3.2: June feature importance. Standard box-and-whisker plot (McGill et al., 1978) of val-
ues for 13 predictions generated by 385 models. The average R?, anomaly correlation coefficient
(ACC), and mean absolute error (MAE) are displayed in the gray boxes. The blue line in each
dataset is the mean importance of a random variable in each feature set.

in y and Y, y is the mean or climatology of y, oy is the standard deviation of the

predicted values, and oy, is the standard deviation of the true values.

3.6 Results

Our goal is to learn the importance of climate features on the predictions made
by E3SM and compare that to the actual importance of those features on observed
sea ice extent. We found that was best accomplished by training RFRs on 23
uniformly randomly chosen years and testing with the remaining 13. Our perfor-

mance measure was based on the mean of R? scores among datasets for the June
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Figure 3.3: July feature importance. Standard box-and-whisker plot (McGill et al., 1978) of val-
ues for 13 predictions generated by 385 models. The average R?, anomaly correlation coefficient
(ACC), and mean absolute error (MAE) are displayed in the gray boxes. The blue line in each
dataset is the mean importance of a random variable in each feature set.

input data. This train-test-split resulted in maximum and minimum R? scores of
0.88 and 0.77, respectively, yielding a measure of 0.83. R2 denotes the average R>
of the 385 models.

We replicated our analysis for each month between June and August, predicting
September SIE. Each subsequent month generates less error. Within each dataset,
each feature’s relative importance changes. Some features’ importance is corre-
lated with the progression of months, while others appear to change randomly.

Figure 3.2 shows June’s feature importance values. The average train and test
error values indicate that the models generally learn the data well. The blue line

shows the mean feature importance of a random variable included in each model’s
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feature set. The random variable indicates a lower bound on importance; any fea-
ture with an importance value near this line has virtually no importance. We found
that adding a random variable decreases individual model performance, but the ef-
fect is minimized when taking the mean over every model.

There are some similarities between each dataset. They share the same list of
six important features, though their order and magnitudes differ. sea ice volume
(SIV) is consistently the most important, though the degree of absolute importance
varies. SIV, TS, SSH, SIE, FLWS, and SST are important in each dataset. The
datasets, except for simulation 3, share the same list of unimportant features as
well. These are CLT, PS, uwind, and vwind. One apparent exception is June’s PS
in Figure 3.2: simulation 3; however, excluding PS from the training data, results
in a negligible difference in R2 (0.7681 vs. 0.7682).

July features, shown in Figure 3.3, predicted as well or better than June in each
of our error metrics; simulation 3 had the lowest I?, 0.78, and simulation 2 had the
highest, 0.88. The same features were important in July as in June, but the relative
importance values changed. June’s sea ice extent became more important in the
observed dataset, surpassing the importance of SIV. SSH became less important in
the observed dataset, too, settling just above the random variable. SSH remained
as important in the simulation datasets.

The most dramatic change in importance occurs in August. These results are in
Figure 3.4. Error was significantly better with simulations 3 and 4 having the min-

imum R2, 0.87, and simulations 1 and 2 having the maximum, 0.91. In August, sea
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Figure 3.4: August feature importance. Standard box-and-whisker plot (McGill et al., 1978) of
values for 13 predictions generated by 385 models. The average R?, anomaly correlation coefficient
(ACC), and mean absolute error (MAE) are displayed in the gray boxes. The blue line in each
dataset is the mean importance of a random variable in each feature set.

ice extent was always the most important. The importance values of the remaining

features generally changed very little throughout datasets.

3.7 Discussion

We found that our RFR ML models were able to accurately learn each of the
datasets. After examining the Gini importances computed within each model, we
discovered some key differences in how each dataset relates to September pan-
Arctic sea ice extent.

A problem with our dataset is that the satellite record only goes back to 1979.
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One solution is to adapt the models to forecast sea ice extent continuously through-
out each year. This is in line with Reid and Tarantino’s approach (Reid and
Tarantino, 2014) (see Section 3.4), but with random forests instead of support
vector machines and including many features instead of only sea ice extent. The
models would train on the full year of data and see 432 data points rather than
36 in the time series. Several observed features are measured more frequently than
monthly, some every few hours of every day, so a means to incorporate inconsistent
sampling resolutions of features should be investigated to leverage all of the data
available. Another solution could be to use a surrogate model to generate more
data that is similar to the first 15 years of observed data, which have a much flat-
ter trend. The surrogate model would let the new data agree with what the model
learns about input features.

The combined error metrics and general consistency of results between each
dataset suggests that our models have learned the data well, and the feature analysis
can identify key patterns. It is meaningful that the same six features are considered
important across datasets and input-months. Since our analysis is of the pan-Arctic
region, it is possible that the set of unimportant features would be more important
in specific subregions of the Arctic.

Though the most important feature in June and August is consistent between
simulation and observation, the absolute importance differs markedly. One clear
pattern is that June shows an acute reliance on sea ice volume for both observa-

tions and simulations. By August the reliance is traded for sea ice extent. This
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finding is consistent with earlier studies evaluating sea ice predictability using lag-
correlation analyses with ESM ensemble data (Ordonez et al., 2018; Blanchard-
Wrigglesworth et al., 2011).

Although the observed and simulated data share patterns, there is a clear dif-
ference between them. In July, simulations and observed data do not agree on the
most important feature. In June, July, and August, simulated data relies too heavily
on almost all the important features. In each dataset, importance values diminish
for the remaining features in June and July, and their distributions overlap more
than they did in June, but the observed dataset still shows the least importance in
FLWS, SSH, TS, and SST.

Interestingly, simulations 1 and 2 forecasted with the highest R? each input
month, and simulations 3 and 4 had the lowest R2 in each input month. Simula-
tions 1 and 2 have the lowest MAE and highest ACC among the simulation runs,
and 3 and 4 have the highest MAE and lowest ACC among the simulations runs.
Although the differences are small, these consistencies may indicate some com-
monality between these simulation runs.

Our ML models performed better on the observed data than on the simulations
as measured by MAE and ACC, but is not reflected in R2. That suggests that the
mean value, or the trend after retrending, was very predictable, but its intervari-
ability, which R? explains, was less predictable. The likely explanation is in the
difference in the complexity of the systems. Observed features of the continuous

Earth system are artificially discretized. In any complex system, intervariability is
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difficult to forecast. However, because we chose largely relevant features as pre-

dictors, we could capture the macro-level patterns, as evidenced by the macro-level

error measures; MAE and ACC.

3.8 Conclusions

We demonstrated that random forest regression and the associated Gini importance
measure can provide insight into why ESMs incorrectly estimate sea ice extent
in recent decades. We found a discrepancy in the feature importance between
observed and simulation datasets. In particular, the discrepancy between E3SM
and observation appear to be due to an over-reliance on June sea ice extent and
August sea ice volume. The order of feature importance was also different between
E3SM and observation, and the ordering was not consistent within E3SM ensemble
members. In all cases, E3SM over-relies on six features compared to observed
data. Machine learning allows us to fill the gaps in the underlying physics of
ESMs, providing a metric for Stroeve et al.’s (Stroeve et al., 2012) hypothesis that
ESMs are missing complex relations and causal mechanisms.

In the future, we can evaluate more features that can be measured or constructed
in each dataset. An analysis, including all months of the year in each model will be
elucidating as well. Sea ice extent is measured daily via satellite imagery. We can
understand how each dataset explains sea ice extent at a higher resolution every
month of the year.

We can repeat our analysis on other regions, including Antarctica, where there
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are also problematic disagreements with observations (Rosenblum and Eisenman,
2017). An analysis like this of other climate models could be insightful too. It
would be particularly interesting to compare simulations in which there few to
no correlated features. That would allow for variations on the analysis, such as
more modeling approaches, which require linearly independent features, and more
feature analysis methods, such as drop-column importance, which would otherwise
struggle with multicollinearities.

Further insight could be gained by repeating our analysis with a machine learn-
ing method other than RFR, however the following methods have their own chal-
lenges. Most neural network models would need more observed data than is avail-
able to converge. We found that multiple linear regression cannot learn the data
well because the relationships between features are nonlinear. Reid and Tarantino
(Reid and Tarantino, 2014) found that SVR can forecast the data well, but it is
unclear what the best feature analysis method would be.

Given the discoveries in this paper, we can run experiments with E3SM to de-
termine how reducing feature disagreements between the observed and simulation
datasets impact E3SM'’s forecasts. That process may not yield results for several
reasons, including that E3SM’s real feature set is large and complex, focusing anal-
ysis on the Arctic region is too restricting to estimate the effects of the global Earth
model, or our ML models are too limited by small datasets. Despite these chal-
lenges, our results can potentially guide climate modelers as they develop the next

generation of ESMs.
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4.2 Abstract

We plan to use nascent data-driven causal discovery methods to find and compare
causal relationships in observed data and climate model output. We will look at ten
different features in the Arctic climate collected from public databases and from
the Energy Exascale Earth System Model (E3SM). In identifying and comparing
the resulting causal networks, we hope to find important differences between ob-
served causal relationships and those in climate models. With these, climate mod-
eling experts will be able to improve the coupling and parameterization of E3SM

and other climate models.

4.3 Introduction

Climate models are critical to our understanding of climate change. We believe
there is an opportunity to apply causal inference methods to these models to im-
prove predictions. We can understand the quality of a model by comparing it with
observations of the natural phenomena being simulated. From there, we can make
the necessary improvements to the model, but where to start? Currently models are
developed using a trial and error approach, in which a model is designed and pa-
rameterized and the resulting accuracy is observed. For computationally expensive
models this approach quickly becomes inefficient. We propose to investigate the

causal relationships between features and their weights to better target reparam-
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eterization and feature selection efforts. We propose to focus on the pan-Arctic
region because we previously studied Earth system model (ESM) prediction dis-
crepancies there (Nichol et al., 2021). The Arctic climate, though important in
itself, also has global climate implications.

In Runge et al. (2019c), a recent review of causal methods, they argue that
causal discovery is well-suited to improving climate models. Nowack et al. (2020b)
provide an example analysis of a global climate model. This work proposes to
build these publications, by extending this nascent field to Energy Exascale Earth
System Model (E3SM) (E3SM Project, 2018) and a including multiple feature
analysis.

In contrast to methods based in statistical correlations, causal inference tells us
why systems behave the way they do. Discovering the underlying causal structure
in data and then comparing those structures from observed and simulated datasets
will give us a richer understanding of the differences between the data sources.

Commonly, causal effects are determined and quantified by interventionist ex-
periments, usually in randomized trials. Because of the magnitude, complexity,
and uniqueness of the Earth’s climate, there are significant feasibility and ethi-
cal problems with controlling and intervening in the climate for experimentation.
For this reason, climate science is largely studied with coupled numerical models.
Each model encapsulates subsystems and subprocesses that work together to de-
termine the long-term climate.

The status-quo in Earth system model evaluation is based on simple descriptive
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statistics, like mean, variance, climatologies, and spectral properties of model out-
put derived from correlation and regression methods (Runge et al., 2019¢). These
methods can be simple to implement and interpret but are often ambiguous or
misleading; resulting associations can be spurious and the directions of effects is
fundamentally unknown.

In recent decades, a rigorous mathematical framework has been developed for
observational causal inference by Pearl, Spirtes, Glymour, Scheines, and others
(Spirtes et al., 1993; Pearl, 2009; Spirtes and Zhang, 2016b). The framework is
largely based on Reichenbach’s (Reichenbach, 1956) Common Cause Principle:
that if two variables are dependent, there must be a causal relationship between
the two or a third common driver of the two. Most importantly, causal methods
identify the direction of observed effects between variables and detect spurious
correlations.

The model we are interested in for this work is the United States Department
of Energy (DOE) Energy Exascale Earth System Model (E3SM) (E3SM Project,
2018). This model is a coupling of atmospheric, ocean, river, land, land ice, and
sea ice numerical models. Its goal is to use exascale computing to output high-
resolution simulations of natural and anthropogenic effects in the climate.

The Arctic climate has significant direct and indirect impacts on global cli-
mate, ecology, geopolitics, and economics (Assessment, 2004; Arc, 2019; Smith
and Stephenson, 2013). In particular, the volume and extent of Arctic sea ice are

important indicators for the current state and projections of global climate change
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(Goosse et al., 2018; Sevellec et al., 2017; Runge et al., 2015b; Cvijanovic et al.,
2017). Because of this, effectively understanding the causal drivers in the Arctic
climate system is requisite for understanding the future of our climate and how we
can mitigate or intervene in climate change.

Climate models are in active development and the Coupled Model Intercompar-
1son Project (CMIP) is a group that collects and curates modern climate models for
world-wide collaboration. Researchers have found that models in phases 3 and 5
of CMIP underestimate the rate of Arctic sea ice loss on average (Rosenblum and
Eisenman, 2017; Taylor Karl E., Stouffer Ronald J., 2012; Stroeve et al., 2007).
Figure 4.1 shows the difference between observed sea ice extent and E3SM’s mod-
eled prediction.

In previous work, we used random forest feature analysis to determine which
summer-time features in the Arctic are most predictive of yearly sea ice extent
minimums in September (Nichol et al., 2021). We then compared results from
observed data and simulation output data. This approach allowed us to discover
and compare nonlinear relationships in the climate systems. Random forest feature
importance values are correlations and direction can only be inferred from each
feature to the single predictand. Therefore, inter-feature relationships in the model
cannot be interpreted causally. Finding differences between in causal relationships
between climate models and observed data will identify clear, actionable problems

with the models.
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4.4 Data

We selected time series data for ten features in the Arctic consisting of monthly
mean values for each year of available data. Empirical data was collected from ob-
servational and reanalysis data products, and simulated data were taken from five
ensemble members of the E3SM historical dataset (E3SM Project, 2018; Golaz
et al., 2019). The selected features are a subset of physical quantities simulated
by E3SM in the Arctic and are the same ones used in our previous work with
random forests, (Nichol et al., 2021). We originally chose these features because
they match observable features in nature and we hypothesized they would be good
predictors of sea ice loss. Through feature analysis, we discovered that some in-
puts were far more predictive than others, but we did not have a causal inference
framework to explain why. Each feature of the observed dataset is a time series
beginning with the start of the satellite era in 1979 to 2018. The E3SM historical
ensembles span 1850 to 2014.

The observational data includes monthly sea ice extent computed from gridded,
daily, passive-microwave satellite observations of sea ice concentration provided
by the National Snow & Ice Data Center (NSIDC) (Peng et al., 2013). Sea ice con-
centration is a percentage value of ice in each grid cell, and sea ice extent (SIE) is
computed as the total area of cells containing more than 15% ice. Sea ice volume
(SIV) reanalysis data were provided by the Pan-Arctic Ice Ocean Modeling and

Assimilation System (PIOMAS) (Schweiger et al., 2011). Atmospheric data, total
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cloud cover percentage (CLT), downward longwave flux at surface (FLWS), pres-
sure at the surface (PS), near-surface specific humidity (SSH), temperature at the
surface (TS), wind u component/zonal (uwind), and wind v component/meridional
(vwind)) were from an atmosphere reanalysis provided by the National Centers
for Environmental Prediction (NCEP) (NOAA et al., 2019a). Sea surface temper-
ature (SST) was provided by the National Oceanic and Atmospheric Administra-
tion (NOAA) (NOAA et al., 2019b). For each of the atmospheric data variables, as
well as SST, monthly Arctic area averages were computed from the global gridded

fields. Simulated data features were selected to match the observation dataset.
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Figure 4.1: Comparison of observed, pan-Arctic mean September sea ice extent with predictions
from E3SM’s historical ensembles 1-5. The mean of E3SM simulations is shown with 95% confi-
dence interval (shaded).
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Figure 4.1 shows the difference between observed and E3SM’s simulated sea
ice extent in September each year between 1979 and 2014. September is when sea
ice extent is at its minimum. The model generally predicts the same trend but fails
to determine critical lows in yearly sea ice extent. While the simulations generally
predict sea ice extent well, there are significant departures (fall outside the 95%
CI) in particular years. For example, in 2012 there was a reversal between simula-
tion, which predicted a year-over-year increase in sea ice, but instead a record low
was observed. Since sea ice extent has a non-linear effect on the global climate,

providing a causal explanation for these departures is critical.

4.5 Approach

Causal inference is a mathematical framework for answering questions about why
phenomena occur. Causal modeling is an effort to discover, describe, and analyze
the relationships between cause and effect (Pearl, 2009; Spirtes and Zhang, 2016b).
The calculus of causation is defined in two languages: a causal diagram, expressing
what we know, and a symbolic language, expressing what we want to know (Pearl
and Mackenzie, 2018b). The methods we propose derive a causal diagram from
the given data.

A causal diagram is a directed graph where arcs represent the causal relation-
ships between variables. Figure 4.2 is a diagram depicting correlations between
variables in the observed dataset from our previous work. Only mean values from

June in each year between 1979 and 2014 were included. For example, the PC
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algorithm (Spirtes et al., 1993) could take a diagram such as the one in Figure 4.2
as input and iteratively remove spurious correlations and determine the causal di-

rection between the remaining links.

Downward Sea
Longwave Surface Air
Radiation Pressure

Cloud
Cover %

Surface
Water
Temp.

Surface Air Surface
Temp. Humidity

Figure 4.2: Diagram showing correlated relationships between variables in June from the observed
dataset between 1979 to 2014. Green indicates a positive correlation and orange indicates a negative
correlation. The correlation threshold is 0.6.

There are multiple methods for constructing causal networks that are candidates
for investigation in this work. These include causal network learning algorithms,
such as the Peter-Clark (PC) algorithm, structural causal model frameworks, such
as LINGAM, and the fast causal inference (FCI) algorithm. Each of these require
sets of assumptions about the given data describing the system. We will need to
determine which assumptions we can meet with the available data. Due to the
nonlinear, stochastic, high-dimensional nature of the climate system, it is likely

that causal network learning algorithms and structural causal models will be more

effective.
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4.5.1 The PCMCI method

We plan to attempt our analysis with PCMCI (Runge et al., 2019d) first. PCMCI
extends the PC-algorithm by adding momentary conditional independence (MCI)
tests. These remove false-positives left by the PC algorithm and conditions on each
variable’s causal parent and its time-shifted parents as well. Thus, the algorithm is
designed to remove spurious relationships and identify concurrent and time-lagged
causal relationships. PCMCI was specifically designed for highly interdependent
time series such as climate data.

In (Nowack et al., 2020b), the authors used time series data for sea level pres-
sure data collected at 50 locations around the globe. The authors then examined
the relationship between precipitation and the causal network skill scores for sea
level pressure to demonstrate that this method can help identify dynamic coupling
mechanisms arising from underlying physical processes. The Nowack et al. study
1s one of the first causal network inference studies using large-scale spatiotempo-
ral data and provides a proof-of-concept that such methods are viable for analyzing
climate systems. They looked at a single variable in various regions. In contrast,

we plan to use PCMCI to analyze several different quantities in the same region.

4.5.2 Comparing and evaluating causal models

An obvious first approach for comparing causal diagrams is with standard graph
comparison metrics such as global properties and summary statistics: edge density,

global clustering coefficient, degree distribution, counts of subgraphs, hamming
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distance, etc. However, these are defined by correlation and do not address the
causal nature of the networks.

Other metrics grounded in information theory, such as information flow, are
more appropriate for causal networks but possibly more difficult to interpret holis-
tically. In (Runge, 2015), the authors present a framework for determining infor-
mation flow from multivariate causal diagrams.

A different approach is to consider the resulting models’ performance. This
includes metrics such as true positive rate (TP), false positive rate (FP), accuracy,
positive predictive value, false omission rate, the S-score, and the G-measure and
F1-score (metrics combining TP and FP). These require a baseline model, such as
the causal diagram of the observed dataset, to measure the performance of a test
model. These are easier to interpret than information flow but are relative measures

and cannot be assessed independently.

4.6 Anticipated Contributions

The contributions of this work will bring climate modeling experts a step closer
to understanding why E3SM does not model certain Arctic quantities well, such
as sea ice extent. In our previous work, random forests were able to elucidate
which features were more or less important for model predictability in observed
and E3SM data. This work should support those results and help explain the causal
drivers behind observed and E3SM results. Future research after this work could

include: considering more features in the Arctic; other regions with known mod-
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eling biases, such as the Antarctic; and other climate modeling problems, such as
determining the effects and sources of major climate events. Clear examples are
volcanic eruptions and anthropogenic climate change and intervention. Develop-
ing more informative analytics for climate models will hasten their improvement

and better inform policy decisions to mitigate and combat global climate change.
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ABSTRACT:

We use a nascent data-driven causal discovery method to find and compare causal relationships in
observed data and climate model output. We consider ten different features in the Arctic climate
collected from public databases on observational and Energy Exascale Earth System Model (E3SM) data.
In identifying and analyzing the resulting causal networks, we make meaningful comparisons between
observed and climate model interdependencies. This work demonstrates our ability to apply the PCMCI
causal discovery algorithm to Arctic climate data, that there are noticeable similarities between
observed and simulated Arctic climate dynamics, and that further work is needed to identify specific
areas for improvement to better align models with natural observations.

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:

The Arctic is changing rapidly and feedbacks between the ocean, atmosphere, and sea ice may be
accelerating that change [12]. Accurate predictions of the future sea ice extent in the Arctic depend on
understanding the impacts of greenhouse gas forcing and the superimposed internal variability of the
complex Earth system. In particular, sea ice loss in the Arctic has been shown to have a linear
relationship with global average surface temperature in both observational data and simulation data,
with most predictions indicating that the Arctic will be seasonally ice free by mid-century [12,13]. The
correlation is generally explained by a common dependency of temperature and sea ice concentration
on greenhouse gas concentration, but causality has not typically been assessed. Other studies have
found that internal variability in the climate system can accelerate or impede sea ice loss and there is
currently no consensus on the dominant processes in the ocean and atmosphere that have the largest
impact [14, 15, 16].

Earth system models (ESMs) are critical to our understanding of climate change, but the complex nature
of the interactions between atmosphere, ocean, ice, and land can obscure causal relationships. Here, we
investigate the causal relationships between Arctic climate features to better understand the complex
feedbacks that result in rapid Arctic change and sea ice loss. This effort extends our feature analysis that
identified features important for predicting yearly minimum sea ice concentration and compared
feature importance between simulations and observations [1].

In [2], a recent review of causal discovery methods for complex systems, they argue that causal
discovery is well-suited to improving climate models. In [3], authors provide an example analysis of a
global climate model, though focus on a single feature in many separate regions of the globe. This work
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builds on these publications by extending this nascent field to the U.S. Department of Energy’s Energy
Exascale Earth System Model (E3SM) [4] and including a multiple feature analysis within one common
region. E3SM is a coupling of atmospheric, ocean, river, land, land ice, and sea ice numerical models. Its
stated goal is to use exascale computing to output high-resolution simulations of natural and
anthropogenic effects in the climate.

Commonly, causality is determined and quantified by interventionist experiments, usually in randomized
trials. Because of the magnitude, complexity, and uniqueness of the Earth's climate, there are significant
feasibility and ethical problems with controlling and intervening in the climate for experimentation. For
this reason, climate science is largely studied with ESMs, which are coupled numerical models. Each
model encapsulates subsystems and subprocesses coupled together to approximate the long-term
climate.

The status-quo in ESM evaluation is based on descriptive statistics, like mean, variance, climatologies,
and spectral properties of model output derived from correlation and regression methods [2]. These
methods can be simple to implement and interpret but are often ambiguous or misleading; resulting
associations can be spurious and the directions of effects is fundamentally unknown.

In recent decades, a rigorous mathematical framework has been developed for observational causal
inference by Spirtes, Glymour, Scheines, Pearl, Rubin, and others [5, 6, 7, 8]. The framework for causal
discovery is largely based on Reichenbach's [9] Common Cause Principle: that if two variables are
statistically dependent, there must be a causal relationship between the two, or a third common driver
of the two. Most importantly, causal discovery methods attempt to identify the direction of observed
effects between variables and detect spurious correlations. Effectively understanding the causal drivers
in the Arctic climate system is requisite for understanding the future of our climate and how we can
mitigate or intervene in climate change.

In previous work, we used a random forest feature analysis to determine which summertime features in
the Arctic are most predictive of yearly sea ice extent minimums in September [1]. We then compared
results from observed data and simulation output data. This approach allowed us to discover and
compare nonlinear relationships in the climate systems. Random forest feature importance values are
correlations and direction can only be inferred from each feature to the single predictand. Therefore,
inter-feature relationships in the model cannot be interpreted causally. This research expands on our
previous work by identifying causal relationships in the data and comparing causal networks from
historical simulations and observations.

Causal discovery of observational data is notoriously difficult because spurious correlations and
incomplete data leads to spurious inferences. In this work we use conditional independence-based
causal discovery, which relies on several assumptions for estimating causal links. One of which is causal
sufficiency, that all confounding variables are observed. Because the complex dynamics of the Arctic
system are actively researched, and there is no strong consensus on the dominant processes in the
Arctic climate, we cannot validate causal sufficiency. We chose our variable set because of their strong
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correlation with sea ice extent and their success in predicting sea ice extent [17, 18, 1], and they serve as
a good hypothesis for a sufficient set.
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In our analysis, we were able to fit a network depicting conditional dependencies between features to
each of six data sets, observed and five simulated. We then applied a similarity score to evaluate how
well the simulated datasets agree with the observed data and each other. Finally, we discuss the next
steps for this work and how to derive meaningful differences between the networks.

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND
METHODOLOGY:

Data

We collected ten features of the Arctic climate. Each was a timeseries of monthly mean values, averaged
spatially over the region above 60 degrees North latitude. The observed dataset consisted of natural
observations and output from reanalysis products. Simulated data was from the five members, or runs,
of the E3SM historical ensemble [4]. The historical ensemble is a set of runs simulating the Earth system
from 1850 to 2014. These runs were initialized by a 500-year-long pre-industrial control simulations,
named piControl. The selected features are a subset of the quantities E3SM models and were chosen to
match observable natural quantities and have been shown in previous work to have strong correlations
with sea ice extent [17, 18, 1]. Resulting are six separate datasets, one observational and five E3SM
simulation datasets.

The specific quantities we used were mostly the same as outlined in our plan (as seen in Addendum A).
We did choose to change a few details. Rather than limit each variable to the same temporal range,
1979-2014, we instead included all the data available for each. We used the entire 150-year span of the
E3SM data. The observational timeseries’ date range varied by each feature, though they all start in
1979 and continue at least through 2017. Additionally, the full 150-year surface zonal and meridional
wind timeseries were not readily available, so we opted to use surface wind magnitude, SWind, in their
place, which does not include a directional component. Lastly, we included monthly precipitation rate
data from E3SM and from the National Centers for Environmental Prediction for the observational
dataset. Full data details are in Addendum C.

Preprocessing

The method detailed below, PCMCI, assumes the data is statistically stationary, i.e., its summary
statistics do not change in time. First, we tested each timeseries for stationarity. This consisted of using
the Kwiatkowski—Phillips—Schmidt—Shin (KPSS) and augmented Dickey-Fuller (ADF) hypothesis tests.
KPSS tests the null hypothesis that a timeseries is stationary around a deterministic trend while ADF
tests the null hypothesis that a timeseries is nonstationary around a deterministic trend. If KPSS fails to
reject the null hypothesis, and the ADF test rejects, then we considered a timeseries stationary. We used
an alpha value of 0.05 to determine significance and found that most features were nonstationary. To
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keep dependencies and inferences consistent, we applied a 12-month differencing transform to every
timeseries. A 12-month difference transform is the process of subtracting a timeseries by itself lagged 12
months. Resulting is a timeseries of the original’s change from one year to the next. Differencing
removes trend and choosing 12-months will remove yearly seasonality in the data.

Causal network learning

Causal discovery is the process of reconstructing the causal structure from purely observational data
[10]. Traditional causality research to determine the causal effect, inferences about the strength of
effects between variables, is done when the causal structure is already known. Causal discovery is used
when the causal structure is mostly unknown. The causal structure discovered is often represented as a
directed acyclic graph in which the nodes represent observed variables, and the edges represent causal
relationships.

Causal discovery generally makes four major assumptions: (1) the causal Markov assumption, that if two
nodes, X and Y, are d-separated in a graph G, given a conditioning set Z, then X and Y are conditionally
independent in their joint probability distribution, given Z; (2) the faithfulness assumption, that if two
variables, X and Y, are conditionally independent, given a set of variables, Z, then their nodes in a graph,
G, must be d-separated, given Z; (3) causal sufficiency, that there are not any unobserved confounding
variables of any variables in the graph; and (4) acyclicity, that there are no cycles in the graph.

In this work, we applied the PCMCI algorithm [11]. PCMCI is an extension to the PC causal network
learning algorithm [5], named for its authors Peter Spirtes and Clark Glymour. PC is known for a
relatively high false positive rate and struggles with high dimensional, autocorrelated data [11]. In [11],
Runge et al. adapted PC to use its skeleton discovery phase for condition selection and then utilize a
momentary conditional independence (MCI) phase. PCMCI estimates the causal links between all
variable pairs, including their temporal lags.

The first important determination in applying PCMCl is to choose a conditional independence test. The
authors have implemented three, the partial correlation, a linear parametric test, gaussian process
regression and distance correlation, a nonlinear parametric test, and conditional mutual information
with a k-nearest-neighbors estimator, a nonlinear nonparametric test. Generally, the functional form of
the dependencies in the feature set needs to be assumed and the appropriate test is chosen. In our case
though, we knew it was likely that nonlinear dependencies existed in the data but could not assume if
they remained after the data was transformed.

To estimate the dependencies’ functional form, we plotted each feature with another one in a scatter
plot. The resulting plot depicts how each feature varies with the other. With this, linearities and
nonlinearities can be found by eye. Applying this process to the untransformed data, we indeed found
several nonlinearities of various forms as well as linear dependencies. Applying it to the transformed
data revealed no clear nonlinearities, and multiple clearly linear relationships. With this discovery, we
selected the partial correlation parametric linear conditional independence test.
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PCMCI has two primary hyperparameters for tuning. The first is the maximum lag, 7,4, the maximum
lag to evaluate for each variable. 7,4, is an estimate of the maximum time that every variable may have
an effect on the others. The estimation of 7,4, may come from prior knowledge or by analyzing the
linear dependence of each variable with every other variable at a range of lags. The second parameter
to estimate is the alpha significance threshold for edges in the graph. Every pairwise dependence is
determined with conditional independence tests and has an associated p-value for its significance. Alpha
is the threshold for whether the p-value of each link is small enough to be included in the final graph.

To estimate 7,4, We plotted the cross-dependencies between each variable at lags between 0 and 24
months and looked for dependence to reach zero for every graph. See Figure 1 for an example from the
observed dataset. We repeated this process for each dataset and found that 7,,,, = 12 months was
adequate for each variable pair. To estimate alpha, we followed the procedure in [3], which selects from
the list {0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} by computing the Akaike information criterion
(AIC) of the models fit by each value in the list. That list is slightly more extensive than in [3] because we
found each graph was selecting 0.05 and wanted to be sure it was not just selecting the smallest
available value.
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Figure 1: Plots of each feature as a function of each other feature's lags. The vertical axes denote linear dependence, and the
horizontal axes denote the number of lags in months.
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Causal network comparison

We utilized the F; score used in [3] to compare each pair of graphs. The F; score is a graph similarity
metric with bounds [0,1], with 0 indicating no similarity and 1 indicating perfect similarity. The metric is
computed from the precision, P, and recall, R, of a graph in comparison to a reference graph. Precisely,
these values are computed as:

F_Z-P-R
™ pP+R
where
- TP
" TP+ FP
. TP
" TP+ FN

and TP is the number of true positives, FP is the number of false positives, and FN is the number of false
negatives. These terms often assume a ground truth, although because the observed graph is an
estimated causal graph and not ground truth, it is important to consider this metric as a relative score
and not absolute.

RESULTS AND DISCUSSION:

Before analyzing the results, we filtered links from each network with less than 0.001 significance. For
each dataset, PCMCI independently selected pc-alpha value to be 0.05 via AIC. PCMCI evaluated lags
between 0 and 12 months for each feature. The simplified graphs in Figure 2 and Figure 3 hide the
nodes of each features’ lags and only presents a single node per variable. The full timeseries graphs
inferred by PCMCI include nodes for each feature’s lags up to the maximum lag of 12 months. Because
the date ranges on simulated and observed data are not the same, we present results from networks
learned from the fully available date ranges, as well as from a homogenous range, 1979 to 2014.
Although the algorithm has less data to learn from, this may be a fairer comparison to observed
dynamics.

Simplified graphs label links with a list of the lags with significant dependency in order of magnitude.
Node color depicts a feature’s auto-dependency, how dependent a feature is on its lags. Edge color
depicts cross dependency, how dependent a feature is on another feature. Negative, or blue, cross
dependency indicates that as the parent’s value increases or decreases, the child’s value changes
inversely. Positive dependence indicates parent and child values increase and decrease together.
Because we used a linear conditional independence test, these relationships are linear. Since these
colors span many lags, the color chosen for the simplified graphs is the maximum absolute link between
two features or a feature and itself.

Figure 2 is a simplified causal network estimation, trained from the full range of observed data.
Resulting is relatively sparse partially directed acyclic graphs, with only 5.3% of all possible links existing
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in the graph. Directed links represent discovered dependencies between features. Undirected links
represent contemporaneous dependencies.

Observed

SWind ‘
SIE
5,2

0.8 -0.8 -0.4 0.4 0.8

0.0 0.4 0.0
auto-MCl (nodes) cross-MCl (links)

Figure 2: Simplified graph resulting from applying PCMCI with the partial correlation test on observational data in the fully
available date range. The pc-alpha parameter was selected by AIC to be 0.05, the links are defined by a significance threshold of
0.001.

Figure 3 is the simplified graph fit by simulation 1 of the E3SM historical ensemble in the fully available
date range. Although many similar links exist in this graph, it contains many more than the observed
data graph. The remaining simulation graphs can be found in the Addendum C. They all differ but are
more alike than the observed data graph and contain more links. An average of 8.6% of all possible links

exist in the simulation graphs.
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Simulation 1

CLT

0.0 0.8 -0.8 -0.4 0.4 0.8

0.4 0.0
auto-MCI (nodes) cross-MClI (links)

Figure 3: Simplified graph resulting from applying PCMCI with the partial correlation test on simulation 1's data in the fully
available date range. The pc-alpha parameter was selected by AIC to be 0.05, the links are defined by a significance threshold of
0.001.

To better quantify the similarity between each graph, we computed the F; score of each pair of graphs.
For this analysis, we included the fully detailed networks. These include a node for each lag of each
feature. Figure 4 shows these results for the fully available date range graphs. The simulation networks
are the most similar with each other, while the observed network is the most different from all other
networks. The average simulation to simulation F; score is 0.83. The average simulation to observed F;

score is 0.7.
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Figure 4: Matrix of F; similarity scores of each pair of graphs for the fully available date range graphs.

The homogenous date range changed the observed graph minimally but altered the simulated graphs
noticeably. 5.5% of all possible links exist in the observed graph, while an average of only 4.8% exist in
the simulation graphs for this date range. Figure 5 shows the F; similarity scores for the homogenous
date range, 1979-2014. In this, the simulation networks lose some similarity, dropping to an average
value of 0.71 simulation to simulation. The average similarity to the observed network increases slightly
though, to 0.73. It is intuitive that the simulations would diverge in later years, after having been
initialized equivalently, and eliminating the early years makes this apparent in their similarity scores.
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Figure 5: Matrix of F; similarity scores of each pair of graphs for the homogenous date range, 1979-2014.

In this work, we developed a strong foundation for applying conditional independence-based causal
discovery algorithms. The differencing transforms we applied to the data were important for removing
seasonality and trend, which removes the unobserved confounders driving them. We have found that
we can apply causal discovery algorithms to Arctic climate data and find strong consistencies between
observed and simulated timeseries. Although we cannot validate the causal sufficiency assumption with
certainty, we can see that discovered conditional dependencies are similar in each dataset. In future
work, we can develop and apply node-to-node similarity metrics to find which nodes are most
responsibility for dissimilarity between graphs.

It is important to remember that each feature was transformed to create stationary timeseries. The 12-
month differencing transform means that each timeseries is a series each month’s deltas from that
month’s previous year. This means that a directed link from feature X to feature Y would be interpreted
as the change in Y from year to year is dependent on the change in X from year to year.

The primary limitation of our findings is the inability to justify the causal sufficiency assumption. The
remaining assumptions can be considered satisfied as they assume that an underlying causal structure
exists in the data, and that cause and effect does not occur instantaneously. That is assured by the
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physical and temporal nature of these quantities. The challenge of causal sufficiency exists in any open
complex system. We plan to apply causal discovery algorithms that do not rely on the causal sufficiency
assumption, such as the Fast Causal Inference algorithm [5] or Latent PCMCI (LPCMCI) [19]. LPCMCI
augments PCMCI to discover causal links in the presence of latent, or unobserved, features.
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ANTICIPATED OUTCOMES AND IMPACTS:

During this project we presented our findings to the International Conference on Machine Learning
(ICML) in the form of a workshop paper (as seen in Addendum A) and an online poster presentation. We
also gave another presentation internally to the Validation and Verification of Machine Learning Models
discussion group (as discussed in Addendum B). Later this fall there will be presentation at the
Chesapeake Large-Scale Analytics Conference (CLSAC) about this work. These presentations allowed us
to network with other groups around the labs and externally; organizations include 5493, 1463, 0515,
and professors at the University of New Mexico (as discussed in Addendum B).

The major lesson learned in this project was that ground truth for artic climate dynamics is an ongoing
research problem, which this work depends on for validating our results are causal. Currently we are
relying heavily on climate experts to validate our causal models, but to fully develop metrics for
comparing our models we need a concrete understanding of arctic climate dynamics as well as global
dynamics. Once these climate dynamics are sufficiently validated, we can utilize these causal models to
help us improve our simulated models.

This work will continue in the CLimate impact: Determining Etiology thRough pAthways (CLDERA) Grand
Challenge project starting in FY22. We plan on improving and adding metrics for comparing similarities
and differences between causal models. We are also looking into determining how well a given model
fits the data used for training. Some other research areas we want to explore include incorporating
spatial data features into our analysis. The work done in this project used averaged values over the
entire arctic. We could have divided the data into subregions of the arctic, but with this being a Late-
Start LDRD with limited time we decided it was best to simplify the problem space. This will be
important for CLDERA because we will be working with data on a global scale and averaging values over
the whole globe would not work as easily.

CONCLUSION: (400 word limit)

In this work, we found strong similarities between conditional dependencies discovered in observed and
simulated climate dynamics. If the assumptions of causal discovery were to hold, we would find that
E3SM climate simulation runs are causally similar to each other and, importantly, causally similar to
observations. Although we cannot validate the causal sufficiency assumption, there is evidence that our
feature set is a good hypothesis. The largest remaining sources of confounding may be from remaining
seasonality and trend from external forcing such as periodic-natural and anthropogenic climate changes.
A clear next step is to apply a causal discovery algorithm that does not require causal sufficiency and
then compare results.
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ABSTRACT

Causal discovery algorithms construct hypothesized caunsal graphs that depict causal dependencies among
variables in observational data. While powerful, the accuracy of these algorithms is highly sensitive to the
underlying dynamics of the system in ways that have not been fully characterized in the literature. In this
report, we benchmark the PCMCI causal discovery algorithm in its application to gridded spatiotemporal
systems. Effectively computing grid-level causal graphs on large grids will enable analysis of the causal
impacts of transient and mobile spatial phenomena in large systems, such as the Earth’s climate. We
evaluate the performance of PCMCI with a set of structural causal models, using simulated spatial vector
autoregressive processes in one- and two-dimensions. We develop computational and analytical tools for
characterizing these processes and their associated causal graphs.

Our findings suggest that direct application of PCMCI is not suitable for the analysis of dynamical
spatiotemporal gridded systems, such as climatological data, without significant preprocessing and down-
scaling of the data. PCMCI requires unrealistic sample sizes to achieve acceptable performance on even
modestly sized problems and suffers from a notable curse of dimensionality. This work suggests that,
even under generous structural assumptions, significant additional algorithmic improvements are needed
before causal discovery algorithms can be reliably applied to grid-level outputs of earth system models.
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1. INTRODUCTION

Automated causal structure discovery is an exciting frontier of data-driven science and domain-informed
machine learning, but techniques for causal discovery are still rather untested in complex domains. As
part of a larger investigation of causal discovery and attribution in climate systems, we investigate the
performance of a state-of-the-art algorithm for causal discovery from climate data. The algorithm returns
a causal graphical model of the given variables. Causal graphical models are usually directed acyclic graphs
(DAGs) that relate the causal dependence (graph edges) between variables (graph nodes). Due to the
scientific, computational, and statistical difficulties of characterizing climate systems, we instead draw
upon well-established techniques for the benchmarking of machine learning algorithms for the evaluation
of causal discovery. Our results highlight the limitations of modern causal discovery approaches and
demonstrate the unreliable performance of these algorithms, even in the most amenable scenarios.

To create the benchmark test cases and perform the various studies we show in this report, we rely on
the ideas of benchmarking. According to Olson et al. [1], “the term benchmarking is used in machine
learning to refer to the evaluation and comparison of ML methods regarding their ability to learn patterns
in ‘benchmark’ datasets that have been applied as ‘standards’. Benchmarking could be thought of simply
as a sanity check to confirm that a new method successfully runs as expected and can reliably find simple
patterns that existing methods are known to identify.” There are many benchmark datasets available:
readers may be familiar with the ImageNet database which is commonly used for image classification test
problems [2]. Recently, there has been a growth in scientific machine learning benchmarks as well, see
Thiyagalingam et al. 3, 4]. The benchmarking approach typically involves a few main steps: identification
of training datasets which provide the benchmark data or “gold standard” data, identification of the
algorithm or method being tested and associated algorithm choices that might be examined (e.¢. number of
layers in a neural network, activation function used, optimization algorithm to determine hyperparameters,
etc.), and a set of performance metrics with which to evaluate the algorithm. Depending on the extent
and focus of the benchmark exercise, the ML algorithm can be run with many algorithm choices and the
“best” choices can be identified, according to the performance metrics which typically involve “goodness
of fit” with respect to predicting the benchmark data but which also may include time to train, time to
make a prediction or inference, amount of computing power needed, etc.

We note that causal discovery does not necessarily fall into the machine learning category: it involves aspects
of statistical modeling and network inference. However, we feel the benchmark terminology as defined
above represents the goal of our efforts well. We also have leveraged verification and validation concepts
from the computational science community which focuses on PDE solutions for physical systems, with
the goal of improving the credibility of computational models and assessing their predictive capability
[5-8]. There are some aspects of verification, specifically solution verification, in the work presented in
this report. In the subsequent sections, however, we use the benchmarking terminology.

Benchmarking becomes more challenging for structure-learning algorithms (such as causal discovery),
because they require a complete ground-truth graph to evaluate correctness, rather than additional obser-
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vations as traditional machine learning requires. This typically limits structure-learning benchmarking to
high-fidelity simulation output or hypothesized ground-truth, developed from randomized control trials.
While there are a number of metrics that measure the performance of a machine learning model (such as
cross-validation error, leave-one-out error, ezc.), they typically only apply to models predicting additional
data points from observational probability distributions, rather than intervention distributions', because
they capture the ability of the model to represent the training and/or testing data. They do not address
other questions such as the correct implementation of the algorithm or the properties and performance it
exhibits on various classes of problems. For causal modeling and causal discovery algorithms, there has
been limited work specifically seeking to address the issue of “is the inferred graph or causal structure that
the algorithm produces correct?” though the works of Runge [10], Runge et al. [11] provide limited, but
promising, initial results in this space. In this work, we seek to partially address this important lacuna.

In this work, we report the results of an extensive benchmarking exercise for the PCMCI algorithm of
Runge et al. [11]. We specifically focus on the performance of this algorithm as applied to data with spatial
and temporal dependence. Our results rely upon a simulation framework inspired by statistical models for
time series and by the spatial dynamics of cellular automata. While limited benchmarking of PCMCI has
previously been performed, ours is distinguished by a thorough analysis of the effect of spatial structure
on performance.

1.1. Background and Related Work

The philosophical and statistical aspects of causal inference and causal discovery are subtle but powerful
and our discussion here is necessarily informal. For a further discussion of these issues, we refer the reader
to the books by Peters et al. [9] and by Pearl and Mackenzie [12], as well as the many references therein.

1.1.1. Structural Causal Modelling

Causal network discovery, or causal structure learning, is the process of estimating a causal graph2 of an
underlying structural causal model (SCM) from observational data® and subject matter expertise*. An
SCM is a semi-mechanistic model, which augments a classical statistical model with a notion of causal
structure.” While exact estimation of the SCM is typically impossible, it is often possible to accurately
estimate the causal network associated with that SCM. A causal network is a DAG representation of the
SCM, where variables represent different aspects of the data and directed edges connect “cause” to “eftect.”

ntervention distributions are what causal graphs predict. We omit discussion of that topic and refer the reader to Peters
etal. [9, p. 120-121]

2 Also known as a causal network.

30bservational data is characterized as non-experimental data; it contains no planned interventions or controls.

4Subject matter expertise is represented by critical causal assumptions, which causal discovery algorithms leverage to reason
about the statistical properties found in observational data.

5Classical probeabilistic statistical models do not naturally incorporate causal structure, instead representing data as a simul-
taneous draw from an underlying probability distribution. Any temporal object, such as the sample path of Brownian
motion, is a draw of a single time-indexed object from an underlying space, rather than a system obeying causal laws.
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Many SCMs imply the same causal network, but, under reasonable assumptions,é there is a unique DAG
for any SCM. When considering SCMs of temporal data, there exist multiple ways of depicting the causal
network; see the works by Eichler [13] and Peters et al. [9, p. 198] for details.

As a simple example, consider the following SCM:

W, :=0.9W,_; +n,"

X, :=0.8X,_1 +0.4W,_; +0.2Z;,_3+n*
Y, :=0.5%_1 +0.2X,»+n/
Z;:=0.6Z,_14+0.3Y,_+n?

(1.1)

where each ) ~ .#7(0, 1) is 11D Gaussian noise. These relations form a SCM for simulated realizations of
this process.

Figure 1-1 is a causal graph for the SCM in Equation (1.1). Specifically, it is a tzme series graph [10], which
captures the temporal dependencies of each node. Each node is a temporally lagged instantiation of each
variable. Notice that each variable is autocorrelated in Equation (1.1), with a link between itself and its past
self, over 1 lag. The 2 and 3 lag dependencies in X — Y and Z — X, respectively, are also depicted passing
over their respective lag lengths. Without the lagged representation, time-delayed feedbacks’” would be
illustrated as cycles, which violates an important assumption of causal graphs: acyclicity.

While an SCM maps to a DAG, causal network discovery algorithms often output partially-directed acyclic
graphs (PDAGs) [14], in which some edges are undirected. Undirected edges indicate a dependence was
identified, but not the direction of dependence. Edges sometimes fail to be oriented because of violated
assumptions or too little data, but most causal discovery algorithms can only estimate up to the correct
Markov equivalence class of graphs, even when assumptions are met and sampling is sufficient. See Peters
etal. [9, p. 102] for more on the Markov equivalence of graphs.

Estimated graphs can be annotated with more information indicating the strength of dependence between
nodes, causal effect size, causal susceptibility, ezc. [15, 16], but in this work, we are only concerned with
estimating the topology (edge structure) of the time series causal network.

Algorithms for reconstructing causal networks from data generated by an SCM are discussed in the next
section.

1.1.2. Causal Discovery & the PCMCI Algorithm

Many algorithms for causal discovery have been proposed in the previous 30 years, most notably the
PC algorithm [17], named for its authors Peter Spirtes and Clark Glymour, the Fast Causal Inference
(FCI) [17], and the Linear Non-Gaussian Acyclic Model (LINGAM) [18]. While these general-purpose

“These assumptions include causal faithfulness, the causal Markov condition, and causal sufficiency. Put simply, the faithful-
ness assumption states that separation of two nodes in the causal network is implied by independence, the causal Markov
condition states that separation in the graph implies independence in the data, and causal sufficiency states that we have
included all common causes of two or more variables in the analysis. Again, for a more detailed discussion, see the books of
Peters et al. [9] and Pearl and Mackenzie [12].

7Such as that fromX - Y — Z — X over2, 1,and 3 lags, respectively.
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Figure 1-1. A time series graph representation of the SCM in Equation (1.1). By associating each
variable with a node for each time lag, it is possible to fully capture relationship between variables
and their temporal ancestors.

algorithms are primarly designed for non-temporal data, temporally-aware variants of these algorithms
exist [16] as well as novel approaches specific to time series, such as the Optimal Causal Entropy (OCE)
algorithm [19, 20]. In this work, we consider the PC-Momentary Conditional Independence (PCMCI)
algorithm of Runge et al. [16]. We focus on PCMCI because it was specifically designed to deal with the
complex temporal structure of climate data and it has found wide use among the causal climate community
[15, 21-25].

PCMCI modifies the classical PC algorithm [17] by adding so-called “Momentary Conditional Indepen-
dence” tests. These tests take advantage of the temporal structure of the data to greatly reduce the number
of potential causal effects, thereby decreasing the space of possible causal networks and improving inferen-
tial performance. Like the PC algorithm, the output of PCMCl is a PDAG, however, the time-order of
lagged dependencies helps PCMCI orient more edges than it would without temporal information.

The standard variant of PCMCI assumes all causal relationships work on a lag and that there are no
contemporaneous dependencies in the data. While we focus on the standard PCMCI algorithm, our
simulation study could easily be applied to PCMCI variants, including the Latent-PCMCI of Gerhardus
and Runge [26], which allows for unobserved confounders, and PCMCI+ of Runge [27], which allows
for contemporaneous dependencies.

Runge et al. [11] detail PCMCI thoroughly and provide an open-source implementation of the approach?®.
PCMCl is a two-phase algorithm: the first phase uses a modified version of the PC algorithm to constructa
sparse causal PDAG; this modified algorithm, which they call PC, performs a series of iterative conditional

Shttps://jakobrunge.github.io/tigramite/
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independence (CI) tests in a search for the causal parents of each variable. PC; modifies this search to only
condition on the potential confounders with the largest correlations to the variables in question. While
this significantly increases computational performance, the full impact of this heuristic modification has
not yet been fully characterized.

The second phase of the PCMCI algorithm uses MCI tests to prune this graph in an attempt to eliminate
temporally-induced spurious causality. MCI tests extend traditional conditional independence tests by
conditioning on lagged (time-shifted) observations of variables. In doing so, they specifically examine
whether apparent causal dependencies are artifacts of autocorrelation and prune these spurious graph
edges and reduce the false positive rate of PCj.

As with the original PC algorithm, both the PC and MCI steps of PCMCI can be used with arbitrary
conditional independence tests. Test with the conditional Pearson correlation, the partial correlation, are
easily implemented and widely used, but their performance is only guaranteed for (jointly) Gaussian data.
Peters et al. [9] discuss alternative independence tests; see also the discussion by Runge [10].

Finally, we note that while PCMCI is commonly used for climate data, it does not take advantage of
the spatial structure typically present in such data. Rather than dealing with spatial structure explicitly,
common practice is to summarize data into non-spatial components before applying PCMCI. This
summarization is typically done with a statistical technique such as Principal Components Analysis (PCA)
or variants thereof or by using external climate knowledge to divide spatial data into pre-defined regions or
modes, which are assumed to have no further spatial dependencies [15, 22, 25, 28, 29]. While powerful,
these approaches have several drawbacks: PCA-type approaches construct features that are composed
of all of the features of the underlying data, so the implied causal relationships are often of an “all-to-all”
nature; 2 prior: knowledge is useful for well-studied climate phenomena but is difficult to apply to novel
studies. In this work, we consider working with unaggregated spatial data observed on a regular grid, such
as the output of a large-scale earth system model or geo-referenced observational data. As we will see below,
this approach poses novel difficulties in simulation and estimation.

1.2. Contributions

In this paper, we perform an extensive simulation study to benchmark the performance of PCMCI on a
set of spatially-inspired SCMs. By using data generated from a known SCM, we are able to accurately
quantify the performance of PCMCI on a variety of metrics. In addition to the analysis of PCMCI, our
data simulation procedures may be of independent interest. Our findings inform the feasibility of causal
discovery from real and simulated climate data and identify several challenges that must be addressed
before applying these algorithms at scale.

Section 2 introduces the mathematical framework used to generate spatiotemporal data generation studies,
while section 3 describes the specific parameter values used in our simulations. The results of our simulation
studies are shown in Section 4, along with a detailed discussion of their implications for causal discovery
practice. Finally, Section S summarizes our results and discusses potential directions of future research.
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2. METHODS

2.1, Spatiotemporal Data Generation Models

Causal dependencies in multivariate data are often expressed as SCMs, e.g., SCM (1.1). If there exists
a direct causal dependence from X to Y, which we denote X — Y, then we posit a relationship of the
form:

Yi=fX)+ny (v LX) (2.1)

where fy is a (measurable) function relating the cause variable X to the effect variable Y and 7y is additive
noise. If X is random, then we assume X and 1) are independent (ny 1L X), though this assumption may
be relaxed in some circumstances.! In the common case where fy (+) is a linear function of X, we recover
the well studied class of linear structural equation models (SEM) [12]. As Peters et al. [9] discuss, the
assumption of additive noise in Equation (2.1) is not essential, but it is standard in the field and we will
use it throughout our analysis.

The SCM (2.1) is an additive noise model* (ANM) [9, p. 50], a restriction on the class of SCMs that is
also useful for identifying variables which do not exhibit a causal effect on Y. Suppose that

Y:f(XaZ)+nY

for some function f. It can be shown that Z is not a parent of Y if there exists some function g(X) such
that f(X,Z) = g(X) forall (X, Z) or equivalently Y = g(X) + ny.

When modeling temporal data, the ANM (2.1) must be modified to allow for a variable to depend on its
previous values. Let X, be the state of a system of interest at time #; we make two standard assumptions
on the behavior of X;:

T1) Lagged dependence: X;; / Xj7t,7;3 for any (i, j) and any 7 > 0.
T2) Temporal Causal Stationarity: the dynamics governing the evolution of X; do not change over time.

These assumptions are essentially unavoidable in causal analysis of temporal data: Assumption T1 states
that causal dependencies follow the “arrow of time” while Assumption T2 implies that there is a fixed
causal structure that we are seeking to estimate. If T2 did not hold, then it is unclear what our target of

"We also assume that Y ¢ X, 7.e., that Y does not appear on both sides of equation (2.1): this is essentially equivalent to the
common assumption that the causal graph of the system is a DAG.

2Following the notation in Peters et al. [9], we will hereafter use assignment (:=) when describing SCM definitions, and
equivalence (=) when specifying ANM:s and, later, autoregressive models. In this work, the ANMs and autoregressive
models are generative models, so they are no less causal.

3For our purposes, 7 indicates no direct dependence between variables.

16



estimation actually is.* Under these assumptions, the ANM for a system with only a single temporal lag
becomes:

X, =fXi—1)+n (2.2)

where, as before, 17 is an independent noise variable. In the temporal context, where the effect of the
randomly sampled 7; ; terms persists over time, we will typically refer to the 1; ; terms as innovations rather
than error or noise to emphasize that they are not measurement error, but rather are the fundamental
driving element of the system.

In simulation settings, f(-) often represents one step of a (explicit) PDE solver [9]. If f(-) is a linear
function, then Equation (2.2) is a Vector Autoregressive (VAR) model [10, 11] and can be written as

X =AX; |+ n

where A is a fixed matrix encoding the causal dynamics of the system. Specifically, we note that the sparsity
pattern of A exactly captures the causal structure of the system:

Xii—1 = Xj; A #0

As we will observe in the sequel, this property of VARSs is particularly useful when simulating from and
estimating causal structure in temporal data.

So far, our development has not posited any spatial structure to X;, only the temporal lagged-dependence
structure of Equation (2.2). We next introduce two spatial causal assumptions that parallel our temporal
assumptions:

$1) Neighborhood dependence: if (i, j) are not neighbors (in a problem specific sense) then X; /4 X .
§2) Spatial Causal Stationarity: the dynamics governing the evolution of X; do not change over space.

Assumption S1 attempts to capture a sense of “locality” and to disallow “action at a distance.” When
applying this assumption to physical systems, this implies a certain relationship between the temporal
and spatial discretizations used: at sufficiently low observation rates, it is possible for a causal effect to
exist beyond immediate neighbors.® We do not explore the details of that relationship here, but we do
note that similar concerns are well-studied in the design of numerical differential equation solvers where
spatial and temporal discretizations must be chosen in a suitably consistent manner. Like Assumption
T2, Assumption S2 ensures that PCMCI is learning the same causal structure throughout the space.
Assumption S2 is not essential in this application and can be easily relaxed. These dynamics are similar to
rule-based cellular automata (CA), where the state of each cell is dependent on its immediate neighbors
and the update rules are fixed across all cells and time steps.

Under these assumptions, we obtain the single-lag spatiotemporal ANM:

Xis=f (Xis—1, {Xijl}je/V(i)) + Niy

4Assumption T2 can be weakened to only require the cansal structure of the dynamics, and not the full dynamics, to remain

constant over time, but we do not pursue this relaxation.

5For higher order lags, we have X; = ZZ:] fz(X;—¢) + N, but we omit higher lags for simplicity of exposition unless noted
otherwise. See Peters et al. [9, p. 208] for additional discussion.

For example, consider a simple system in which X1 ;1 = Xi; + 1 forall (i,7). If i is interpreted as a spatial coordinate in a
single dimension, this system satisfies S1. If we reduce our samplingand can only observe Y, =X, Y, 1 =X10,..., Y 140 =
X421, we instead have the causal relationship Yj42; = Y;; which appears to violate S1.

17



where .4 (i) denotes the neighborhood of 7, . If f is further assumed to be linear, then we have

Xig=0Xi; 1+ Z BiXji—1+Mis (2.3)
et (i)

The sparsity of the & and B; coefficients dictates the causal structure of X;. We will occasionally refer to ¢
as a temporal autocorrelation coefficient and f; as a cross-dependence coefficient, though they are not
numerically equal to the actual autocorrelation function of the process X;.

Itis clear that Equation (2.3) can be again expressed as a linear VAR system, with the spatial assumptions
S1 and S2 posing additional constraints on the structure of the dynamics (coefficient) matrix. In the
next two sections, we characterize these constraints for one- and two-dimensional systems, leaving higher-
dimensional systems to the reader.

Specifically, we consider two spatial cases to evaluate different kinds of spatiotemporal dynamics. In
Section 2.1.1, we consider a multivariate, multi-lagged model supported on a one-(spatial)-dimensional
array. In Section 2.1.2, we consider a univariate single-lag model supported on a two-(spatial)-dimensional
array. For both models, we assume the underlying space has a toroidal topology, with the leftmost and
rightmost elements of the one-dimensional space being neighbors, and similarly for the topmost and
bottommost elements in the the two-dimensional case.” In one-dimension, the torus is a circle, while the
two-dimensional torus is a “donut” shape. We note that this topology differs from that of the surface of a
sphere, in that moving far north does not have the same effect as moving far to the west and that there is
no analogue of a pole where all cells coincide, but our results can be extended to that setting. Under these
two settings, we design an extensive simulation study to characterize the performance of causal discovery
algorithms on spatial data.

"More informally, we simulate dynamics in a world which “wraps” like the classic arcade game PAcMAN.
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2.1.1. Model Definition: One Spatial Dimension

We first consider simulating causal dynamics on a one-dimensional spatial lattice of size N. Under our
assumption S2, we note that each cell can only causally depend on itself and its immediate left and right
neighbors, suitably lagged. We further consider a “multivariate” setting in which multiple variables are
observed for each cell, and where the causal structure for different variables may not coincide.

We describe the structure of our one-dimensional model in some detail, noting that most of the intuition
transfers to the two-dimensional case we consider in the following section. On a lattice of size N = 4,
we observe three variables, X, Y,Z. Within a single variable, only X exhibits spatial dependencies, such
that each cell depends on the neighbor to its left. The causal structure between variables is X — Y —
Z. This sort of model is suitable for simplified modeling of atmospheric aerosol advection and their
interaction with radiation and atmospheric temperatures: for some aerosol species, wind can advect
aerosols to spatially neighboring regions, while the causal structure X — Y — Z reflects the aerosol
particles’ radiation absorption and subsequent temperature impact, e.g., HySO4 — radiative flux —
atmospheric temperature. See Figure 2-1a for a spatial illustration of this structure, and Figure 2-1b for a
time series graph of the same example. Figure 2-1a is an example of a summary graph 9, p. 199].

— | 1 lag Xs

Xc

v v v v »Ilag, XD

: "
for all Yg

cells Yc

e — ===
v v v Y ZA \\\\

z : =

<
Zc ~

(a) Spatial representation of the SCM. Auto- Zb %
correlation orange links exist for all variables,
but most are omitted for readability. (b) The time series graph of the SCM.

Figure 2-1. Causal graphs of variables X,Y,Z at grid cells A, B,C, D, for the SCM defined by Equation
(2.4). Here, each variable exhibits temporal autocorrelation at each grid cell (orange arrows), while we
observe spatial dependence among X and cross-variable dependence X — Y — Z. All dependencies
occur after a single lag.
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If we assume linear dynamics for this system, we obtain the SCM:

Xas = 0x aXa -1+ BxaXps—1 +Nx.ay
= 0x BXp 1+ Bx.BXas—1+ Nx By
= oy cXci—1+ Bx.cXpi—1 +Nxcr
= 0x,pXps—1 + Bx.pXci—1 + Nx.py

XB;
Xc
Xp,

Yas
Yp;
Y,
Yp,

Zay
Zg,

=0y AYa 1+ Yoy aXa—1+Nray
=0y gYp; 1+ Yx—y,BXB:i—1+ Ny,
=0ycYer1+YxoycXci—1+NMycy
=0y pYp;—1+Y¥x—vr.pXDs—1+MNyDs
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(2.4)

Because this system is linear, we have an equivalent vector autoregressive (VAR process representation,
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Here, the ¢¢ parameters control the temporal autocorrelation of each cell-variable series with itself, the 3
parameters control the spatial dependence within a variable, and the Yy parameters capture cross-variable
dependencies. In this scenario, we assume only variable X has spatial dependencies within the same variable,
while variables ¥ and Z exhibit only autocorrelation and the cross-variable structure X — Y — Z. If we
further assume causal stationarity for this model (Assumption S2), these dynamics simplify further to
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* Oy = 0,y for all variables v and spatial locations /;
* B = Bx ¢ for all spatial locations ¢;
* Y—w = Y, for all variables v,w and all spatial locations ¢

Further examination of this matrix reveals several sub-blocks with circulant structure, including an oy,
block, a yx_,y block, a ¥,z block, and oty and 0tz blocks: we will return to this observation in the next
section.

The specific values of @, B, and ¥,—,, determine whether the resulting stochastic process has spatiotem-
poral statistical stationarity, which we will call "stability” for brevity. PCMCI assumes the given time series
are statistically stationary, so we need to filter the coefficients that constitute a stable process. To do that,
we constructed a companion matrix [30, p. 259], which is of the general form:

Iy Tio ... Tig
I o ... O

0 .0 :
0 0 I 0

for 7 lags in the model. The companion matrix is a matrix composed of the I coefficient matrices (defined
above), and the identity matrices and zero matrices that match the size of . Ifall eigenvalues of the
companion matrix are less than one, then the chosen coefficients will constitute a stable system [30,
p- 259]. In Section 3.1, we describe a two-lag system used for experiments, and the companion matrix we
used for determining stability is given by:

., I,_
F]:[tll 102:|

In Section 3.1 we give specifics of the various model parameters used in our simulations. Because our
spatiotemporal model thus reduces to a standard VAR process, for which the PCMCI causal discovery
algorithm has previously been found to be effective, we note that our results complement and extend what
has previously been shown for the PCMCI algorithm [11].

2.1.2. Model Definition: Two Spatial Dimensions

We next consider simulating causal dynamics on a two-dimensional finite lattice of dimension N. As
before, we require that the simulated system has VAR-type dynamics and satisfies assumptions S1-2 and
T1-2.

In two spatial dimensions, Assumption S2 implies that each cell has eight neighbors in its so-called “Moore
neighborhood”®, yielding a total of nine potential causal parents (eight neighboring cells and the dependent
cell’s own previous value). As such, the causal dynamics of the system are dictated by a 3-by-3 matrix,
which we term the neighborhood dependence matrix (NDM). To simulate dynamics from the NDM, we

8In the study of cellular automata, the Moore neighborhood of a cell includes both orthogonal and diagonal neighbors, while
the von Neumann neighborhood includes only orthogonal (up, down, left, right) neighbors.
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update each element of X; by taking the inner product of the NDM and the immediate neighborhood of
a grid cell: thatis,

Xijo = <XJV(ij)7t—laNDM> +MNijr = Trace(XJ;/(ij)’tilNDM) + Mijs

where X_y(;; is the submatrix of X consisting of the (i, J)™ element and its immediate neighbors. The
NDM defines an invariant “update kernel” which is applied separately to each grid cell in order to simulate
its expected value at the next time step. As such, the NDM update dynamics are a sliding dot product9 of
the NDM and the spatial grid, defined by X:

Xt :NDM*thl—f—nt (25)

For two matrices A € R and B € RV*V | we define their sliding dot product C € RV*N t6 be the
matrix with (k)™ element given by

[n/2]  [n/2]
Cu= Y Y A(k+imodN,i+ jmodN)B(2i+1,2j+ j). (2.6)
i=—[n/2] j=—[n/2]

where the mod operator is used to enforce wrapping at the boundaries of our lattice. In our context, the
dimension of the sliding dot product kernel A = NDM is fixed as n = 3, reflecting the size of the local
neighborhood of each cell; the dimension of the state variable B = X varies with the size of the lattice.

While it is possible to simulate dynamics according to Equation (2.5) for any NDM, the resulting mul-
tivariate time series is not statistically stationary without additional assumptions on NDM. In order to
guarantee stationarity, we seek to represent Equation (2.5) as a (linear) VAR model and apply standard
stationarity requirements [30]. In particular, we know that if we have VAR dynamics of the form

Y, =AY, +n;

the time series {¥; } is stationary if [|A[|op < 1, where || - [|op denotes the operator or spectral norm of
a matrix, ze., the magnitude of its largest (possibly complex) eigenvalue. Hence, for a given NDM A, it

suffices to find a matrix A € RV 2XN? Guch that
vec(X;) = Zvec(Xt_l) + vec(n;) (2.7)

Figure 2-2 demonstrates how the NDM, A, can be used to form an equivalent VAR coefficient matrix, A.
For each grid cell, a suitably padded and shifted version of the NDM is constructed and then multiplied
with the previous length N2 state vector, vec(X;—1 ). Repeating this process for all N2 grid cells creates the
N 2-by-N 2 coefficient matrix for the VAR representation. We do not seek to fully characterize the algebraic
properties of this matrix here, but we do note that it exhibits a block convolutional structure, as shown in
Figure 2-3; that is, it has the form of a N-by-N circulant matrix where each element is itself an N-by-N
(sub)block matrix. Because the sliding dot product is closely related to a convolution, this circulant block
structure is not unexpected.

9Denoted by *; also known as a cross-correlation in signal processing, or a flipped convolution 4 la convolutional neural
networks.
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With this representation in hand, we are now able to characterize NDM:s that give statistically stationary

spatiotemporal data (which for brevity we will call “stable NDMs”): a 3-by-3 NDM, A yields stable
dynamics if its equivalent N-by-N VAR coefficient matrix A satisfies ||A|op < 1.

In our simulations below, we leverage this characterization as the basis of an Accept-Reject sampling
scheme for statistically stationary NDM matrices from the asymmetric Gaussian ensemble. See Algorithm
1. While the efficiency of Algorithm 1 was more than sufficient for this study, more work is needed to
efficiently sample stationary NDMs on larger grids. We note that, though natural, this characterization
of stationary NDM:s does not appear to have been previously considered in the literature and the VAR
representation appears to be novel. Previous simulation studies of PCMCI, such as that of Runge [10] and
Runge et al. [11], do not sample from the space of stable NDMs and instead explicitly construct a selection
of SCM:s with small coefficients whose stationarity is then verified empirically through simulation.

Algorithm 1 Sampling Stable Gaussian NDMs: Accept/Reject Algorithm

* Output: A sampled from A ~ .4 (R3*3)|A is stationary

* Repeat:
1. Sample A € R3*%3 from the 9-dimensional standard Gaussian distribution
2. Construct A according to the process of Figure 2-2

3. If HZHOP < lreturnA

In our two-dimensional simulation studies below, we only consider the single-lag single-variable VAR
defined by Equations (2.5) and (2.7). Extensions to more complex models are straight-forward. For our
model, the multilag extension of Equation 2.5 is given by

L
X =Y A+X, o+, (28)
=1
for L lags, while the multilag, the multivariate extension of Equation 2.5 is given by
Lo ( i—J)

:ZZ XY 1, ford=1,...3 (2.9)
for L lags and J variables. Here Ay denotes the lag-¢ NDM while Aéj /) denotes the multivariate depen-
dence NDM of J on j atlag £.

Finally we note that the single variable VAR(1) here represents the easiest case for causal discovery algo-
rithms. The introduction of more lags, more variables, or non-linear dependencies would only increase

the difficulty of causal discovery. As such, the experiments we show below represent an upper bound on
the performance of PCMCI as applied in more realistic scenarios.
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(a) Mapping the action of a neighborhood dependence matrix (NDM) on a single grid cell to a matrix
representation. As the NDM is applied to the top left grid cell of the 5 x 5 spatial grid, the update
incorporates all 8 neighbors, which wrap both vertically and horizontally around the edge of our 2D
torus. The action of the NDM on a particular grid cell is represented by the top right matrix, which
can easily be seen to be equivalent to the vector-matrix product formulation shown below.
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(b) Constructing the matrix representation of the NDM action for the entire grid. The process
described in Figure is repeated for each grid cell in the 5 x 5 lattice, which produces a 5 x 5 matrix,
each element of which is a 5 x 5 matrix reflecting the NDM on a particular cell. Vectorizing these
matrices yields the full 25 x 25-update matrix shown in the final row.

Figure 2-2. Spatial Updates in the Two-Dimensiona#Model (Section 2.1.2). The 3 x 3 NDM is expanded
to a N? x N> matrix which fully characterizes the action of the NDM and can be used to analyze the

behavior of the resulting system. The sparsity pattern of this matrix is reflected in the time series
causal network for this process.
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Figure 2-3. Dynamics matrix for the 3x3 NDM (d ¢ f | as applied on a 4 x 4 lattice. Note the
g h i
“nested circulant” structure of this matrix, where each colored block has a circulant structure, as well
as the block circulant structure of the dynamics matrix as a whole.

2.2, PCMCI Algorithm: Tuning Parameters

The PCMCI algorithm has two tuning parameters which must be set by the analyst:
* Tmax, the maximum dependence lag
* opc, the significance threshold used for each conditional independence test

Tmax can be chosen based on expert knowledge of the system to determine the maximum hypothetical
time for causality to propagate. In general, setting Tmax too low will significantly distort the estimated
causal structure, while setting Tmax too high will slightly increase the runtime and the false positive rate of
PCMCI; as such, users should err on the high side of possible values of Tmax when the optimal value is
unknown.

The PCMCI algorithm uses the apc parameter for pruning links in the PC Condition Selection phase of
the algorithm. During this phase, the (classical) PC Condition Selection algorithm is used for Markov
blanket discovery, where it proceeds by running a series of conditional independence tests and removes
the link between two variables if the associated test has a p-value less than opc. As Runge et al. [11] notes,
PCMCI does not account for dependencies among the various independence tests or for multiple testing
and otpc is better interpreted as a regularization parameter than a statistical significance level, as the false
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positive rate of the PCMCI algorithm is not controlled. Ceteris paribus, decreasing dpc will result in a
sparser estimated causal graph.

Other free parameters include a minimum lag Tin, autocorrelation control parameters px and py, and a
final threshold level otg which is applied as a heuristic multiplicity correction. The roles of these parameters
are described in more detail by Runge et al. [11] and we do not vary them in our analysis.
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3. SIMULATION DESIGN

3.1. Simulation Design: One Spatial Dimension

In order to assess the performance of PCMCI on our one-dimensional model, we fixed a grid size of
N = 10 and considered five variables observed at each grid cell, V,W,X,Y,Z. Only variables V and Y
exhibited spatial dependence: with a left-to-right dependence at one lag and a right-to-left dependence at
two lags (Vi—1 ;-1 — Vi and V10,2 — Vj; and similarly for Y'). Our simulation design is depicted in
Figure 3-1.

Runge et al. [16] note that temporal autocorrelation is typically a severe difficulty for causal discovery
algorithms. The PCMCI algorithm was developed specifically to abate these difficulties [16]. To assess
the performance of PCMCI, we sampled autocorrelation, which we call coefficient a, from the range
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, with a common autocorrelation used for all variables and grid
cells. We consider many of these high degrees of autocorrelation, as autocorrelation is a notable aspect of
the climate science questions motivating this study.

We sampled both within-variable spatial and between-variable dependence coeflicients, which we call
coefficient ¢, from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, to assess the performance of PCMCI under
a range of dependence structures. These dependence coefficients were held constant at all grid cells.
Innovations (1); ;) were sampled from the standard normal distribution. We generated time series with 7
time samples ranging from {50, 150,250, 350,475,575,675,775,900, 1000}.

Parameter combinations that failed to exhibit stable dynamics were excluded from our analysis. We ran
30 replicate simulation runs for each stable parameter combination. The number of possible simulation
runs is 30,000, however, because most coefficient combinations were not stable, the number of runs
completed was 4, 500. The specific coefficients used are detailed in Section 4.2.

3.2. Simulation Design: Two Spatial Dimensions

In order to characterize the performance of PCMCl in a variety of regimes, we considered the following
simulation parameters for our two-dimensional model:

* Number of Time Samples (7'): {50, 150,250,350,475,575,675,775,900, 1000}
* Grid Size (N): {4x4,5x5,6x6,7x7,8x8,9x9, 10x10}
* Innovation Scale (¢ = sd(7;,)): {0.1,0.5,1.0,2.0,4.0}

* Neighborhood Dependence Density (NDD): é, %, %, g, g, g, %, %, %
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Figure 3-1. A causal graph for the one-dimensional simulation model. The five variables V,W.X,Y.Z
are each observed on 10 grid cells. Each variable exhibits temporal autocorrelation (orange), while
only V and Y exhibit spatial (left/right) dependencies. Cross-variable dependencies exist at every
grid cell according to the causal structure V - W — X — Y — Z. Both the cross-variable and left-to-
right dependencies occur at one lag (red), while the right-to-left dependencies occur at two lags
(green). This graph has 50 =5 x 10 nodes and 130 edges: the time series causal graph would have
100 = 50 x (max lag = 2) nodes.

Here, 0 controls the scale of Gaussian innovations added to each element of X, and the NDD measures
the number of causal parents implied by the NDM. When NDD = %, there is only one dependence
between neighboring grid cells!; increasing NDD adds more dependencies; NDD = 1 = g implies a fully
connected (local) causal system. For each of these 3,150 parameter combinations, we generated 30 random
stationary NDMs, yielding a total of 94,500 NDMs, from which we generated 94,500 time series.

In order to simulate these dynamics, statistically stationary NDMs are sampled using Algorithm 1. In
order to avoid causal signals that are too small to be detected, we additionally only considered NDMs
whose non-zero elements had magnitude at least 0.1. Because the NDMs selected were guaranteed to be
stable, we encountered no numerical difficulties in our data generation process.

We generated the innovations 7; ; from a suitable mean-zero normal distribution and used a Gaussian
condition independence test in PCMCI. If a specific distribution for 7; ; is not assumed, non-parametric
independence tests can be used, though these have a higher sample complexity and require longer observa-
tional series (greater T').

ISometimes dependence is between a grid cell and itself, such that nodes are autocorrelated and there is no cross-dependence.
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4. RESULTS

4.1. Performance Measures

To compare the PCMCl-estimated causal graphs with the underlying SCM-implied causal graphs, we
report discovery performance using several measures of classification accuracy; in particular we show the
Fi-score and the Matthews Correlation Coefhicient. Additional accuracy measures appear in the Appendix
to this report.

The F score is a popular measure of classification accuracy, which attempts to balance the precision and
recall of a classifier. Specifically, the Fj score is defined as [31]:

2 X Precision x Recall
F = r?C.ISIOn 8 — Harmonic Mean (Precision, Recall) (4.1)
Precision + Recall

where precision and recall are defined as

TP

Precision = ———— (4.2)
TP+FP
TP
Recall = —— 4.
ccall = 757N (4.3)

and TP, FP, and FN are the counts of true positives, false positives, and false negatives, respectively.1
F1 ranges from 0.0 to 1.0, with 0.0 indicating perfect disagreement, that is the estimated graph is the
complement of the true graph, and 1.0 indicating exact graph recovery.

We note that the Fj score is undefined when TP = 0, as both Precision and Recall are 0, which would
occur if there are no links in the true graph (i.e. all varaibles are independent). We note that the F; score
can equivalently be expressed as [32]:

B 2xTP
 2XTP+FP+FN’

F (4.4)

As such we, define Fj to be 1.0 if FP,FN = 0 as the estimated graph is correctly fully sparse and 0.0 if
FP>0orFN > 0.

We additionally report the Matthews Correlation Coefhicient (MCC), also called the ¢ coefficient. Unlike
F1, MCC depends on true negatives and is symmetric in the positive and negative labels: that is, if we

Tn our context, positives refer to the existence of a link while negatives refer to absence of a causal link. In other contexts,
it may be more natural to refer to the absence of a causal link as a scientific finding, as the baseline assumption is that
dependencies exist among all measured variables. The MCC measurement we report is invariant to this switch of labels.
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compare the complements of the true graph and the estimated graph, representing causal independence,

we get the same MCC. Chicco [32] defined MCC as follows?:

TPxTN—FP x FN
McCC = (TP x xFN) (4.5)

\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

which ranges from [—1,1]. MCC = —1 implies the model is perfectly incorrect, MCC = 0 indicates a
level of accuracy consistent with random guessing, and MCC = 1 indicates perfect graph recovery.

As before, we take care to define MCC for the case of sparse graphs (causal independence). MCC is
undefined in any of these four cases:

1. fTP=0ANDFP =0
2. fTP=0ANDFN =0
3. fTN=0AND FP =0
4. f TN=0ANDFN =0

We handle these cases separately, assigning values of {—1,0,4-1} as appropriate to the causal discovery
problem.

1. If TP =0AND FP = 0, then the estimated graph is fully sparse:
a) if FN = 0, then the true graph is also fully sparse and we take MCC = 1;

b) if FN #0AND TN = 0, then the true graph is fully connected, the estimated graph missed
all causal relationships, and we take MCC = —1;

c) if FN # 0 AND TN # 0, then some, but not all, of the causal independence relationships of
the estimated graph are false and we take MCC = 0.

2. If TP =0AND FN = 0, then the true graph is fully sparse:
a) if FP = 0, then the estimated graph is also fully sparse and we take MCC = 1;

b) if FP #0AND TN = 0, then the estimated graph is fully connected, which is exactly wrong,
and we take MCC = —1;

c) it FP #0AND TN # 0, then the estimated graph has implies some spurious causal depen-
dencies and we take MCC = 0.

3. If TN = 0 AND FP = 0, then the true graph is fully connected:

a) if TP = 0, then the estimated graph is fully sparse, which is exactly wrong, and we take
MCC = —1;

b) if TP # 0 AND FN = 0, then estimated graph is fully connected and we take MCC = 1;

c) if TP # 0 AND FN # 0, then the estimated graph omitted some, but not all, causal relation-
ships and we take MCC = 0.

Derived from an earlier definition by Matthews [33].
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4. If TN = 0 AND FN = 0, then estimated graph is fully connected:

a) if TP = 0, then the true graph is fully sparse, so the algorithm is perfectly incorrect, and we
take MCC = —1;

b) if TP # 0 AND FP = 0, then the true graph is also fully connected and we take MCC = 1.

c) if TP # 0 AND FP # 0, some, but not all, of the estimated causal dependencies are spurious
and we take MCC = 0.
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Table 4-1. The stable autocorrelation (¢) and cross-correlation (c¢) dependence coefficients identified
for the one-dimensional model.

4.2. One-dimensional model

The results of the simulation study described in Section 3.1 are shown in Figure 4-1. For each simulation,
we provided PCMCI with the correct maximum lag (Tmax = 2) and set the threshold parameters to
relatively stringent values (0tpc = 0.01, ag = 0.01). Internal to PCMCI, we used a Gaussian partial
correlation test for independence testing, as our data was generated from a linear-Gaussian VAR.

Recall from Section 3.1 that autocorrelated dependence is labeled coefficient a, and within-variable and
between-variable cross-correlation dependence is labeled coefficient c. As Figure 4-1 shows, only a minority
of a and ¢ dependence coefficients were found to be stable. a was able to reach as high as 0.7, while ¢ was
only able to reach as high as 0.4. Table 4-1 shows the specific a and ¢ combinations that were identified
as stable in this model. The specific stable coefficient combinations would likely change with a different
model formulation, e.g., different spatial dependence structures.

Figure 4-1 shows that PCMCI performed better with more time samples, but performance was limited by
the particular a and ¢ coefficients. The algorithm performed better where either coefficient was larger, but
particularly when ¢ was larger. For example, when ¢ = 0.1, more time samples made little to no difference
in performance beyond 250 samples.

In Figure 4-2, we show PCMCI performance as a function of autocorrelation. Figures 4-2a, 4-2b, and
4-2c depict this when ¢ = 0.1, ¢ = 0.2, and ¢ = 0.3, respectively. Again we see that F score increases
as the a coefficient increases. Note the differently scaled Y-axes between the panels; the F score reaches
higher magnitudes when c is larger. This suggests that within the confines of a stable system, larger
autocorrelation increase the signal-to-noise ratio, making the dynamics more easily identifiable. It does
not appear that autocorrelation specifically is a detriment to structure identification.

In Figure 4-3, we show PCMCI performance as a function of cross-correlation. Figures 4-3a, 4-3b, and 4-
3c depict thiswhena = 0.1,a = 0.2, and a = 0.3, respectively. We more clearly see that ] score increases
as the ¢ coefficient increases. Note the differently scaled Y-axes between the panels; performance reaches
higher magnitudes when a is larger. Like autocorrelation, larger cross-correlation increases performance,
likely because of an improved signal-to-noise ratio. Larger autocorrelation and larger cross-correlation
combined results in the best performance.
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Finally, in Figure 4-4, we show PCMCI performance as a function of T' time samples. Each data point
includes all @ and ¢ values. We observe a clear pattern that PCMCI performance increases as a function of
T, regardless of coefficient values.

4.3. Two-dimensional model

In this section, we present the results of the simulation study described in Sections 3.2. Recall that, for
the two-dimensional simulations, we had only a single variable and that the complexity of the problem
was controlled by the 3-by-3 neighborhood dynamics matrix, suitably expanded for the larger grid. For
each simulation, we provided PCM CI with the correct maximum lag (Tmax = 1) and set the threshold
parameters to relatively stringent values (ctpc = 0.01, aig = 0.01). Internal to PCMCI, we used a Gaussian
partial correlation test for independence testing, as our data was generated from a linear-Gaussian VAR.

In Figure 4-5, we examine the effect of grid size (V) on both the F1 and MCC scores, with other parameters
fixedtoo = 1.0, NDD = %, and T' = 1000. While we observe a high degree of variance in this plot, it is
clear that performance degrades on larger grid sizes, though at a relatively slow rate if we recall that the
problem dimensionality increases guadratically in N. As F1 and MCC are highly correlated, we only
depict MCC in subsequent figures. Appendix A features alternate performance measures.

Figure 4-6 depicts the effect of varying the sample length (T"). We clearly observe a sub-linear growth in
accuracy, as would be expected from the decreasing marginal information of additional samples.® Figure
4-7 further depicts the effect of T for various values of grid size, N, and connectivity (NDD). Here we
observe that neither grid size nor connectivity have significant impact on PCMCI performance, but that,
as expected, there is a small decrease in performance as the grid size increases.

Figure 4-8 highlights the effect of graph density on PCMCI performance. From this plot, it is clear that
PCMCI performance is marginally impacted by number of causal relationships increases, and increasing
T removes these minimal effects. Comparing results columnwise, we again observe a relatively limited
effect of grid size on our results. While Figure 4-8, clearly indicates that PCMClI is able to recover the true
graph in the large sample limit, this provides limited guidance for analysts considering the use of causal
discovery from data of limited sample size.

In Figure 4-9, we attempt to answer the question “how many samples will I need to expect success”? Because
the threshold for “success” is problem dependent, we instead estimate the probability of MCC > m for
various values of m. For moderately stringent thresholds (m ~ 0.7), we see that T = 500 samples appear
sufficient for even large grid sizes, while even 7' = 1000 samples may be insufficient at highly stringent
thresholds (m = 0.9). From these plots it is clear that, while average MCC performance may not vary
significantly in grid size, the dependability of PCMCI clearly decreases rapidly in N.

Finally, Figure 4-10 investigates the effect of the innovation scale (¢ = sd(1;/)) on PCMCI performance.
Empirically, we observe no systematic effect of ¢ on performance: we hypothesize that this is because &
controls the magnitude of both the additive Gaussian innovations and the signal component Avec(X,),
leaving the effective signal-to-noise ratio of the problem unchanged. While we do not show this analytically

3Via general statistical principles, we expect MSE o< T 1/ 2 and note that MCC is a non-linear, but monotonic, function of
estimation accuracy.
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for the causal discovery problem, we do note that a similar phenomenon occurs in the estimation of VAR

coefficients.*

Additional results, including analysis of the True Positive Rate (TPR), True Negative Rate (TNR), False
Positive Rate (FPR), and False Negative Rate (FNR) appear in Appendix A. Those plots indicate few
false positives across different simulation regimes and that decreases in MCC are primarily driven by false
negatives, indicating large numbers of samples are necessary to correctly identify causal effects. While
varying the PCMCI thresholding parameters 0tpc and 0t may adjust the balance of false negatives and
talse positives, we do not explore the effect of those parameters in this work.

“Briefly, let X, = AX,_; + 1 for ) ~ 4 (0,62I). Then

Cov(X;) = Cov(AX,—1+1M)
= ACov(X,)AT + oI
— vec(Cov(X,)) =c*(I-A®A) L.

Additionally recalling that the variance of the OLS estimator is given by Cov(vec(B)) = (vec(X)vec(X)T) ! ® 621, we
have Cov(vec(B)) ~ [6?(I-A®A) '] '® 621 = (I —A®A) ! ® I which does not depend on .
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performance (MCC). For sufficiently large sample sizes, PCMCI is able to consistently recover the
true graph structure; the effect of grid size and NDD are less pronounced than 7. Values shown are
mean performance over 30 replicates.
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performance (MCC). For sufficiently large sample sizes, PCMCI is able to consistently recover the
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Figure 4-10. Effect of Innovation Magnitude () on PCMCI performance (MCC). Changing ¢ appears
to have no systematic effect on PCMCI performance.
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5. DISCUSSION

In this work, we investigated the performance of the PCMCI causal network discovery algorithm for
linear-VAR systems in one- and two-dimensional space. We varied the length of the observed time series,
the size of the underlying grid, and the density of the underlying causal graph, and found significant effects
of each. Our results provide a robust characterization of PCMCI performance on spatiotemporal systems
and highlight several avenues of future inquiry.

Most notably, we found that 7 ~ 1000 samples were necessary to for consistent high-accuracy causal
discovery across the various scenarios we considered (see Figure 4-4 and Figure 4-9). While this is consistent
with the asymptotic consistency of PCMCI, these extreme sample sizes are unrealistic for the climate data
analytics motivating this study. Note that we restricted our analysis to linear-Gaussian systems, which
enables PCMCI to reduce the difficult problem of testing conditional independence to the relatively
easier problem of estimating partial correlations. While it is possible to use PCMCI with more general
conditional independence tests, these tests have a far higher sample complexity, and would require a far
greater sample sizge to achieve consistent performance.

By contrast, the effect of the grid size was relatively minor, suggesting that performance gains may attainable
through clever use of this spatial structure. Changing the number of true causal effects had notable
impacts on certain performance measures, but further work is needed to determine whether this scenario
is inherently more difficult for causal discovery or whether it is an artifact of the specific accuracy measures
we used, e.¢., the number of true positives for an empty graph.

We note that in our study of the one-dimensional model, we found that PCMCI tolerated high autocor-
relation well. This result is somewhat unexpected, given previous work showing that causal discovery
algorithms tend to handle autocorrelation poorly. However, PCMCI was developed to be robust to
autocorrelation [10]. The clearest conclusion, apart from the aforementioned benefits of more time
samples, was that larger causal dependence coefficients were beneficial, regardless of whether they were
autocorrelational or cross-correlational coefficients.

Finally, our study of the two-dimensional model also provided several computational advances that may
be of independent interest, including characterization of the sliding dot product and VAR representations
of our model, an easy-to-implement check for stability of the resulting VAR process, and an effective
algorithm for sampling from the space of stable dynamics.

As shown in Figure 4-9, the probability of “successful” graph recovery is highly sensitive to both the sample
size and the grid size. As the number of potential causal parents for a single grid cell increases quadratically
in N, this is perhaps unavoidable. More generally, causal discovery algorithms are known to suffer from
the curse of dimensionality, particularly when applied on the grid-level in spatiotemporal systems as the
both the potential causal parents and the number of grid cells studied increase rapidly in the grid size
[10, 15, 22, 25].
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In the climate context, the underlying grids are far larger than those considered in this study, necessitating
extremely large sample sizes. Unfortunately, our causal stationarity assumptions (Assumption T2 and S2)
are less likely to hold over these extended time frames. To avoid this problem, some works have artificially
reduced the problem dimensionality by replacing grid cells with pre-defined regions of climatological
interest [15,21, 22, 25]. They made attempts to benchmark their results with either simulated or theoretical
expectations. However, their simulations were not of grid-cell-level causal dynamics, as ours are, and
their studies on natural climate data could not be benchmarked rigorously. Finally, we note that these
approaches are only appropriate for long-term climate analyses in which well-defined spatially-stable
statistically-regular modes are the objects of study. We do not expect these approaches to perform well
when studying “one-oft” climate events, in which relevant regions are rarely known a priors, making
dimension reduction a far more challenging task.

Finally, we note that our study only considered samples from the stationary distribution of a linear system
driven by Gaussian innovations. As a result, our simulated data is itself Gaussian and does not reflect
structures that may be found in climate data, e.g., the El Nifio Southern Oscillation (ENSO) or, on shorter
scales, major storms. It is unclear how PCMCI would perform when applied to these stable structures, as
they have complex spatiotemporal dynamics.

Causal discovery is an important aspect of modern climate research and there is a need for algorithms that
can scalably and accurately determine causal structure from grid-level data. While PCMCl is quite data-
hungry on large grids and observational climate data are quite limited, additional insights can be gleaned
from the analysis of large simulation ensembles. Currently, PC-family algorithms do notincorporate spatial
structure: in future work, we hope to investigate the use of spatial structure to reduce the dimensionality
of the causal discovery problem.

Causal discovery remains a challenging task, particularly in the climate domain. As simulation and
observational data continues to grow in size and scope, there is a pressing need for approaches that can
perform robustly at a range of time- and spatial-scales, ranging from storm tracking to diffusion of volcanic
aerosols to long-term natural and anthropogenic climate changes. The benchmarking techniques and
simulations of this paper give insight into the weaknesses of current approaches and suggest new avenues
of causal discovery research.
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APPENDIX A. Additional Simulation Results: Two-Dimensional Model

In this section, we depict various performance rates of PCMCI in our two-dimensional simulation study
(Section 3.2). Here we report:

FP

FDR= — (False Discovery Rate, Figure A-1)
TP+ FP
TP TP
TPR= — = — (True Positive Rate, Figure A-2)
TP+FN P
FN FN
FNR= —— = — (False Negative Rate, A-3)
TP+FN P
TN TN
TNR= —— = — (True Negative Rate, A-4)
T'N-+FP N
FP  FP 5
FPR= ———=— (False Positive Rate, A-S)
I'N-+FP N

where FDR is the false discovery rate; TP,FP,TN, FN are the number of true positives, false positives,
true negatives, and false negatives, respectively; and P, N are the number of edges and non-edges in the

true graph.

As with the one-dimensional model, PCMCI exhibits a bias towards non-discovery, with low true and
false positive rates across scenarios. The FPR is almost always kept near 0, indicating that we can have
a high degree of confidence in the causal effects identified by PCMCI, but that it has limited statistical
power at moderate sample sizes.
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Figure A-2. True Positive Rate of PCMCI under the scenarios described in Section 3.2. PCMCI

consistently exhibits low true positive rates for

effects and with increasing grid sizes.

£9< 350. TPR decreases with the number of causal
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Figure A-3. False Negative Rate of PCMCI under the scenarios described in Section 3.2. PCMCI

consistently exhibits relatively high false negati

rates in all scenarios, indicating low statistical

power. FNR generally increases with the number of causal effects and with increasing grid sizes.
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Figure A-4. True Negative Rate of PCMCI under the scenarios described in Section 3.2. PCMCI
consistently exhibits near perfect true negative gates in all scenarios. To the extent it varies, TNR
decreases with the number of causal effects and with decreasing grid sizes.
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7.2 Abstract

Causal discovery tools enable scientists to infer meaningful relationships from ob-
servational data, spurring advances in fields as diverse as biology, economics, and
climate science. Despite these successes, the application of causal discovery to
space-time systems remains immensely challenging due to the high-dimensional
nature of the data. For example, in climate sciences, modern observational tem-
perature records over the past few decades regularly measure thousands of loca-
tions around the globe. To address these challenges, we introduce Causal Space-
Time Stencil Learning (Causal Space-Time Stencil Learning (CaStLe)), a novel
meta-algorithm for discovering causal structures in complex space-time systems.
CaStLe leverages regularities in local space-time dependencies to learn govern-
ing global dynamics. This local perspective eliminates spurious confounding and
drastically reduces sample complexity, making space-time causal discovery practi-
cal and effective. For causal discovery, CaStLe flexibly accepts any appropriately
adapted time series causal discovery algorithm to recover local causal structures.
These advances enable causal discovery of geophysical phenomena that were pre-
viously unapproachable, including non-periodic, transient phenomena such as vol-
canic eruption plumes. Regularities in local space-time dependencies are trans-

formed into informative spatial replicates, which actually improves CaStLe’s per-
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formance when applied to ever-larger spatial grids. We successfully apply CaStLe
to discover the atmospheric dynamics governing the climate response to the 1991
Mount Pinatubo volcanic eruption. We provide validation experiments to demon-
strate the effectiveness of CaStLe over existing causal-discovery frameworks on
a range of geophysics-inspired benchmarks while identifying the method’s limita-

tions and domains where its assumptions may not hold.

Plain Language Summary

We introduce a new method for learning the dynamics of causal systems, that is,
the physical rules that define a system’s behavior. While this task, causal discov-
ery, 1s not new, existing tools are ill-suited for many large geophysics datasets.
Current state-of-the-art approaches use statistical techniques to search for causal
relationships between all aspects of a system, examining billions of possible causal
effects, or simplifying the data by focusing on the most important variables. In-
stead of an exhaustive search or oversimplifying the data, we incorporate basic
physical principles—requiring effects to be “local” and “uniform”—to massively
simplify the causal discovery problem. We demonstrate that our approach can
recover known geophysical dynamics by applying it to the 1991 Mt. Pinatubo
eruption, validating its ability to uncover space-time causal structure from obser-

vational data.
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7.3 Introduction

Explaining the causal dynamics that govern geophysical phenomena is paramount
in the Earth sciences. Climate models, for example, critically depend on under-
standing both local and global causal pathways to model the complex Earth system.
Understanding short- and long-term consequences of the Earth system’s behavior
1s essential for future model development, our scientific knowledge, and prepar-
ing for the future. More specifically, in atmospheric science, we know the initial
state of specific wind modes, such as the quasi-biennial oscillation or the Brewer-
Dobson circulation, dramatically affects the later evolution and impact of volcanic
eruptions, major wildfires, or geoengineering efforts such as stratospheric aerosol
injection (Hitchman et al., 1994; Jones et al., 1998; Aquila et al., 2014; Gray et al.,
2018).

Traditional statistical methodologies, while providing valuable insights, often
fall short of capturing the complex causal relationships inherent in geophysical
systems. Causal models are hard-won and often represent the culmination of many
decades of research. Causal discovery tools aim to accelerate the discovery of these
relationships using statistically-rigorous techniques to separate predictable, but in-
direct, statistical relationships from direct causal connections. Causal discovery
has been successful across the sciences, providing new understandings of climate,
biological, genetic, neural, and other dynamical systems (Ebert-Uphoff and Deng,

2012; Sugihara et al., 2012; Neto et al., 2010; Zhang et al., 201 1b; Kaminski et al.,
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2001; Tsonis et al., 2017).However, applying existing causal methods to space and
time structured data remains limited due to the complexity and scale of such sys-
tems.

This work presents a novel causal discovery methodology that overcomes these
challenges to recover networks describing local causal structures from gridded
data. A fundamental insight driving the present work is that in many complex sys-
tems, global phenomena—whether climate teleconnections, brain functional net-
works, or ecosystem dynamics—emerge from countless repeated and structured
local interactions. We can better understand how complex global patterns arise by
accurately capturing these foundational local structures.

Today’s Earth science measurement and modeling capabilities provide a wealth
of data for studying our planet’s complex dynamics. However, due to the immense
complexity of these dynamics, simple analyses provide only a limited understand-
ing of the data. Causal discovery tools offer the ability to understand finer mech-
anistic details via causal graphs’ simplicity, interpretability, and flexibility. causal
discovery is a field that utilizes algorithmic causal inference to identify causal mod-
els as dependencies between fields of interest, which are often represented as a
directed acyclic graph. Causal graphs let us analyze the space-time evolution of
fields of interest and causal discovery can estimate them without requiring hypoth-
esized physical models. Insights gleaned from causal discovery can further inform
physical models, validate simulations against observational data, and identify fu-

ture research questions.
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While causal discovery show considerable promise for addressing problems in
the Earth sciences, the enormous size and scope of Earth science data have lim-
ited its applications. For example, atmospheric data often contains hundreds of
thousands of grid cells, each with several orders of magnitude fewer observations
in time. That imbalance is one aspect of the curse of dimensionality (Bellman,
1957; Biihlmann and Geer, 2011), where high dimensionality relative to sample
size challenges conventional statistical methods and renders many forms of in-
ference, including causal discovery, unreliable without dimensionality reduction.
Despite these obstacles, causal discovery has been successfully applied in Earth
science (Deng and Ebert-Uphoff, 2014; Runge et al., 2015c; Capua et al., 2019,
2020; Nowack et al., 2020a; Krich et al., 2020; Galytska et al., 2022; Tibau et al.,
2022; O’Kane et al., 2024; Zhao et al., 2024), primarily via dimensionality reduc-
tion techniques to reduce the number of relationships to estimate. Those contribu-
tions identified teleconnection pathways to recover large, periodic climate modes
and their effects. While a dimensionality reduction approaches can be practical, the
analysis of local effects has been considered challenging and generally avoided due
to the curse of dimensionality (Ebert-Uphoff and Deng, 2012; Runge et al., 2015c;
Nowack et al., 2020a).

In contrast to dimensionality reduction methods that marginalize large amounts
of information, our work leverages the known locality in space-time systems to har-
ness informative spatial replicates, i.e., repeating space-time relationships, without

loss of local structural information, to identify local causal graphs. These advances
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enables us to approach problem classes in space-time systems that are typically in-
tractable with prior art—both in terms of performance and algorithmic efficiency.
We highlight two features of Causal Space-Time Stencil Learning (CaStLe) that
are useful contributions to causal discovery for geoscience problems: the ability
to learn grid-level relationships instead of regional relationships from reduced di-
mensional data (e.g. principal components or modes) and the ability to handle
dynamic, advective processes.

Prior causal discovery work in Earth science has primarily focused on large-
scale regional phenomena, such as the El Nifio Southern Oscillation. These patterns—
generally consistent in their spatial distribution and periodic in nature—are well
suited to global dimensionality reduction techniques, which project fields onto a
small number of modes. While global teleconnections are crucial research areas,
they ultimately emerge from local causal interactions. However, dimensionality
reduction sacrifices critical local information, making it impossible to see how lo-
cal structures give rise to global patterns. CaStLe reduces problem complexity in
a fundamentally different way: By identifying and leveraging the repeating local
structures, it preserves the relationships at the grid level while remaining applica-
ble to spacetime systems that exhibit multiscale organization.

Typical dimensionality reduction approaches to causal discovery decrease the
data space from many grid cells to a few regional modes and uses many observa-
tions, resulting in a little p, large n problem, where p is the number of variables

and 7 is the number of data points. In contrast, phenomena that evolve dynami-
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cally in space or occur rarely, like volcanic plumes, are harder to analyze and often
have few data points. Such problems are large p, little n. CaStLe makes causal
discovery of the space-time evolution of these phenomena tractable for the first
time by leveraging the gridded sample space, avoiding the marginalization that re-
duces many grid cells into a single time series per regional mode, and recovering
interpretable space-time causal structures.

This work’s primary case study is the 1991 Mount Pinatubo eruption. It injected
a plume of aerosols into the stratosphere, which then advected around the tropical
zone before dispersing northward and eventually diffusing around the globe. This
example demonstrates the characteristics of the unique, transient problem class,
has an established research history, and exhibits dynamics verifiable with a known
causal driver: stratospheric wind.

We introduce a new Earth system causal network, the causal stencil graph,
which describes local space-time causal structures between adjacent locations,
and a new estimation methodology, Causal Space-Time Stencil Learning (CaS-
tLe), that is capable of describing local mechanistic pathways in space and time
between grid cells. Grid-level causal discovery in high dimensional space-time
data has been previously considered intractable due to the curse of dimensional-
ity (Nowack et al., 2020a; Tibau et al., 2022). Though demonstrated with climate
model output, our methodology applies to any space-time system where local phys-
ical interactions drive global behavior, including fluid dynamics, biological pattern

formation, or material transport processes.
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CaStLe combines modern causal discovery with classical physics-based princi-
ples, namely spatial and temporal locality, to accurately perform causal discovery
on large spatial domains. Our novel local-coordinate-space projection does not
marginalize any data points, such that local causal information is lost, which is
a common sacrifice of other space-time dimension reduction techniques such as
weighted averaging or principal component analysis (PCA). This preservation of
local information is crucial because global-scale phenomena in complex systems
emerge from interactions at smaller scales. By mapping these foundational causal
pathways, CaStLe provides insights not just into immediate local effects but also
into how these effects propagate and combine to create larger-scale patterns.

With these advances, CaStLe achieves remarkable improvements over state-
of-the-art space-time causal discovery approaches. CaStlLe is a flexible frame-
work that can be implemented by adapting any given time series causal discovery
algorithm to the stencil approach. Our approach performs excellently in high-
dimensional data regimes, making it capable of describing the local space-time
evolution of transient phenomena transporting over many grid cells.

The Earth system is rich with transient phenomena examples including for-
est fires, monsoons, coastal erosion, salt or freshwater incursions, inter-tropical
convergence zone shifts, and atmospheric rivers. Aside from elucidating under-
lying dynamics, CaStLe can be used to identify and characterize causal change
points, such as polar vortex disruption and ocean current disruptions. Addition-

ally, understanding these local dynamic structures can give further insights into
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the construction and evolution of important macro phenomena such as the El Nifio
Southern Oscillation, the Quasi-Biennial Oscillation, and the Madden-Julian Os-
cillation. Table 1 in the Appendix summarizes the capabilities of CaStLe and their
relevance to specific Earth science applications. These capabilities address analyt-
ical needs that have been challenging or infeasible with previous causal discovery
approaches.

The remainder of this paper is organized as follows: Section 7.4 provides a
brief background on causal discovery and its use in Earth science; Section 7.5 de-
scribes our case studies in the HSW-V and E3SMv2-SPA models and available
data; Section 7.6 explains our novel CaStLe methodology; Section 7.7 demon-
strates CaStLe’s ability to recover known volcanic aerosol evolution in climate
models of different resolution; and finally, Section 7.8 illustrates CaStlLe’s com-
putational, and performance improvements over the state-of-the-art methods with

synthetic data experiments.

Contributions

We introduce the CaStLe approach to causal discovery from space-time data. CaS-
tLe allows the discovery of causal structures in high-dimensional spatial data,
avoiding the need for dimension reduction techniques that dominate causal dis-
covery of space-time data, e.g., the work by Nowack et al. (2020a). By working
in the raw data space, CaStLe’s causal graphs are inherently interpretable and do

not require mapping structures from the dimension-reduced space back onto the

166



original data. We provide a theoretical analysis of CaStLe, showing that it has at-
tractive computational and statistical properties and, rather remarkably, that CaS-
tLe’s accuracy actually increases on larger spatial domains. We apply CaStLe to
two simulations of a major volcanic eruption and demonstrate how it can be used to
better understand how stratospheric winds mediate the climate response to volcanic
activity. Our first study is of a relatively simplified model to validate the method-
ology with proxy ground-truth. In our second study, we consider a more realistic
model and find that CaStLe still provides consistent and valuable results, demon-
strating its value for realistic atmospheric dynamics. Finally, extensive numerical
experiments measure the advantages of CaStLe and demonstrate: 1) significantly
improved performance over existing causal discovery methods on a set of vector
autoregressive (VAR) benchmarks; and i1) the use of CaStLe to identify the gov-
erning dynamics of Burgers’ non-linear partial differential equation (PDE). While
our case studies utilize climate model data, the methodology is domain-agnostic
and can be applied to any high-dimensional space-time system meeting our local-

ity and stationarity assumptions.

7.4 Background: Causal Discovery and Formal Mathematical

Scope

Here, we provide a brief overview of the causal discovery field and the mathe-
matical scope of our contributions. For a broader overview of causal discovery

and 1ts applications to Earth science, see the reviews by Glymour et al. (2019),
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Runge et al. (2019b), and Runge et al. (2023), and the book by Peters et al. (2017).
Additionally, we outline the mathematical constraints and assumptions that define
where our methodology can be applied in the class of space-time systems.

Causal discovery is a field of causal inference that seeks to recover causal dy-
namics from observational data. In the parlance of causal inference, observational
data 1s data that is passively observed rather than data to which treatments (e.g.
manipulations) have been applied. Observational data can be natural (e.g. physical
observations) or synthetic (e.g. simulations). The present work exclusively per-
tains to untreated data, so we will use observational in this way.

While correlation does not imply causation, causal discovery is built upon Re-
ichenbach’s common cause principle (Reichenbach, 1956): if two quantities are
correlated then one must cause the other or there is a third causal driver of the two.
causal discovery generally has two output classes: a causal graph/network (Pearl,
1995a) or a structural causal model (Pearl, 1998). We focus on causal graphs,
which are networks of variables (nodes) connected by edges that denote a causal
dependence. Causal graphs can be more appealing than structural equation models
because they are human-interpretable and do not require prior knowledge of the
underlying causal function. In the study of Earth science, causal graphs may often
be preferred to visually describe space-time relationships on the globe. Our contri-
bution produces a novel type of causal graph, the causal space-time stencil, which

is detailed in Section 7.6 and an example of which is in panel 4 of Figure 7.2.
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7.4.1 Related Work: Causal Structure Learning

In recent decades, causal inference has been developed into a rigorous mathemati-
cal framework (Rubin, 1974; Pearl, 2000; Pearl et al., 2016). These developments
made algorithmic discovery of causal structures from observational data possible
(Spirtes et al., 1993; Peters et al., 2017; Glymour et al., 2019). Causal structures
can be modeled with two common forms: structural causal models (SCMs) and
causal graphs. Both describe a functional relationship between a variable X; and
its causal parents, denoted Z(j).

For example, if X; causes X, then it is said X; is a parent of X; and i € Z(j).

Formally, Peters et al. (2017, p.83) defines an SCM as follows:

A structural causal model (SCM) consists of a collection of d (struc-

tural) assignments

Xj=fiXp;n), J=1....4d,

where Z(j) C{1,...,d}\{j} are called parents of X: and a joint dis-
tribution Py = Py, . n, over the noise variables, which we require to be

Jjointly independent; that is Py is a product distribution [in our notation].

An SCM admits a unique causal graph, where X; — X; if j € (i) and j 4 X;
if j & &(i). While discovery of an SCM requires hypothesizing all f;’s, discov-
ering a causal graph can be done without knowing the exact functions. Because a
causal graph does not imply a specific function between variables, each may imply
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multiple SCMs. This does limit some of the inferential power of causal graphs, in
exchange for more versatility.

Algorithms for discovering causal graphs have two primary classes: constraint-
based and score-based algorithms. Constraint-based methods use statistical tests to
compute conditional independence relationships between sets of variables. Once a
set of independence relationships is established, it utilizes causal assumptions and
reasoning to connect the variables with directed links. Score-based approaches are
similar but use score optimization to determine causal dependence between vari-
ables. Both constraint-based and score-based algorithms produce causal graphs be-
cause they operate on graphical structures and independence relations rather than
the explicit parametric relationships between variables required to specify a com-
plete SCM.

Early causal discovery algorithms developed as two parallel traditions. The
temporal Granger causality (Granger, 1969) methodology was an early innovation
using time series data to determine if the past history of X aids the prediction of Y
better than Y’s history alone. If so, then X Granger causes Y. Independently, the
constraint-based PC algorithm (named for its authors Peter and Clark) (Glymour
and Scheines, 1986) and FCI (Spirtes and Glymour, 1991) developed out of the
inductive causation (Pearl and Verma, 1992) framework and the earlier SGS algo-
rithm (Spirtes and Glymour, 1991), significantly improving the efficiency of causal
discovery using statistical structures in observed data. In time, other structural al-

gorithms developed, such as LINGAM (Shimizu et al., 2006), utilizing asymme-
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tries in non-linear and non-Gaussian data for inferences, and NOTEARS (Zheng
et al., 2018), a graph score-optimization-based method. Eventually, these two tra-
ditions converged as structural methods were developed to take advantage of tem-
porally ordered data. Key advances included: hMRF (Liu et al., 2010), which uses
hidden Markov models for estimation and is grounded in Granger causal struc-
tures, PCMCI (Runge et al., 2019a) (and related PCMCI+ and LPCMCI), which
improves PC to handle autocorrelated dependencies better, and DYNOTEARS
(Pamfil et al., 2020), which extends the NOTEARS method to time series. More
recently, a third tradition, causal representation learning, developed out of machine
learning (ML) to leverage causal reasoning in ML models (Scholkopf et al., 2021).
While still a developing field, it shows particular promise for estimating relation-
ships in the presence of latent confounding.

The directed nature of time provides a powerful asymmetry to leverage, of-
ten sufficient to overcome the difficulties of autocorrelation, automatically orient-
ing discovered relationships in time. In contrast, spatial data lacks an obvious
uniform directional structure and poses challenges for causal discovery. As dis-
cussed in Section 7.3, while some approaches have incorporated domain-specific
spatial constraints for point-measurement networks, none have developed a gen-
eralizable framework that leverages fundamental physical principles of locality to

enable scalable causal discovery in high-dimensional gridded space-time systems.
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Causal Discovery in Earth Science

We present a brief review of causal discovery for Earth science to position CaStLe
within the literature. Please also see the extensive reviews by Runge et al. (2023)
and Ali et al. (2024).

Ebert-Uphoff and Deng (2012) were the first to apply a causal discovery algo-
rithm, PC-stable (Colombo and Maathuis, 2014), to the climate science domain.
They were able to find a grid-cell-level causal teleconnection network in 50 year
daily geopotential height data using the PC algorithm. Ebert-Uphoff and Deng
(2014); Deng and Ebert-Uphoff (2014) further explored application requirements
and climatological interpretations of the geopotential height analysis. In each pa-
per, they note grid challenges related to the high expense of many grid cells, ag-
gregation effects, and cell spacing. The first paper limits the number of grid cells
to 800, while the subsequent analyses limited grid cells to 200 to minimize com-
putational costs. While their results are compelling, they use extensive decadal
data and recover patterns common to all 50 years. The fundamental difference
between our work and Ebert-Uphoff and Deng’s work is that they recover causal
graphs from recurring atmospheric phenomena with sufficiently large datasets on
relatively coarse-grained grids, whereas CaStLe is recovers networks of isolated
phenomena with many more grid cells and many fewer time samples per cell.

Runge et al. (2015¢) introduced an alternative approach to causal discovery of
space-time Earth science data. They reduced the dimensionality with varimax-

rotated principal component analysis prior to applying the causal discovery al-

172



gorithm, producing a graph relating discrete, potentially remote, regions. Their
causal graph is most similar to a teleconnection network between large areas on the
globe. Nowack et al. (2020a) utilized that framework to evaluate CMIP5 models.
Particularly of note, they point out the challenges and strengths of Ebert-Uphoff
and Deng (2012)’s grid-cell-level approach, “... while an analysis at the grid-cell-
level is more granular which, however, carries the challenges of higher dimension-
ality, will have a strong redundancy among neighbouring grid cells, and grid-level
metrics will require handling varying spatial resolution among data sets.”

Tibau et al. (2022) built on the dimensionality reduction approach, augmenting
it to output grid-cell-level networks. They specifically delineate mode-level (di-
mensionality reduction or cell aggregation) and grid-level causal discovery. Their
augmentation is called Mapped-PCMCI, which first applies dimensionality reduc-
tion, then computes a mode-level causal network with PCMCI, and finally maps
the grid cells within the modes to each other using the network previously con-
structed. Their resulting network is one consisting of edges between grid cells, but
the method assumes that cells within modes are fully connected, i.e., each cell is
dependent on all of its neighbors. In contrast, our work specifically seeks inter-cell
spatial relationships. Finally, they also describe the failure of a traditional causal
discovery approach for grid-cell-level data, “[if] we apply PCMCI directly at the
grid-level, the low power of this high-dimensional and redundant estimation prob-

lem (see Section 2.2.2) leads to most links being missing.”
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Boussard et al. (2023) and Brouillard et al. (2024) developed the Causal Dis-
covery with Single-parent Decoding (CDSD) algorithm within the causal repre-
sentation learning framework and applied it to the climate science field. Like CaS-
tLe, CDSD performs well in high-dimensional data settings but through a different
mechanism. It performs dimensionality reduction by learning latent variables and
enforcing a “single-parent” constraint where each grid cell belongs to exactly one
latent factor. This naturally clusters grid cells into coherent, often contiguous re-
gions and enables the discovery of causal relationships between these larger-scale
patterns. In contrast to CaStlLe’s grid-level structure learning, CDSD identifies
broader teleconnection pathways between regional climate modes. Thus, while
CaStLe preserves the original grid structure to capture fine-grained causal dynam-
ics, CDSD abstracts to a higher level by mapping the native grid space to an iden-
tifiable latent representation before performing causal discovery.

Several studies have addressed local-scale phenomena. Pfleiderer et al. (2020)
applied causal discovery to identify precursors to seasonal hurricane frequency.
They utilized the precursors to inform a predictive model. Polkova et al. (2021)
identified local drivers of marine cold-air outbreaks in the Barents Sea. These
demonstrate that existing causal discovery approaches can be valuable for seasonal
and sub-seasonal phenomena. However, both marginalized large regions prior to
analysis, reducing the space’s dimensionality, and did not evaluate the space-time
evolution of phenomena nor grid-level dynamics.

There are some examples of causal discovery algorithms leveraging spatial in-
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formation. Zhu et al. (2016) developed pg-Causality that applies space-time pat-
tern mining and a Gaussian Bayesian Network to seek local dependencies in the
space-time propagation of air quality data. Sheth et al. (2022) developed STCD
for understanding hydrological systems. They constrained the discovery of spatial
structures by only allowing higher elevation nodes to be parents of lower elevation
nodes because water follows the gravity gradient. While both cleverly use mined
or known spatial structure to inform their causal discovery, they are both limited
to use in sparse point-measured data from static base stations rather than gridded
data. Further, these methods enforce constraints as filtering mechanisms, whereas
CaStLe actively leverages spatial structure to enhance statistical power. Neither

address the scalability challenges in high-dimensional gridded data.

Parallel Approaches in Neuroscience: Causal Discovery for High-Dimensional Spatial-Temporal
Data

Other scientific domains face similar challenges with high-dimensional space-time
data. Neuroscience, for example, needs to study mechanisms in brain interactions,
and fMRI images may contain thousands to millions of pixels. The anatomy of
the brain also exhibits locality constraints. Ramsey (2014) made computational
optimizations to the Greedy Equivalence Search algorithm, including sparsity con-
straints and limiting the distance of potential parents, to recover graphs with mil-
lions of nodes. Saetia et al. (2021) marginalized regions of interest in the brain
using spatial averaging and then applied the PCMCI algorithm to construct causal

graphs. There is a common interest in recovering graphs of high-dimensional grid-
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level data throughout the sciences. Developing more tools that enhance the esti-
mation and interpretability of causal graphs in these spaces will help advance our
understanding of space-time structures across the sciences.

What is clear from prior work is that grid-level analyses are challenging, both
statistically and computationally, due to how many grid cell dependencies need to
be estimated, the enormous number of observations needed, and the redundant in-
formation content of nearby cells. As we present in the following sections, CaStLe
adds to the literature as it overcomes the statistical and computational limitations
of grid-level analysis by leveraging the known physical structure of spatial infor-

mation to produce interpretable graphs describing local causal structures.

7.4.2 PDE-Like Systems

We seek to perform causal discovery from space-time data governed by consistent
physical laws. As detailed in Section 7.6, CaStLe operates via two phases. The
first restructures the given space-time data into a lower-dimensional local neigh-
borhood space without marginalization or loss of any data points; the second is
the causal discovery step. This section details the assumptions required for effi-
cient use of spatial replicates that enable CaStLe’s first phase, scalability proper-
ties, performance in high-dimensional settings, and interpretability. We note that
the assumptions necessary for the second phase will be inherited from our meta-
algorithm’s chosen causal discovery method. In general, they will be the causal

Markov condition, faithfulness, and often causal sufficiency, which we define for-
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mally in Appendix A.2.

We take PDE-like models as our starting point, and assume that all behavior in
the given space are driven by a fixed set of dynamics that apply at infinitesimal
time and spatial scales. Specifically, we assume that, for data observed in discrete
space and time, the evolution of a single grid cell is controlled only by the values of
its immediate spatial neighbors at the previous time step. Using causal discovery,
we seek to determine which neighbors have a causal impact on a given grid cell
and the direction of that relationship. Our analytical framework has similarities to
the sparse identification framework initially developed by Brunton et al. (2016),
though our approach builds upon causal discovery rather than sparse regression.
Because our approach can use non-linear conditional independence tests, we can
avoid the difficult dictionary construction step associated with sparse regression
methods.

In contrast to causal discovery methods, other current research also focuses
on approximating ordinary differential equations or PDE-like systems with opera-
tor learning approaches, such as operator neural networks (Li et al., 2020; Pathak
et al., 2022; Hart et al., 2023). These Fourier Neural Operators (FNO) focus on
generating accurate models of the PDE-like evolution of key variables over time
and space. Their assumptions are rooted in several of the same fundamental physi-
cal principles of how PDEs propagate effects in space and time as CaStLe: locality
in space and time and spatial stationarity. While CaStLe is not meant to be a

predictive model, it captures important relationships between grid cells in an inter-
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pretable fashion, providing insights into the underlying causal structures.

7.4.3 Causal Discovery of Physical Dynamics: Dynamical Constraints

We state here four key assumptions that capture what we describe as a PDE-like

system X;:

T1) Temporal Locality: for any 7 # 1, X;;—¢ /# X;; for any spatial coordinates
(i, j)
T2) Temporal Causal Stationarity: the dynamics governing the evolution of X; do

not change over time. Thatis, X; ;1 — X;; < X;;_14¢ — Xj ;1 for any time

offset 7.

S1) Spatial Locality: if (i, j) are not neighbors (in a problem-specific sense) then

Xit, 7+ Xj, for any tq,1.

S2) Spatial Causal Stationarity: the dynamics governing the evolution of X; do
not change over space. That is, X;; 1 — X;; & Xiys,—1 — Xjis, for any

spatial offset s.

Here, 4 denotes the absence of a direct causal relationship between two variables.

Therefore, if an SCM exists for a given system, then it will have a functional
shape constrained by our assumptions: X; = f(X;_1,n;), for some vector of noise,
N;. In the context of an SCM, the constraints are: temporal locality (T1) adds
lagged relationships between parent and child variables; spatial locality (S1) re-
stricts possible parents to those in the spatial neighborhood of each variable (grid
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cell), that is, f; is only a function of the neighborhood of i (f; depends only on
X »(;)); and temporal/spatial causal stationarity (T2 & S2) require that there be
only one function, f, for all space and time in the window/region of analysis.

Building on physical principles, Assumption T1 implies that causal dependen-
cies follow the “arrow of time” while S1 disallows “action at a distance.” Assump-
tions T2 and S2 serve to ensure that there is a consistent causal structure to target.
Assumption S1 further requires that f; is only a function of the neighborhood of i
(f; depends only on X gz(,-)). We refer the reader to the book by Peters et al. (2017)
for a more detailed discussion of how SCMs can be used to model physical sys-
tems.

We deliberately chose lag-1 temporal relationships in assumption T1 because
they reflect fundamental physical principles: In the discretized form of PDEs, each
element depends on the future state of the immediate past of its neighboring el-
ements. The symmetry of the radius-1 neighborhood in assumption S1 and the
single lag constraint in assumption T1 captures the essential causal dynamics in
physical processes when temporal and spatial data resolutions are appropriately
balanced.

While not descriptive of all possible systems, we assert these locality and sta-
tionarity assumptions are descriptive of any system governed or modeled after
PDEs, cellular automata (Bhattacharjee et al., 2020), or Tobler’s First Law of
Geography (Miller, 2004; Walker, 2022). These assumptions reflect fundamental

principles of locality and consistency that apply across numerous domains, from
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fluid dynamics to reaction-diffusion systems. However, for these to hold in prac-
ticality, one must also assume sufficient data is available to characterize locality
and dynamics are smooth and non-turbulent, relative to the analysis frame. These
assumptions imply that there is an optimal balance between temporal and spatial
resolution sufficient to impose space-time locality. The exact value of this scaling
1s problem-dependent, as more rapidly evolving systems require higher temporal
resolution, and we do not explore it further here. However, we note that similar
concerns are well-studied in the design of numerical differential equation solvers
where spatial and temporal discretizations must be chosen suitably consistently.

Section 7.6 and A detail how these assumptions are essential for our method-
ology, CaStLe, and discuss their limitations. Section 7.6.6 discusses strategies for
managing those limitations. While CaStLe’s framework assumptions (T1, S1, T2,
S2) enable efficient use of space-time samples, the algorithm adapted for CaStLe’s
parent-identification phase will have additional causal assumptions.

Interestingly, CaStLe’s spatial locality assumption (S1) creates an environment
where, when properly implemented, causal sufficiency can be satisfied by con-
struction. When we focus on learning only the parents of the center cell while
including all potential spatial neighbors in the analysis, we automatically satisfy
causal sufficiency for that specific node if S1 holds. While reliant on S1 hold-
ing, this is significant because causal discovery is notoriously the most challeng-
ing causal discovery assumption to ensure in real-world settings (Spirtes et al.,

1993; Raghu et al., 2018). As we discuss in Section 7.6.5, sufficiency may be
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relaxed depending on which causal discovery algorithm is adapted for the parent-
identification phase. However, satisfying it by construction may enable implemen-
tation choices with fewer compromises.

In the following sections, we discover grid-cell-level causal graphs under these
five assumptions. Assumptions T1 and S1 allow us to significantly reduce the
scope of the problem, as there are only 9 possible parents of a grid cell in 2D (8
neighbors and itself). Assumptions T2 and S2 suggest that we only need to deter-
mine a single local causal graph, because spatial stationarity allows us to extend it

to the entire domain.

7.5 Data: The 1991 Mt. Pinatubo Eruption

Mount Pinatubo’s eruption in 1991 was a massive, natural intervention in the
climate, with effects that had a relatively high signal-to-noise ratio. The event
launched 20 Tg of SO, gas into the atmosphere (Guo et al., 2004a,b; Kremser
et al., 2016). The sulfate aerosols that resulted from these gases remained in
the stratosphere for approximately two years, leading to stratospheric warming
of ~ 1.5K and surface cooling of 0.2-0.5K (Dutton and Christy, 1992; Labitzke
and McCormick, 1992; Parker et al., 1996a; Soden et al., 2002). This aerosol in-
jection has recently been the object of much study, with some authors suggesting it
as a natural proxy for proposed stratospheric aerosol injection (SAI) responses to
global climate change (Trenberth and Dai, 2007). Recent work continues to char-

acterize the nature of the response to the Pinatubo eruption, with the timing and

181



Time Series Representation Estimated
of Gridded Data Causal Stencil

Analysis Region

Y
S

Figure 7.1: Schematic overview of the key elements of CaStLe and the process followed in its
application to Mount Pinatubo’s eruption of stratospheric aerosols. Beginning with Earth system
model output, Step 1. is to collect stratospheric wind and aerosol data. Step 2. is to apply our
novel CaStLe meta-algorithm to the aerosol data to obtain a causal graph describing the space-time
evolution of the aerosols. Finally, we use the wind fields to help validate the causal graph results in
Step 3.

spatial structure of the surface response being essential factors to inform policy
decisions (Weylandt and Swiler, 2024).

Large volcanoes can impact climate quantities, such as surface temperatures,
on timescales from months to years (Parker et al., 1996b; Robock, 2000; Timm-
reck, 2012; Marshall et al., 2022). However, to evaluate whether CaStLe could re-
cover the initial advection dynamics of volcanic aerosols, we focused on the period
shortly after the eruption that includes stratospheric aerosol transport. The recent

paper by Marshall et al. (2022) indicates: “Although global-scale climatic impacts
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following the formation of stratospheric sulfate aerosol are well understood, many
aspects of the evolution of the early volcanic aerosol cloud and regional impacts
are uncertain.” This initial spread of aerosols in the stratosphere is a geophysical
process, falling between synoptic weather patterns and longer-term impacts.

We utilized models of the event, combining stratospheric aerosol and wind data,
as case study to illustrate the analysis possible with CaStLe. Figure 7.1 is a high-
level illustrative schematic of the this work’s key ideas: We collect gridded space-
time data, e.g. aerosol optical depth (AOD) measurements, and apply it to CaStLe
to learn a causal stencil graph. We then map the stencil to the original grid space.
Finally, we compare the data to ground-truth. o be clear, the ground-truth in our
later case studies is a proxy, referring to the models’ understood underlying dy-
namics, not the true realization of AOD in Earth’s atmosphere or a mathematical
representation of the dynamics. In Section 7.7, we compare to the wind fields car-
rying AOD as a proxy ground-truth. In Section 7.8, we compare CaStLe results

from synthetic data to mathematically-known ground-truth.

7.5.1 Held-Suarez-Williamson-Volcanic

For our first case study, we utilized the limited-variability ensemble approach of
the Held-Suarez-Williamson-Volcanic (HSW-V) model (Hollowed et al., 2024).
HSW-V is an atmosphere-only model built in the Department of Energy’s Energy
Exascale Earth System Model version 2 (E3SMv2) (Golaz et al., 2022). HSW-V

does not set out to replicate the historical Mt. Pinatubo eruption or any other, but
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uses the Mt. Pinatubo’s eruption characteristics “to produce a plausible realiza-
tion of a volcanic event, simulated with a minimal forcing set” (Hollowed et al.,
2024). The model was developed specifically to facilitate basic research of attribu-
tion methodologies by providing realistic source-to-impact pathways of eruption
quantities. We use this model to create a realistically complex dataset of strato-
spheric aerosol and wind dynamics with a clear ground-truth to demonstrate the
capabilities of CaStLe and the correctness of its results.

We gathered aerosol optical depth (AOD), sulfate, and zonal (U) and meridional
(V) wind fields for analysis. Only AOD is provided to CaStLe, while the sulfate,
U, and V wind components are used for validating results, as detailed in Section
7.7. AOD is a derived quantity that measures the extinction of a beam of light
through the atmosphere by atmospheric aerosols, i.e., it describes the amount of
light occluded by atmospheric particles. One of the simplifying aspects of HSW-
V is that all aerosol particles originate from SO, gas ejected by the volcano; this
avoids confusing signals from other sources, such as smoke and dust, in the atmo-
sphere.

The data collected from the HSW-V ensemble run are on a 2° grid with 6-hourly
average observations. We selected AOD in grid cells between —20.00° to 40.00°N
and —120.00° to 140.00°E, comprising 3,900 grid cells. We used the first three

weeks post-eruption for our analysis.
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7.5.2 Mt. Pinatubo in E3SMv2-SPA

For our second case study, we considered a simulation of the Mt. Pinatubo erup-
tion in the fully coupled E3SMv2 model augmented with Stratospheric Prognos-
tic Aerosol capability (E3SMv2-SPA) as detailed and validated by Brown et al.
(2024). E3SMV2-SPA includes atmosphere, land, ocean, sea ice, land ice, and
river components. AOD, U, and V wind fields are analogously collected from this
dataset. However, in this model, aerosols are a natural feature, thus complicating
the analysis of aerosol optical depth.

Data were collected on a daily temporal resolution for a 1° spatial grid. We se-
lected grid cells between —30.00° to 60.00°N and —180.00° to 180.00°E. Analysis
covered the first six months. Because this data has a coarser temporal resolution
and finer spatial resolution than our study of HSW-V, we coarsened the CaStlLe
spatial grid to a 3° grid, resulting in 3,600 total grid cells. This helps ensure that
the motion of aerosol particles between grid cells is measured within the one-day

sample period.

7.6 Methodology: Causal Discovery with CaStLe

7.6.1 Notation

We first introduce notation used in the remainder of this paper. Data is observed on
a spatial domain &, which we typically take to be a finite subset of the real plane,

R2. The causal structure generating this data can be represented by a directed
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acyclic graph ¢ = (¥, &), where ¥ = 9. CaStLe represents local causal structure
with a stencil, which we identify as a graph ¥ = (¥, &) in a reduced coordinate
space (|7 =9]). In both the original and reduced spaces, let 22 (v) be the potential
causal parents of v and let &?(v) be the actual causal parents of v. We take &
to be points on a regular grid of size N X N, observed over T time steps, giving
data X € RV T, When transformed to the reduced space used by CaStLe, the

2 .. .
(N=2)"x9, Quantities estimated from

resulting data matrix will be denoted X € R”
data are denoted with a hat, e.g., 9’7(\/) We provide additional background on the
interpretation of the causal graphs ¢,9 in Section 7.4.1 and formally specify the

mapping between X and X, or equivalently, between ¥ and ¥, in Section 7.6.3.

7.6.2 Causal Space-Time Stencil Learning

We now introduce the CaStlLe paradigm for the causal discovery of local space-
time dynamics. Under our assumptions, CaStLe identifies a sketch of the local
causal dynamics, which we call a stencil. This stencil can then be used to construct
the causal graph for the entire system (S2). The stencil is estimated in a reduced
coordinate space, where we only examine the direct neighbors of a given grid
cell (SI). We can pool information across time (T2) and space (S2) in order to
estimate the stencil accurately, and the problem is tractable because we only seek
causal parents which are local in time (T1). As we will see, this combination
of reduced search space and pooled information provides a powerful approach

to causal discovery and enables accurate causal discovery from high-dimensional

186



grid-cell-level data.
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Figure 7.2: Illustration of CaStLe (Algorithm 1) as applied to space-time data on a 4 x4 grid.
Step A (§7.6.3): for every interior grid cell, its 3x3 (Moore) neighborhood is selected. (Note,
all four 4x4 grids in the second panel are identical.) Step B (§7.6.3): Data are represented in a
reduced coordinate space obtained by appending time series from each neighborhood according to
its position relative to the neighborhood’s center. Step C (§7.6.3): during the Parent Identification
Phase (PIP), a causal discovery algorithm is used to estimate the parents of the center time series;
the resulting graph forms the causal stencil. Step D (§7.6.3): the estimated stencil is expanded to
its equivalent representation in the original space. Note that each time chunk (colored intervals in
the center panel) in the reduced space corresponds to an interior grid cell of the original data, and
that each edge in the final causal graph reflects to a stencil edge learned during the PIP. See §7.6.3
for details.
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Having motivated the CaStLe approach to causal discovery from space-time
data in Section 7.4.2, we now state it formally as Algorithm 1, describe its compu-

tational steps, and then analyze its statistical and computational properties.

7.6.3 The CaStLe Meta-Algorithm

Steps A-B: Projection to a Reduced Coordinate Space

CaStLe begins by transforming the given data from its original domain into a re-
duced coordinate space that captures the underlying causal dynamics’ locality and
spatial homogeneity. In this transformation, all data points are preserved, i.e., no
marginalization or truncation occurs. This process is represented as Steps A and B

in Figure 7.2 and Algorithm 1. In Step A, the local 3 x 3 (Moore) neighborhood of
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Algorithm 1 CaStLe for Space-Time Data in 2D (2 C R?)

Inputs:

¢ Parent-Identification Phase subroutine PIP

* Gridded space-time data X € RT*V ?

1. Step A: Extract 3 x 3 Moore Neighborhoods

» For each interior point in the original space, construct local view of the data X; = [X. »(;)] €
RT X9

2. Step B: Construct Reduced Space Data Matrix

X=[XX] .. X[y ] e RTW=2"9

3. Step C: Perform Parent-Identification in Reduced Space

PIP(X) =& = (#(C) xR%) C 2(C) xR’

4. Step D: Expand Stencil Graph to Original Coordinate Space:

e £=0C¥?*xR

« For each (p,w) € &:
& =8U{(p(v),v,w)forve ¥}

Outputs:

* Graph Stencil, &
* Estimated Causal Graph, 4 = (¥,&))
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each interior cell is selected, and each cell is labeled by its location relative to the
center cell (S, NW, E, etc.). This process creates (N — 2)2 sub-views in X; € RTx9,
In Step B, these views are concatenated along the time dimension to create a

2 .
(N=2)"x9, Note, when concatenating

reduced coordinate space data matrix X € R
the subviews, data are aligned by their coordinates relative to the neighborhood
center so that, e.g., data from all NW cells are aligned upon concatenation, even
though they originally come from different spatial locations. Although this trans-
formation results in specific time series segments appearing in multiple reduced
space cells, these repetitions do not eventually create spurious dependencies in the
causal stencil, as CaStLe only seeks lag-1 dependencies. The repeated segments
are well-separated in the temporal dimension, and no chunks appear in different
cells in the same interval.

We depict this process on a 4 x 4 grid in the first half of Figure 7.2. In Step A,
the four interior cells are sequentially highlighted, and their local neighborhoods
are extracted, which are depicted in boxes colored according to the center used. In
Step B, the local data views are concatenated to form one set of time series, with

each temporal chunk reflecting the color of the center cell of the underlying data

View.

Step C: Parent-Identification Phase

CaStLe next examines the reduced coordinate space data representation, X, to

identify the stencil of the local causal dynamics. This is done by applying an
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augmentation of an arbitrary time series causal discovery algorithm to identify the
parents of the center cell, C. We emphasize that we only seek the parents of C, not
a full causal structure, in this step and refer to it as the Parent Identification Phase
(PIP). Under assumption S1 (locality), all parents of C are present at this step, sat-
1sfying causal sufficiency, ensuring more accurate estimation of the causal stencil.
By contrast, while the data of the parents for the exterior cells, e.g. W, is included in
the reduced data space matrix, X, it spreads across multiple columns, and accurate
parent identification is not possible. The output of this process is a set of (up to) 9
weighted edges, corresponding to the parents of C (the eight neighboring cells and
C itself).

We depict the PIP in Step C of Figure 7.2, where two parents of C are identified:
W, which has a positive dependence on C, and SW, exhibiting negative dependence.
Note that while the PIPs we implemented in testing—see Section 7.8.1—had no
trouble with the seams connecting each time chunk in the reduced space, we pro-
pose an improved testing implementation in E to alleviate potential statistical test-

ing issues.
Step D: Graph Reconstruction in the Original Space

Finally, CaStLe uses the stencil constructed in Step C to reconstruct the causal
graph in the original data space, in a process that essentially reverses Steps A and
B. Specifically, for each edge identified in &, corresponding edges are added to

grid cell in the original domain. We depict this in the final step of Figure 7.2 where
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the stencil is repeated throughout the entire 4 X 4 space, copying the two parents of
C 1dentified in Step C, to create a causal graph in the original space. Note also that
we use the stencil to identify parents for both interior and boundary cells, omitting

edges that go “off-grid” when applying the stencil to boundary cells.

7.6.4 Theoretical Properties

CaStLe has many advantages over classical causal discovery algorithms in gridded
space-time settings. By reducing the causal discovery problem to identifying the
causal parents of the center cell (C) in the reduced space, CaStLe achieves signifi-
cant improvements in both the computation necessary to infer the causal graph and
the statistical quality of that graph. As previewed in Section 7.4.2, the PIP’s focus
on identifying only the parents of the center cell creates an important connection
to the causal discovery assumption of causal sufficiency. Because we include all
spatial neighbors (as defined by our locality assumption S1) in the conditioning
set, all potential parents of the center cell are present in the analysis. If our spatial
locality assumption holds, causal sufficiency is automatically satisfied within each
local stencil analysis. This represents a key advantage of the CaStLe framework
- while the Markov condition and faithfulness remain necessary assumptions for
the PIP algorithm, our implementation leverages spatial structure to ensure causal
sufficiency by construction.

Below, we briefly outline the theoretical implications and their contributions to

CaStLe’s remarkable performance and algorithmic improvements. Their deriva-
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tion, a deeper analysis, and a discussion on graph estimation asymptotic consis-
tency are provided in B. We discuss CaStLe’s asymptotic consistency in C, which
shows that CaStLe converges on the correct causal stencil as grid size increases,
given a PIP consistent in increasing time samples. These properties illustrate the
mathematical justification for CaStLe’s empirical correctness and improvement
over the state of the art shown in the following sections.

CaStLe yields significant improvements to both time complexity, a measure of
an algorithm’s computation time as it scales with input size (e.g., number of time
steps, graph nodes), and statistical complexity, a measure of estimation perfor-
mance given larger sample sizes. Following the complexity analysis of Kalisch
and Biihlmann (2007), we show that traditional causal discovery approaches are
bounded by & (np>2P) = ﬁ(T(N2)32N2) = ﬁ(TN62N2), for T time samples and
N x N = N? grid cells. Since CaStLe computes on the smaller reduced coordi-
nate space, and only seeks causal parents of one node, rather than parents of all
nodes, several terms become constants, resulting in & (np>2P) = O(T (N —2)? x
93 x 2%) = ¢(TN?). CaStLe’s computational complexity is ¢ (TN?), a major im-
provement over existing approaches. For more details on this derivation, see Ap-
pendix B.1. By leveraging locality and spatial replicates, CaStLe identifies causal
structure for the entire graph (&/(N*) possible edges) in N? time. Kalisch and
Biihlmann (2007, Appendix B) show that the probability of the PC algorithm in-
correctly estimating the true graph is bounded by ~ &' (N* 2), whereas we find that

N2T
eN?T

CaStLe’s error probability scales as ~ & < ) From this, as the grid size grows
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larger, we see PC is less likely to estimate the correct causal graph, while CaStLe
1s more likely to estimate the correct graph. Furthermore, both of these effects
are exponential, implying significant performance differences even on moderately
sized graphs; this change from a regime of exponential decay to super-exponential
growth in graph recovery performance makes local causal graph recovery feasible,
finally enabling the tools of causal discovery to scalably explore grid-level Earth

science dynamics in commonly high-dimensional settings.

7.6.5 Methodological Limitations

CaStLe’s assumptions may pose challenges in some domains of interest, and viola-
tions of these assumptions can affect the CaStLe output. For example, large-scale
homogeneity can be difficult to achieve in geosciences, which is the primary ra-
tionale for the spatial-blocking strategy that we implement for our application in
Section 7.7. Locality assumptions (T1 & S1) create a framework where the causal
Markov condition can be effectively applied to local structures, while causal sta-
tionarity assumptions (T2 & S2) create consistency in these structures across space
and time. However, the PIP algorithm we use within CaStLe additionally requires
standard causal discovery assumptions, particularly the causal Markov condition
and faithfulness, which is a separate non-trivial assumption. We list causal suffi-
ciency as an assumption, however, if the others hold then it follows that all of the
causal parents of the stencil’s center are in its immediate neighborhood, so suffi-

ciency is satisfied by construction. Alternatively, causal sufficiency may be relaxed
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if the chosen PIP is an algorithm that does not rely on sufficiency, such as the FCI
algorithm (Glymour et al., 2019). As such, violations of CaStLe’s assumptions re-
late directly to violations of the causal Markov condition, faithfulness, and causal
sufficiency. Both Spirtes et al. (1993, p. 29) and Runge (2018a) discuss assump-
tion violations in causal discovery and some examples of how they manifest in
resulting graphs. We have included a more detailed discussion on each assumption

and their limitations in A.

7.6.6 Strategies for Addressing Limitations

To address the limitations of CaStLe’s assumptions, several practical strategies
can be employed. One effective approach is the use of spatial blocking to create
subdivisions where dynamics are more uniform, thus mitigating the violation of
spatial causal stationarity (S2). The selection and size of these blocks are highly
domain-dependent and can be guided by subject matter expertise. An automated
approach may be sufficient for certain dynamics, such as stratospheric dynamics,
but more manual approaches may be necessary for surface-level dynamics where
blocks are chosen based on topological assumptions. In specific areas of interest,
blocks can be manually created to avoid topological boundaries such as coastlines,
rivers, and mountain ranges, ensuring that the assumptions of spatial homogeneity
are better satisfied.

Additionally, strategies such as variograms can be used to test for spatial sta-

tistical stationarity, providing heuristics for effective blocking. In future work, an
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iterative block size estimation approach could be considered. Varying the block
size serves as a form of stability check, a technique widely applied in ML to ensure
robustness of discoveries to parameter choices and modeling assumptions (Allen
et al., 2023). However, it is important to note that there may not always be a single
optimal block size due to the complex nature of spatial dynamics. Instead, there
may be a range of valuable block sizes depending on the needs for analysis and the
limitations of the setting. Because CaStLe is data efficient, it may be better to tend
towards smaller blocks, which are more likely to be homogeneous, but possibly at
the cost of some interpretability.

Deep learning and space-time feature engineering approaches may be fruitful
directions for future research on automated block-identification. Methods such
as 0-MAPS (Fountalis et al., 2018), feature extraction with convolutional neural
networks (Nukavarapu et al., 2023), and spatiotemporal cluster analysis (Davis
et al., 2025) are strong starting points. These computational approaches could
automate the identification of optimal spatial blocks, reducing reliance on manual
delineation and subject matter expertise while preserving the statistical properties
necessary for valid causal discovery with CaStLe.

By employing these strategies and acknowledging their limitations, the robust-
ness and applicability of CaStLe in various domains can be significantly enhanced,
allowing for more accurate causal discovery in complex space-time systems. In
general, more data at higher spatial and temporal resolutions will make satisfying

the assumptions easier. The appeal of CaStLe is when one is interested in small-
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scale local dynamics, it is preferable to analyze raw gridded data directly, because
marginalization can introduce statistical artifacts.

I provides an empirical investigation of how violations of each assumption af-
fect CaStLe’s performance when applied to our E3SMv2-SPA case study. Our
analysis reveals that CaStLe 1s surprisingly robust to moderate assumption vio-
lations. While violations of spatial and temporal causal stationarity (particularly
with overly large blocks or extended time intervals) introduce more false positives
and reduce interpretability, CaStLe often still identifies key true causal pathways.
This robustness to moderate assumption violations further expands the practical
utility of CaStLe in realistic Earth science applications where perfect adherence to

assumptions is rarely possible.

7.7 Results: Discovering Atmospheric Dynamics in Global Cli-

mate Models

As described in Section 7.5, we applied CaStLe to output of the Held-Suarez-
Williamson-Volcanic atmosphere model, tuned to accurately reproduce the ob-
served Pinatubo response (Hollowed et al., 2024), and the E3SMv2-SPA model
including the eruption. In this section, we describe how we applied CaStLe to

these case studies and present the results.
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7.7.1 Validation with HSW-V

We first note important implementation considerations, particularly how CaStLe’s
assumptions are satisfied. In general, if assumptions T1, T2, S1, and S2 are uncer-
tain, either because of data availability or dynamical instability, then assumptions
can be verified using subject matter expertise. In this study of Mt. Pinatubo, we
describe how we carefully managed each assumption prior to applying CaStLe.

In order to be sure CaStle’s assumptions of temporal locality, temporal causal
stationarity, and spatial locality (T1, T2, and S1) held in the dataset’s 2° grid res-
olution (corresponding to approximately 214 km at 15 degrees N), we used atmo-
spheric wind speeds at the time of the eruption, which were recorded at 25 m/s
on average at 30 hPa; cf. Figure 1 in Thomas et al. (2009). That speed translates
to a theoretical maximal aerosol travel distance of 540 km over a 6-hour period,
meaning aerosols should move fast enough to traverse one 2° grid cell per time
step.

Spatial causal stationarity, assumption S2, is indeed violated considering the
globe holistically. We resolved this challenge by using a spatial blocking strategy
to create subdivisions in which dynamics were more uniform, and applied CaStLe
within each separately. As noted in Section 7.6.6, the selection of blocks and their
size 1s a potential challenge and is highly domain-dependent. We conducted a
sensitivity analysis of block sizes, which is presented in H, and determined that

dynamics were consistent in various of block sizes. We chose a middle size, 20° x
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20°, for this analysis to balance more nuanced outputs (smaller sizes) with less
risk of false positives (larger sizes). This case study was selected for its relatively
simple advective dynamics to clearly validate CaStLe and demonstrate its results
in an atmospheric setting. We observe that stratospheric winds vary smoothly and
slowly, without hard boundaries, which enables us to use a regular grid of blocks.
Other settings, such as surface level analyses, the blocking strategy will certainly
require special treatment to avoid analysis across hard dynamical boundaries, such
as coastlines and mountain ranges. In H, we also demonstrate that blocking alone
1s not sufficient for non-CaStLed approaches to succeed.

We chose CaStLe’s PIP to be the PC-Stable-Single algorithm because in our
validation experiments in Section 7.8.1, we found it to be the marginally more
effective PIP. However, those experiments showed any tested PIP algorithm is ef-
fective. PC-Stable-Single is the PC-Stable causal discovery algorithm (Colombo
and Maathuis, 2014) adapted to find the causal parents of only one node; its pseu-
docode is provided in L. Specific CaStLe parameterizations are given in G. In J,
we present similar results using DYNOTEARS for CaStLe’s PIP.

Our proxy ground-truth in this case study was stratospheric winds that cause
suspended aerosols to advect through space. We display dominant wind fields
throughout the space to validate the resulting graphs. Our dataset included wind
components in 72 pressure levels in the HSW-V dataset, so we display column-
averages of the levels at the levels where volcanic sulfate was most prevalent.

Specifically, we chose pressure levels containing more than 5.00 ug of sulphate

198



Kg air, which were between ~ 6-114.00 hPa. With this, we effectively captured
the stratosphere and 56% of all sulfate aerosols in all atmosphere levels. By com-
paring winds in at the stratospheric levels where most of the sulfur was present, we
can directly compare CaStLe’s discovery of AOD’s space-time evolution to wind
data in the same locations.

Comparing the wind and recovered stencils in Figure 7.3, it is clear to see that
CaStLe is able to accurately reconstruct the prevailing stratospheric winds using
only AOD observations. As these wind fields are the key drivers of aerosol dis-
persal, it is clear that CaStlLe can accurately capture the dynamics dictating the
spatial pattern of the Pinatubo response. The CaStLe stencils best capture the un-
derlying wind fields when AOD levels are high. When there are few particles in
a region, it is challenging to determine wind by solely observing dispersal pat-
terns. We also observe a zonal (East-West) pattern driving the aerosol dispersion,
with Pinatubo aerosols transported nearly fully around the equator within 3 weeks,
while meridional (North-South) dispersion taking much longer. This alignment
between CaStLe-derived causal structures and observed wind patterns demon-
strates the method’s effectiveness in reconstructing the physical mechanisms driv-
ing aerosol transport, particularly in regions with sufficient particle density to en-

able clear detection of dispersal trajectories.
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Comparative Analysis of CaStLe Versus Traditional Approaches on HSW-V

The current state-of-the-art causal discovery methods cannot tractably approach
this study of Mt. Pinatubo’s aerosol short-term evolution. As described in Sec-
tion 7.3, dimensionality reduction techniques commonly used to make them tractable
are suitable for spatially static, periodic space-time patterns. However, they are
not good solutions for studying a dynamic, transient pattern because modes de-
rived from those techniques are space-timely invariant. Moreover, they are meant
to capture large-scale teleconnections, rather than local dynamics that eventually
give rise to global phenomena such as teleconnections. For a detailed demonstra-
tion of why dimensionality reduction approaches, such as PCA and PCA-varimax,
are insufficient for capturing local causal structures in space-time systems like vol-
canic eruption plumes, see F.

Traditional approaches attempted without dimensionality reduction suffer from
the curse of dimensionality when applied to short-term global-scale phenomena
because there are more grid cells than temporal observations. They also struggle to
identify local connections in the massive search space they seek, where every grid
cell may be dependent on any other grid cell; i.e., they are not constrained by local
causal structure. Finally, their efficiency scales poorly as the grid size gets larger,
requiring a lot of time to execute on relatively small grids. We present specifics
below and discuss time complexity in depth in Section 7.6.4 and Appendix B.1.

Here, we demonstrate the disparity in performance between traditional approaches

and CaStLe for our HSW-V case study using the PC algorithm. The reasons for
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the disparity are explored in Sections 7.3 and 7.4. Because PC did not terminate
within 48 hours on the full spatial region studied in Section 7.7.1, we restricted
the analysis space the area between 20.00° to 50.00°N and 55°W to 120°E in the
first 8.5 days after the eruption. On the 2° grid, the given space is equivalent to a
35x35 grid, or 1,225 grid cells. Since temporal observations were 6-hourly, there
were 34 time series samples per grid cell.

Figure 7.4 shows the results of the PC causal algorithm and CaStLe-PC-Stable
applied to a large section of grid cells for the HSW-V problem. Figure 7.4a illus-
trates that PC is incapable of reconstructing a graph with any meaningful physical
interpretation. There are some local dynamics found, but they are dominated by
the many links across disparate locations. PC was implemented here with the par-
tial correlation conditional independence test, a test alpha-value of 0.00001, and a
p-value threshold of 0.05 to remove links below that threshold in the final graph. P-
values were corrected using the
Benjamini-Hochberg procedure prior to final thresholding.

In Figure 7.4b, CaStLe was applied to 10°-by-10° blocks, rather than the 20°-
by-20° blocks in Figure 7.3. The smaller block size enables more link density and
nuanced results, with the possibility of more mistakes. In this illustration, we chose
to display the stencils mapped back to the original space for each block to compare
to PC more fairly and demonstrate how much more sparse CaStLe’s results are. We
found that CaStLe was again able to recover the westward aerosol transport from

Mt. Pinatubo. Because HSW-V only models aerosols from the volcano, there is
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little to no aerosol signal outside the plume, and results in these areas will be less
reliable.

Additionally, the run-time of the PC algorithm is demonstrably poorer than
CaStLe. The PC algorithm experiment in Figure 7.4a PC took 65 minutes to ex-
ecute for a 35x35 grid size. In contrast, the CaStLe experiment in Figure 7.4b
completed all blocks serially in 0.46 seconds on the same data. Further, for each of
the panels in Figure 7.3, CaStLe computed the 39 stencils for the 3,900 grid cells
in a total of 10 seconds. These empirical data points are explained by CaStLe’s

improved theoretical properties, as detailed in Section 7.6.4 and B.

7.7.2 Extending to More Complexity: E3SMv2-SPA Modeled Aerosols

Given the intended simplicity of the HSW-V model, we also evaluated a simula-
tion of the Mt. Pinatubo eruption in E3SMv2-SPA. More complex graphs arise
with a more complex model, providing an opportunity for more nuanced analy-
sis and discovery, but with a higher chance of false positives and false negatives.
E3SMv2-SPA is a fully coupled model, so AOD results from many sources in-
cluding the volcanic eruption and Saharan dust. As such, we expect results to
be somewhat noisier, however, as we demonstrate below, CaStLe is still able to
identify important features of transport. Because of this additional complexity,
we focus on CaStLe as an exploratory tool and leave additional analysis to future
work. However, even with the added complexity, CaStLe can obtain compelling

results consistent with dominant stratospheric winds as well as the dynamics dis-
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covered in our study of HSW-V.

We used 15° spatial blocks so that CaStlLe operates on a 5x5 grid space per
block. This size strikes a balance in the trade-off that a smaller block-grid enables
more nuance in the final output, and larger block-grids take advantage of more
spatial replicates to multiply sample size. We chose to study the eruption in two
distinct 20-day intervals spanning a six month period to understand the changing
evolution of the plume.

Similarly to HSW-V, we utilize the U and V wind fields to visually validate
the CaStLe results. In this case, we did not average over multiple altitudes, instead
opting to simply use the 50 hPa wind fields; this altitude was shown in Brown et al.
(2024, Figure S6) to contain significant levels of the sulfate aerosols.

Figure 7.5 depicts the results of our experiment on E3SM. Again, we applied
CaStLe-PC-Stable to construct causal stencils for each given spatial block. We
selected two intervals of interest from our results to show here. Day 15 is June
15, 1991, the day of the eruption, so the top row of Figure 7.5 is the first 20 days
after the eruption. The bottom row was selected to illustrate later dynamics when
aerosols have circumnavigated the tropical zone and more northward advection is
present. Days 175-195 are November 22 to December 12, 1991, a little over six
months after the eruption.

In the more challenging setting of the fully-coupled E3SMv2-SPA model, our
results in the first weeks are still generally consistent with those in HSW-V pre-

sented in Section 7.7.1, showing that CaStLe is largely robust to greater com-
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plexity. We note that visually identifying the sulfate aerosol plume is much more
difficult in this case as the background AOD is quite strong. A solution may be
to apply CaStLe to AOD anomalies (computed by subtracting grid cell long-term
AOD means from the signal in the analysis period), thus potentially removing
background variability from the analysis. However, our goal in this work is to
present CaStLe as applied to raw data to illustrate what it can and cannot accom-
plish in complex, heterogeneous settings.

Regardless, we observe that tropical westward advection is present throughout
both studied time periods, but more complexity is present in other regions, in part
due to the background AOD. Six months later, the aerosols and winds are in a
different regime. We observe northward and southward causal structures in the
northern latitudes matching dominant wind fields in the area, with CaStLe stencils
still consistent in the tropics. Additionally, CaStLe recovers dynamics moving
aerosols northwards above central Asia and southwards through western North
America. Causal structures are recovered more often and more accurately where
stronger winds coincide with more aerosol presence, building a map of significant
aerosol movement. A more complex model and smaller block sizes illustrate more
nuanced dynamics, and there is more to learn from these; however, we leave deeper

atmospheric dynamics analysis to future work.
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7.8 Validation and Benchmarking

In this section, we demonstrate the effectiveness of the CaStle approach to space-
time causal discovery, highlighting its ability to identify structure in low-signal
and data-sparse regimes. We first demonstrate the benefits the CaStLe approach
can provide to any causal discovery algorithm using a synthetic linear-Gaussian
dynamics benchmark; we then apply CaStLe to an important non-linear PDE prob-

lem, showing that we can determine the underlying advective forcing.

7.8.1 Evaluating CaStLe: A Comparative Analysis

We demonstrate the effectiveness of CaStLe using a set of local interaction mod-
els (LIMs), building upon the comparison framework introduced by Nichol et al.
(2023). In summary, we defined a stencil for each experiment that dictates how
each grid cell depends on its nine neighbors (including itself). A LIM is a special
case of an SCM, which simulates the evolution of a gridded space by computing
the current state of each grid cell based on a predefined function of the historical
states of its neighbors. In the linear case, this is most simply accomplished with
vector autoregression (VAR) models, where the coefficient is sparse, only contain-
ing nonzero entries where a desired dependence exists between neighbors. The
function is defined by a linear function of coefficients in the given stencil. Our
results appear in Figure 7.6, which shows that CaStLe provides significant im-

provements in graph recovery regardless of the causal discovery algorithm used in
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the parent identification phase.

Data: Benchmark Construction

In order to compare different causal discovery algorithms with a common set of
benchmarks, we begin by generating coefficient matrices parameterizing spatially
homogeneous and statistically stationary VAR(1)s that satisfy our key assumptions
S1 and S2. We generate coefficient matrices for these VARSs, M, using the follow-

ing sampling scheme:

1. Generate a random 3 X 3 local dynamics matrix, M, with d non-zero elements,
one of which is the central element (autocorrelation). Each of the d non-zero

elements, {ai}?zl, have a random value 1.0 > coefficient; > s..

2. Expand M to M on a grid of size N x N (cf. Step D of Algorithm 1 or Figure

2-2 of Nichol et al. (2023))
3. If |Amax (M) | > 1, scale M by |Amax (M)].
4. If m < s, Ym € M, reject, else accept.

where |Amax (M)| is the maximum absolute eigenvalue of M, which when above 1.0
indicates the system is numerically unstable (Strang, 2016, p.307). We note that
this process is essentially an accept-reject scheme used to sample from the set of
statistically stationary & spatially homogeneous VARs on a 2D grid with minimum

signal strengths s, > 0.1 and fixed sparsity levels in the range d € {1,2,...,9}.
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After each M is generated, we create a single realization, using standard Gaussian

noise applied independently, cell-wise at each time step.

Method Comparison: Highlighting CaStLe’s Strengths

On each realization, we apply one of three causal discovery algorithms, in both
CaStLed and non-CaStlLed form: 1) the PC algorithm of Spirtes and Glymour
(1991) as adapted to time series by Runge et al. (2019a, Algorithm S1 with g = 1);
11) PCMCI, an autocorrelated time series extension of PC developed by Runge et al.
(2019a); and 111) the DYNOTEARS approach of Pamfil et al. (2020), itself a time se-
ries adaption of the NOTEARS approach of Zheng et al. (2018). We additionally
compare each of these against a simple sparse VAR approach, where we estimate
VAR coefficients directly using ordinary least squares (OLS) and truncate coeffi-
cients with magnitude less than s,; this approach is not necessarily causal, but it
is the exact model of our data generating process and provides a useful point of
comparison.

We compare the estimated graph structure with the true graph derived from the
sparsity pattern of M and report the average Matthews’ Correlation Coefficient
(MCC) (Matthews, 1975) and F; score over 30 replicates. We used an adapted
MCC formula derived by Nichol et al. (2023), which accounts for edge cases in

which the denominator would be zero, but is otherwise defined as:

MCC — (TP x TN — FP x FN) o
/(TP +FP)(TP +FN)(TN +FP) (TN + EN) '
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where TP, FP, TN, and FN are true positive count, false positive count, true negative
count, and false negative count, respectively. Here, a positive is a graph edge that
exists, and a negative is a graph edge that does not exist. The MCC graph similarity
measure is sometimes preferable to the more common Fg Score (8 is chosen such
that recall is considered 8 times as important as precision), which is dependent on
the ratio of positive to negative test cases; we treat link positives equally to link
negatives, hence our preference for MCC. Figure 7.6 includes the F; score due it
its common use in causal discovery, but results are similar.

In Figure 7.6, we depict CaStLe performance results on a 2D VAR with ground-
truth link density d = g. We show two extremes of sample size: a low-sample
regime of 7' = 10, which is barely enough to identify the local dynamics of 9 cells,
and a high-sample regime of 7 = 150. Our results are quite striking: in the low-
sample regime, the CaStLed versions of each algorithm can accurately infer graph
structure, with near-perfect performance on grids of size 10 x 10. By contrast,
the performance of the non-CaStLed versions is essentially no better than random
guessing, with only the sparse VAR able to exhibit any skill, and then only on small
grids. In the high-sample regime, the CaStLed variants perform well on all grid
sizes, with CaStLe-PC consistently achieving perfect recovery; the non-CaStLed
variants perform better, as expected, but their performance still decays quickly as
the spatial grid grows.

While the stronger performance of the CaStLed variants is noteworthy, the ex-

hibited trends are even more important and highlight the true strength of the CaS-
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tLe approach: CaStlLed approaches improve on larger grids while traditional ap-
proaches suffer. While Figure 7.6 shows results for the fixed link density d = g,
we present results for all other link densities in K.

Having established CaStLe’s strong performance on linear dynamics, we also
validated its effectiveness on non-linear systems that more closely resemble real-
istic physical processes in Earth science. Specifically, we applied CaStLe to the
advection-diffusion dynamics of Burgers’ equation, a fundamental non-linear PDE
that models a combination of advective and diffusive processes. Unlike our VAR
benchmarks, which are discrete linear models with random initializations, Burg-
ers’ equation presents continuous non-linear dynamics that allow us to evaluate
CaStLe’s ability to recover spatial propagation patterns under controlled condi-
tions. Our analysis demonstrates that CaStLe successfully identifies the underlying
advection angle across a range of diffusion conditions, further supporting its ap-
plicability to complex space-time systems. This non-linear validation’s complete

methodology and results are presented in D.

7.9 Discussion

We have introduced CaStLe, a novel causal discovery meta-algorithm tailored for
analyzing grid-level space-time data sets arising in Earth science. CaStLe can be
directly applied to grid-level data and does not require pre-processing and spa-
tial dimension reduction, allowing it to capture dynamics in the natural domain

of the data rather than a derived (PCA-type) space. This distinction is crucial be-
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cause global-scale phenomena across many complex systems—whether climate
teleconnections, ecological patterns, or fluid dynamics—emerge from networks of
local causal interactions that are often lost in dimensionality reduction approaches.
While demonstrated with Earth science case studies, CaStLe is fundamentally
domain-agnostic, applicable to any space-time system governed by local physical
interactions, from fluid dynamics and heat transfer to biological pattern formation.

CaStLe can overcome the limitations of existing causal discovery approaches
in Earth science’s space-time data, filling a significant gap. By leveraging realis-
tic assumptions of locality and homogeneity, CaStLe creates “spatial replicates”
to substitute large observational domains for lengthy time series. This process
transforms the spatial causal discovery problem from the high-dimensional (many
variables, few observations) to the low-dimensional (few variables, many obser-
vations) regime, allowing accurate and efficient discovery of underlying causal
dynamics. A key aspect of CaStLe is the causal stencil graph, a simplified rep-
resentation of the local dynamics driving larger global behaviors. This notion of
a stencil is particularly well-suited for systems able to be modeled by PDEs, as
PDE-type dynamics inherently enforce both locality and homogeneity, as well as
the sufficiency assumptions necessary for causal discovery to be truly causal.

We used these insights to identify the space-time evolution of volcanic aerosols
that erupted from Mount Pinatubo in the HSW-V and E3SMv2-SPA models. We
found that CaStLe found the expected path of advection in both models and more

nuanced dynamics, including northward and southward dispersion, in E3SMv2-
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SPA. We showed that CaStLe outperforms its peers in the causal discovery of
synthetic benchmarks generated by vector autoregressive structural causal mod-
els. Additionally, as detailed in D, we found that CaStLe could accurately identify
the advection angle in our Burgers’ equation benchmark, demonstrating that it can
filter out the “noise” of diffusion.

Our brief theoretical analysis of CaStLe in Section 7.6.4 and in B, demonstrates
two regimes of consistent estimation for CaStLe, i.e., CaStLe recovers the true
causal dynamics: long time series (T — o) or large grid sizes (N — o). This
starkly contrasts existing approaches, whose performance rapidly deteriorates as
N — oo. Several other important theoretical questions remain open, including the
optimal relationship between sampling rates and grid resolution, behavior under
mild violation of the key assumptions, and the correct target of inference for sys-
tems without clear advective dynamics (e.g., the chemical evolution of atmospheric
aerosols).

We have focused on space-time data observed on regular 2D grids, but we be-
lieve that this assumption can be relaxed to adapt CaStLe for a broader range of
observational structures. CaStLe can also be adapted to multivariate space-time
data (more than one observation at each point) by including more comeasured
variables in CaStLe’s transformation of the region to the reduced coordinate space,
enabling causal discovery of the space-time interactions of multiple species on the
grid-level, which is a particularly exciting avenue of future research and applica-

tion to Earth system dynamics. Developing data-driven methods for evaluating
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block sizes based on output robustness will enable more automatic application
of CaStLe, requiring less subject matter expertise. Finally, causal representation
learning is a nascent field combining the estimation power of machine learning
with the strength of inference of causal discovery. Applying these techniques in
CaStLe’s parent-identification phase or for discovering spatial embeddings for re-
gional block analysis is an exciting potential direction for future work.

Because our assumptions are readily satisfied by many physical systems, CaS-
tLe can be applied quite broadly in the physical sciences. It may find value in any
space-time system in which quantities at every point in space impact their adjacent
spatial neighbors. In the Earth system, it may be of particular interest for study-
ing forest fires, ocean dynamics, salt/fresh water incursions, and coastal erosion,
for example. For atmospheric rivers, CaStLe could identify pathways of moisture
transport and evolution; for wildfire spread, it could reveal causal relationships
between local weather conditions and fire behavior; for drought propagation, it
could track how soil moisture deficits spread across regions. CaStLe’s preservation
of local causal structures while efficiently handling high-dimensional data offers
advantages over approaches requiring dimension reduction. For datasets where
the temporal sampling is too coarse relative to the spatial resolution, extending
to a radius-2 neighborhood might be appropriate while still maintaining our core
assumption of locality. This extension would preserve the fundamental CaStLe
methodology—only the dimensionality of the reduced coordinate space would in-

crease. Additionally, CaStLe provides a promising framework for Earth system
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model evaluation (Nowack et al., 2020a; Nichol et al., 2021), potentially identify-
ing where models produce correct outcomes through incorrect causal mechanisms.

While climate science typically studies large, long-term phenomena, the com-
munity increasingly recognizes the importance of understanding multi-scale inter-
actions (Diffenbaugh et al., 2005; Palu, 2019; Agarwal et al., 2019; Zhang et al.,
2022). Teleconnections present an exciting challenge for future applications of
CaStLe. These statistical dependencies between distant regions appear to violate
locality but physically result from countless local interactions that are often un-
observed or unmodeled. A two-stage methodology could be effective for tackling
this challenge. First, apply CaStLe to discover local causal stencils, and then apply
a complementary causal discovery technique to connect the discovered local pro-
cesses across scales. This approach could bridge the gap between local and global
causal discovery in climate science.

Complex space-time systems present apex challenges for causal discovery, com-
bining chaotic dynamics, high dimensionality, noisy observational records, and
complex underlying physical processes. CaStLe represents the first successful
application of causal graph discovery to learn grid-cell-level causal structures in
Earth systems. By preserving local causal structures while efficiently handling
high-dimensional data, CaStLe presents a path toward connecting micro-scale in-
teractions with macro-scale phenomena, potentially offering new insights into how
global patterns emerge from local causal mechanisms. There are rich future re-

search directions, including multivariate analysis and automated block size selec-
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tion. The feasible discovery of local causal stencils presents an exciting new fron-

tier for causal discovery of space-time data, particularly in the Earth sciences.
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Figure 7.3: Application of CaStLe-PC-Stable to HSW-V simulation of the 1991 Mt. Pinatubo erup-
tion. The stencils estimated by CaStLe (white) capture the underlying high-altitude wind fields
(green) using only satellite-measured AOD, with near perfect accuracy in high aerosol regions
(red-orange). Autodependencies are shown with black nodes where grid cells cause themselves,
and gray nodes where there is no autodependence. All links represent a six hour time lag, the time
resolution of the HSW-V dataset. On longer horizons (bottom row), CaStLe is able to recover equa-
torial wind currents as far away as South America, half-way around the world from Mt. Pinatubo
(white triangle). CaStLe accurately identifies the prevailing westerly atmospheric winds because it
was able to identify the space-time dependence between neighboring grid cells. Additional details
are given in Section 7.7.
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Figure 7.4: Causal maps inferred from the PC algorithm applied naively to all grid cells and
CaStLe’s equivalent results immediately to the west of Mt. Pinatubo; a 35 x 35 grid between
—20.00° to 50.00°N and 55.00° to 125.00°E in a 8.5 day span after the eruption. All links repre-
sent a six hour time lag, the time resolution of the HSW-V dataset. As expected, PC struggled with
the high dimensionality and the discovered dependencies do not conform to the ground-truth un-
derstanding that aerosols advected towards the west. It also fails to identify local dynamics, instead
drawing most connections over great distances. The PC analysis was computed in 729 minutes on
1,600 grid cells, while the CaStLe analysis was computed in 0.46 seconds.
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Figure 7.5: Application of CaStLe-PC-Stable to E3SMv2-SPA simulation of the 1991 Mt. Pinatubo
eruption. The stencils estimated by CaStLe (white) capture the underlying high-altitude wind fields
(green) using only total aerosol optical depth (AOD). Autodependencies are shown with black
nodes where grid cells cause themselves, and gray nodes where there is no autodependence. All
links represent a one day time lag, the time resolution of the E3SMv2-SPA dataset. The heatmap
depicts AOD from any source at 50 hPa. The top panel depicts learning from the first 20 days
after eruption, which began on day 15. The bottom panel depicts learning approx 6 months af-
ter the eruption over a 20-day time period. In the more challenging setting of the fully-coupled
E3SMv2-SPA model, our results in the first weeks are still generally consistent with those in HSW-
V presented in Section 7.7.1, showing that CaStLe is largely robust to greater complexity. In the
bottom panel, the aerosols and winds are in a different regime. CaStLe stencils are still consistent
in the tropics and now begin to recover dynamics pushing aerosols northwards above central Asia
and southwards through western North America. A more complex model and smaller block sizes
illustrate more nuanced dynamics, and there is more to learn from these, however, we leave deeper
atmospheric dynamics analysis to future work.
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Figure 7.6: Comparison of CaStLed and non-CaStLed causal discovery approaches on linear-
Gaussian dynamics, including Granger causality or FullCI (orange), PC (green), PCMCI (red),
and DYNOTEARS (purple), as well as a statistical model of the data generating process (blue)
presented with both MCC and F; metrics. In the low-sample size regime (7=10, left) CaStLed
approaches can accurately recover the underlying causal graph, with performance increasing on
larger grid sizes (solid lines); by contrast, non-CaStLed approaches are unable to perform better
than mere chance (dashed lines). Even a model based on the underlying data generating process
(Sparse VAR, blue) is significantly outperformed by its CaStLed counterpart. In the high-sample
size regime (7=150, right), non-CaStLe approaches have improved performance but still compare
unfavorably with their CaStLed counterparts.
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Table 1: Capabilities of CaStLe for Earth science applications. This table summarizes the key
methodological advantages of CaStLe and their relevance to specific Earth science phenomena,
highlighting applications where grid-level causal discovery enables analyses that were previously
infeasible with prior causal discovery approaches.

Capability Description Relevant Applications

Local mechanism Global phenomena emerge Volcanic plume transport (Sjolte

discovery from local causal et al., 2021), wildfire propaga-
interactions. Previous tion & plume transport (Bara-
approaches use nowski et al.,, 2021), atmo-

dimensionality reduction, spheric rivers (Payne et al.,
losing this local informa- 2020; Bafio-Medina et al., 2025;

tion. Higgins et al., 2025)
Transient, CaStLe effectively identi- Volcanic eruptions, heat waves
non-periodic fies grid-level causal path- (Keellings and Moradkhani,
phenomena ways. 2020), wildfires (Driscoll et al.,
2024)
High- CaStLe leverages spatial Gridded Earth science data from:
dimensional replicates to make high- regional climate modeling, satel-
data settings dimensional problems lite observation analysis, climate
tractable. reanalysis products (Ali et al.,

2024, Table 3)

Earth system CaStLe enables Grid-level causal model evalua-
model evaluation comparison of causal tion that identifies local mecha-
and comparison mechanisms between nism differences between mod-

models and observations els and observations, extending
at the grid level, poten- beyond previous approaches that
tially were limited to regional-scale
identifying where models analysis (Nowack et al., 2020a;
produce correct outcomes Nichol et al., 2021)

through incorrect causal

mechanisms.
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A Understanding Assumptions

In this section, we outline the key assumptions underpinning the CaStlLe frame-

work and their relationship to causal discovery assumptions.

A.1 CaStLe Assumptions

CaStLe operates via two complementary sets of assumptions:

1. CaStLe Framework Assumptions (T1, S1, T2, S2): These enable efficient
use of spatiotemporal data by leveraging locality and stationarity to transform

a high-dimensional problem into a tractable one.

2. Causal Discovery Assumptions: The causal discovery algorithm used within
CaStLe’s Parent Identification Phase requires its own set of assumptions -

typically the Causal Markov Condition, Faithfulness, and Causal Sufficiency.

While these assumption sets are conceptually distinct and serve different pur-
poses, they work together to enable scalable causal discovery in high-dimensional
space-time systems.

In review, our framework introduces four key assumptions to capture a “PDE-
like” system X, creating an environment where local space-time dynamics can be

efficiently learned:

T1) Temporal Locality: restricts causal influence the most recent past state, one

time lag, aligning with how PDEs are discretized.
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T2) Temporal Causal Stationarity: ensures consistent causal structure over time.

S1) Spatial Locality: limits causal influence to immediate spatial neighbors.

S2) Spatial Causal Stationarity: ensures consistent causal structure across space.

These assumptions enable CaStLe to leverage “spatial replicates”—treating each
local neighborhood as providing information about the same underlying causal
process. This transforms what would be a high-dimensional, data-sparse problem
(many variables, few observations) into a data-rich problem (few variables, many

observations).

A.2 Causal Discovery Assumptions

Separately, the causal discovery algorithm used within CaStLe’s PIP require its
own assumptions. The three foundational assumptions of causal discovery are

detailed in Runge (2018a) and in Spirtes et al. (1993, Ch. 3):

* Causal Markov condition: for X = {X,X>,...,X,}, each variable X; is con-

ditionally independent of its non-effects given its direct causes & (X;):

Xi LLX\ 2(X;) | 2(Xi)

— A variable is conditionally independent of its non-effects given its direct

causes.

e Faithfulness: if X; and X are statistically dependent, then there exists a direct
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causal link or a common cause:

X; /L X; = dadirect cause or common cause of X; and X

Conversely, if X; and X; are conditionally independent given their parents

W(Xi) and @(Xj)l

X, 1L X; | Z(Xi),#(X;) = no direct causal link between X; and X;

— All conditional independencies in the data arise from the causal structure

(no accidental cancellations).

* Causal sufficiency: all common causes of observed variables are also ob-

served.

A.3 Relationship Between Assumption Sets

While CaStlLe assumptions (T1-S2) and causal discovery assumptions serve dif-

ferent purposes, there are important interactions between them:

» CaStLe assumptions create an environment where causal discovery becomes

tractable in some high-dimensional gridded settings.

* CaStLe assumptions do not guarantee causal discovery assumptions will be

satisfied.

» For example, even in perfectly stationary systems (T2, S2 satisfied), faithful-
ness can be violated through counteracting mechanisms, as demonstrated in
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Runge (2018a).

* Similarly, the Causal Markov Condition is a property of the joint distribution

that cannot be derived from locality assumptions.

Instead of replacing causal discovery assumptions, CaStLe’s assumptions cre-
ate a context where causal discovery methods can be applied efficiently to high-

dimensional space-time data.

CaStLe’s Implementation and Causal Sufficiency

One meaningful connection exists between CaStLe’s implementation and causal
discovery assumptions: When CaStLe focuses on identifying only the parents of
the center cell while including all potential spatial neighbors (per assumption S1),
causal sufficiency is automatically satisfied for that specific node by construction -
assuming S1 holds true.

This is a significant benefit, as causal sufficiency is typically the most difficult
assumption to guarantee in practice (Spirtes et al., 1993; Raghu et al., 2018). While
CaStLe cannot guarantee faithfulness or the Markov condition holds, its design
cleverly leverages spatial structure to address causal sufficiency within each local

analysis.

A.4 Potential Violations and Their Manifestations

Violations of CaStLe’s assumptions can occur in various ways, leading to different

manifestations in the causal discovery process. Violations of CaStLe’s assump-
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tions can affect results in different ways:

1. Violations of Temporal/Spatial Locality (T1, S1): If causal effects extend
beyond immediate neighbors, CaStle will miss these connections, creating

false negatives.

2. Violations of Stationarity (T2, S2): If dynamics change across space or time,
CaStLe’s stencil will represent only an average pattern, potentially creating

both false positives and negatives.

3. Even with CaStLe assumptions holding, traditional faithfulness violations can

occur through cancellation effects or deterministic relationships.

Below, we provide examples of how these assumptions can be violated and their

potential impacts, drawing on the discussion by Runge (2018a).

Temporal and Spatial Locality (T1, S1)

* General Violation: These assumptions can be violated by any process that

introduces dependencies beyond immediate temporal or spatial neighbors.

» Example — Time Aggregation: Time aggregation can violate temporal local-
ity by introducing dependencies across multiple time steps. Runge (2018a)
discusses how time aggregation can cause such violations (Section IV.B, Ex-
ample 4). Figure 5 in Runge (2018a) illustrates the impact of time aggregation

on causal inference.
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» Example - Spatial Aggregation: Similarly, spatial aggregation can violate
spatial locality by introducing dependencies across non-neighboring spatial

units.

Temporal and Spatial Causal Stationarity (T2, S2)

» General Violation: These assumptions can be violated by any process that

introduces changes in the causal relationships over time or space.

* Example — Counteracting Mechanisms: Counteracting mechanisms or het-
erogeneous processes can violate these stationarity assumptions. If the data
contains opposing generating processes (e.g., different hemispheres in cli-
mate data), the faithfulness assumption may be violated. This results in un-
stable and inconsistent causal relationships. Runge (2018a) discusses such
violations in Section IV.C, Example 5, and provides an illustration in Figure

6.

Understanding potential violations and their manifestations is crucial for apply-
ing our framework effectively in realistic scenarios. Section 7.6.6 outlines practical

strategies to mitigate these violations.

B Statistical and Time Complexity

In this section, we elaborate on Section 7.6.4 and provide a more detailed discus-
sion of the time-complexity (Appendix B.1) and statistical (Appendix B.2) proper-
ties of CaStLe. Additionally, we provide analyses giving conditions under which
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CaStLe is (asymptotically) guaranteed to recover the true causal graph, indepen-

dent of the specific PIP used.

B.1 Time Complexity

Steps A, B, and D of CaStLe consist primarily of copying and rearranging of data,
so we focus our analysis on the complexity of Step C, which dominates the run-
time of CaStLe. Because CaStLe can use a variety of PIPs within Step C, we begin
with a general analysis of the worst-case time complexity of causal discovery algo-
rithms. Throughout, recall that a runtime complexity ¢'( f(n)) implies there exists
a fixed constant C > 0 such that that the algorithm terminates in at most Cf(n)
steps for any input of size n.

Kalisch and Biihlmann (2007) and Runge (2018a) discuss the time complex-
ity of causal discovery, particularly the PC algorithm. Much of constraint-based
causal discovery is descendant of PC, and it represents a valuable baseline for com-
paring the computational complexity of CaStLe and prior work. Causal discovery
is largely bounded by how long it requires to determine independence between
nodes (bounded by samples and size of conditioning sets of nodes) and how many
times it needs to do so (generally bounded by the number of nodes). Runge (2018a)
cite the time complexity of a single conditional independence test using ordinary
least squares (linear partial correlation), while Kalisch and Bithlmann (2007) ex-
plore bounds on the number of tests in PC. Our analysis is consistent with theirs,

which we derive from first principles.
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Consider causal discovery in p-dimensions (p measured variables) with n sam-
ples; suppose further that it is known, a priori, that any node in the causal graph
has at most degree ¢: that is, no element has more than g causal parents. An
exhaustive search for the causal parents of a single node will require evaluating

?:0 (1: ) = 0(2P) possible sets of parents; repeating this process for all p nodes
evaluation of up to &(p2”) possible causal graphs. If we construct graphs using
statistical tests for linear partial (conditional) correlation, each test can be per-
formed in &'(np min{n, p}) = O (np?) time (the time required to fit an OLS re-

gression to n observations and p variables using a direct method such as an SVD

or QR factorization), yielding an overall runtime of
O (np*  p2P) = O (np>2P).

This analysis is quite loose, and as Runge (2018a) notes, the complexity of a sin-
gle linear conditional independence test can be reduced to &'(n pzqz) when efficient
algorithms are used. Far stronger guarantees can be provided for specific causal
discovery algorithms that more efficiently search the space of possible graphs. Re-
gardless, even this rough analysis will be sufficient to demonstrate the algorithmic
improvements attained by CaStLe.

We now consider the specific context of causal discovery from gridded time
series data. Here, we have n = T total observations and have p = N? features of

our data. Direct application of causal discovery to this data gives a worst-case
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complexity of

O(np*2P) = 6(T(N?)?2V) = 6(TN2V),

so the complexity of standard causal discovery methods grows super-exponentially
with the size of the grid. For the purposes of direct comparison to CaStLe, where
p= N2, we assume PC’S T4 = 1. By contrast, the reduced space where CaStLe’s
PIP operates has T (N —2)? observations and only p = 9 features, yielding a poly-

nomial worst-case runtime of
O(np*2P) = O(T (N —2)* 9% «2°) = O(TN?).

Even for grids of relatively modest size, this improvement can be significant:
consider a small 30 x 30 grid; at 1° resolution, this covers approximately 1.5% of
the globe. Unstructured causal discovery methods need to consider approximately
309 % 230 possible graphs, while CaStLe needs to evaluate only 9% % 2% = 373,248
graphs, representing an improvement of approximately 2 x 10'?-fold. Specific
PIPs may provide less dramatic improvements, but it is clear that CaStLe can be
expected to be millions-if not billions-of times more efficient than existing ap-
proaches.

Note that in our application scenarios, CaStLe is always applied to a square
N x N grid. However, more generally we can consider p grid cells. Traditional

causal discovery will be bounded by

O(Tp27),
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while CaStLe will be bounded by
O(Tp).

Thus, if grid cells scale linearly, CaStLe scales linearly in both samples and grid

cells.

B.2 Statistical Consistency

Statistically, we see that CaStLe can achieve significantly improved estimation
performance compared to a full graph inference approach. Rather than give a
general analysis, we rely on the prior work of Kalisch and Biithlmann (2007) to
compare CaStLe-PC with the standard PC algorithm. Using the same definitions
of n, p,q as in our previous analysis, Kalisch and Bithlmann (2007, Appendix B)
show that the probability of the PC algorithm incorrectly estimating the causal

graph incorrectly is bounded above by
P4 +9) =0 (qurz(n—q)e_c(”_Q)) :
In our setting, this gives an error probability of
Vi (pq+2(n B q>e—c(n—q)) y ((N2)N2+2(T _Nz)e—c(T—NZ)) _ (Nleech . Te—cT)

for PC applied in the original data space. It is clear that this quantity grows rapidly

in N, consistent with the intuition that causal discovery algorithms struggle when
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applied to larger spatial domains. By contrast, this analysis implies that the error
probability of CaStLe-PC scales as

—c(n— —c —2)2_ TN2
ﬁ(pq+2<n—q)e ( Q>>:ﬁ(99+2(T(N—2)2—9)e (T(N-2) 9)>:ﬁ<ﬁ>

Quite surprisingly, this decreases with the graph size (N), implying that CaStlLe
actually achieves better performance when applied to larger spatial domains. We
demonstrate the remarkable practical effect of this scaling in Section 7.8.1. Similar
improvements can be shown for any base causal discovery algorithm (and associ-

ated PIP) for which precise estimates of statistical convergence rates are available.

C Asymptotic Consistency

We examine the asymptotic consistency of CaStLe, with a particular focus on the
Parent Identification Phase (PIP). Asymptotic consistency is a fundamental prop-
erty that ensures the accuracy of causal graph estimates as the number of obser-
vations increases. We begin by establishing the technical assumptions necessary
for our analysis, specifically those related to the p-values generated by the PIP
for edge existence. These assumptions are critical for maintaining control over
both false positive and false negative rates, thereby ensuring the reliability of our
causal inferences. The central theorem we present demonstrates that, under these
conditions, CaStle achieves asymptotic consistency as the number of nodes ap-

proaches infinity. In the case of Bayesian score optimization causal discovery,
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such as DYNOTEARS, Bayesian posterior probabilities can be used in lieu of p-
values with suitable minor modifications to the combination procedure. The proof
1s structured into three parts, addressing the independence of observations, the ap-
plication of Fisher’s method for combining p-values, and the implications of using
overlapping regions. Through this analysis, we aim to reinforce the validity of
our algorithm and its effectiveness in uncovering causal relationships in gridded
space-time data structures.

Technical Assumption (P1):

* The Parent Identification Phase, PIP(-), produces p-values for edge existence,

which satisfy the following:

— For every non-edge (i, j) (j ¢ Z(i)), ]P)(pgl’{;) <u)=uforall u€l0,1];

that is pl()iflj;) ~ % ([0,1]) is uniformly distributed.

— For every edge (i, j) (j ¢ Z(i)) and every T > Ty, there exists 7Z'(T )(u) >

i,
0 such that ]P’(pgl’{;) <u) <max{0,u— n(Ti j)(u)} <uforallu €0,1].
Taken together, these require that the PIP(-) control the false positive rate at

the nominal significance level used and that the false negative rate is less than

the false positive rate.

Here, 7Ty is a minor technical assumption to allow the PIP to have non-trivial
accuracy: we use it to exclude trivial cases like 7= 1, in which no time series
causal discovery mechanism can be accurate.

Additionally, note that we typically assume that the PIP(-) is asymptotically
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consistent, so that ”51'

)(u) is bounded above O for all u as T — . This can be
used to prove T-asymptotic consistency of CaStLe, but in this section we aim only
to prove N-asymptotic consistency.

RT*NXN realization of a data-generating process

Theorem: Suppose Z is an
satisfying T1-S2. Suppose also that PIP(-) is a parent-identification-phase satisfy-
ing P1. Then, there exists a 7j such that for any T > Tp, CaStLe is asymptotically

consistent as N — oo; that is, the causal graph estimated by CaStLe converges to

the true causal graph generating & with probability 1.
Proof. This proof proceeds in three parts:

* First, we argue that, for large N, well-separated (non-overlapping) spatial re-

gions can be considered 11D realizations.

* Next, we argue that the application of Fisher’s method leads to asymptotic

consistency of CaStLe.

* Finally, we argue that “infill” of the overlapping regions does not invalidate

the asymptotic consistency.

At a high level, we argue that, because it is T-asymptotically consistent, there
exists some Ty where the PIP has non-trivial power. We then apply standard sta-
tistical methods for combining several weak p-values to obtain a global strong
p-value. The technical bookkeeping of our argument serves primarily to deal with

the fact that we use overlapping spatial regions and cannot assume independence of
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the individual p-values; we overcome this by selecting regions that are sufficiently
spatially separated to be statistically independent on the time scale considered.

Without loss of generality, we focus on asymptotically consistent estimation of
a single edge, say (East, Center). Extension to all 9 stencil edges follows immedi-
ately by a standard union bound argument.

Part I: For analytical simplicity, we divide the spatial region into square regions
of size (5+27T) x (5+2T). On a grid of size N x N, there are By = |[N/(5+
2T)| such regions. We apply the PIP(-) to the center 3 x 3 region of each region
separately, obtaining By 1 p-values for the existence of the edge. Because these
central regions are separated by (at least) 27 + 2 grid cells and causal effects exist
at a distance of at most 27" under our data generating model, these p-values can be
treated as statistically independent. (This is essentially the same argument used by
Goerg and Shalizi (2013), though their application is quite different.)

Part II: Given By r independent p-values, we then apply Fisher’s method for
combining p-values. Specifically, given a set of p-values for edge non-existence,
Fisher’s method controls the familywise error-rate, rejecting the global null (no
edges anywhere). By our assumption of spatial homogeneity, if an edge exists in
at least one region, it must exist everywhere, so Fisher’s method precisely tests for
edge existence in the stencil.

Recall that Fisher’s method constructs a test statistic 7 = —2 Zgzl log p,, and

tests it against a null xg distribution. We consider two cases:

1. If the edge does not exist, each p-value is % ([0, 1]) by construction and the
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test statistic 7' follows its null distribution. So long as the global significance
level used for Fisher’s test Ofpisher 1S converging to 0 as N — oo, we have

asymptotic consistency for edge absence.

2. If the edge does exist, each p-value is less than o with probability (1+c¢)a for
some c strictly positive. We then have that 7" has a non-central y? distribution,
which is asymptotically distinguishable from a (central) y? at all significance

levels as N o< B — oo.

Taken together, these guarantee the the output of Fisher’s method is asymptoti-
cally consistent for both edge presence and edge absence.

Part III: In practice, we apply CaStLe not to disjoint regions but to overlapping
regions. As discussed elsewhere, the region-discretization strategy and the use of
Fisher’s method are such that this does not cause “cross-contamination” or invalid
tests of edge existence. We note here that this strategy also does not invalidate
asymptotic consistency of CaStle. Specifically, we note that, with overlapping
regions, the p-values used in Fisher’s method may no longer be assumed indepen-
dent.

In this case, however, this is not an issue as they exhibit positive dependence
(as they are taken from overlapping data). As such, the true degrees of freedom of
T under the null are less than the nominal degrees of freedom; this leads Fisher’s
method to be (if anything) overly conservative in finite samples. Hence, for the
case of edge absence, the nominal significance level is understated and we retain
consistency as long as we take Ofisher Ni> 0; for the case of edge presence, it
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suffices to note that the true sampling distribution is still asymptotically distin-
guishable from the null (since each individual p-value is powerful), so we retain

consistency. [

We note that Fisher’s method may not be the optimal method for combining
p-values. In particular, Holm’s method allows for arbitrary dependence of the p-
values, likely yielding better performance at finite N, but we do not pursue this
approach here as the implementation and theoretical analysis are somewhat more
difficult. As with Fisher’s method, Holm’s method controls the error rate of the
global null which, under our assumptions of causal stationarity, is precisely the
correct null for accurate stencil estimation.

Additionally, we note that the p-values produced by the PIP under the null do
not need to precisely satisfy a uniform distribution; conservative p-values decrease
the value of Fisher’s statistic 7', thereby lowering the rate of false positives.

Remark: If PIP(.) is strongly asymptotically consistent as T — oo, it must

satisfy assumption P1.

Proof. We argue by contradiction. Suppose that PIP(-) were not asymptotically
consistent and that the false positive rates and false negative rates of the PIP were
equal (or worse, the false negative rate was greater than the false positive rate).
Specifically, assume that there exists a true edge (i, j) and some 7_ > 0 such that
P( pl(jl’j ) <u) > n_+u forall T and all u. For the PIP to guarantee no false posi-
tives, we must take & — 0 as T — oo. But this would imply that there remains an
asymptotic 7_ probability of a false negative (P( pgl’j ) <a)>a+m>n>0),
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contradicting our assumption of asymptotic consistency.

D Application to Non-Linear Dynamics: Continuous Systems

via Burgers’ Equation

This appendix extends our validation of CaStLe to non-linear dynamical systems
through application to Burgers’ equation, demonstrating the method’s effective-
ness beyond the linear systems discussed in the main text.

Having established the strong performance of CaStLe on discrete models of lin-
ear dynamics, we turn to a far more challenging domain: continuous models with
non-linear PDEs. Specifically, motivated by our interest in turbulent atmospheric
dynamics, we consider Burgers’ equation, a PDE used to model a combination of
advective (directed flow) and diffusive processes (Burgers, 1948). While initially
developed to model fluid flows, Burgers’ equation has been successfully applied
to a variety of fields, such as turbulence, non-linear wave propagation, traffic flow,
cosmology, gas dynamics, and more (Bonkile et al., 2018). In the following exper-
iments, we again implemented CaStLe’s PIP with the PC-Stable-Single algorithm.

We note that the interaction of PDE dynamics with causal language is rather
subtle: while PDEs are imbued with a “forward” direction in time, the actual nu-
merical methods used to solve them include “forward” and “backward” steps in the
underlying integrators as well as sophisticated interpolation schemes. Our focus

here is not on finding a causal model for the PDE solution per se, but on identifying
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the structure of the underlying advection. This choice is motivated in part by the
results of Rubenstein et al. (2018), who explored the related problem of identify-
ing causal models from deterministic ordinary differential equations (ODEs). As
they note, there is not generally a single causal graph corresponding to an ODE,
with different models being appropriate at equilibrium or under various interven-
tions. Given the additional complexity of PDEs, we believe that identifying the
underlying advection angle provides the most meaningful causal representation of
Burgers-type dynamics, particularly as it relates to our volcanic eruption aerosol

case study.

D.1 Burgers’ Equation: Model and Parameters

In two dimensions, Burgers’ equation can be written as:

du du du ’u  d*u

— o— — | =c| =5+ 2

aﬁ”( 8x+ﬁ8y) C<8x2+8y2>+f )
AdvectiV;]rDynamics Diffusivc;]r)ynamics

where «a, B are the advection coefficients in the x,y directions, capturing directed
flow dynamics; c is the diffusion coefficient; and f is a forcing term representing
additional mass being injected into the system. In order to create a closed system
with no exogenous forcings, we take f = 0 uniformly throughout this section.
The left panel of Figure D1 shows three different solutions to Burgers’ equation
at different advection angles (8), advection strength (M = \/m), and diffu-

sivities (c), each with the same initial conditions. Examining the time evolution of
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these solutions (left to right), we see that the high-advection low-diffusion systems
(top) exhibit a clear direction of flow, while it is far more difficult to find direction
in low-advection high-diffusion systems (bottom). We take inferring the angle of
advection as our principal task: given an observed solution u to Equation (2), can

we determine the angle of the underlying advective dynamics?

D.2 Advection Angle Estimation

Given a CaStLe-estimated stencil, we infer the angle of underlying advection in
the following manner: 1) identify each potential parent edge of C with a vector,
taking the angle of the underlying edge in the reduced space as direction and the
(signed) strength of the underlying relationship as magnitude; ii) sum these vectors
to obtain an aggregate estimate of the advective dynamics; ii1) take the angle of the
vector sum as an estimate of the underlying advection angle. In pseudo-code, we

can write this as

éatanQ( Z e;sin 6, Z elcosel>.
le C)

2(C) leP(

Here atan?2 is the signed arctangent function, &?(C) = {NW,N,...,W} represents all
potential parents the center cell, e; represents the strength of that edge (0 for non-
present edges), and 6; represents the angle of that edge (135°,90°,...,180°). This
process allows us to estimate all angles instead of just the eight angles present in

the stencil structure.
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D.3 Experimental Setup

In order to assess the effectiveness of CaStLe-PC in a variety of regimes, we gen-
erate (approximate) solutions to Equation (2) with 500 angles sampled uniformly
from [0°,360°), advection magnitudes varying from 1 to 10 and diffusion coeffi-
cients from 0.05 to 0.5. The diffusion-free (“noiseless”) case of ¢ = 0 is numeri-
cally unstable. To compute the simulated Burgers’ dynamics, we use MATLAB’s
default PDE solver (pdesolve) on a circular mesh of radius 3 and 100 time steps
equally spaced between t = 0 and r = 1. Then we interpolated the finite-element
solution onto a grid of size 25 x 25, covering the square [—1, 1]?, yielding spatial
points that are approximately 0.1 units apart. We restrict our solution to avoid any
boundary conditions. Finally, we apply CaStLe-PC and the aforementioned advec-
tion angle estimation method, and compare the estimated angle to the true angle.
We demonstrate three realizations of this process in the left-hand panel of Figure

DI.

Angle Estimation Results

Our results appear in the right panel of Figure D1, where we plot the difference in
the true and estimated angle, taking care to account for the “wrapping” behavior
of angle-valued data. We see that stronger advection (higher SNR) consistently
leads to improved estimation (downward trend within each group), with estimated
angles consistently within 10° for advection magnitude 5 or greater. Comparing

across different levels of the diffusion coefficient ¢, we note that higher ¢ increases
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Evolution of Burgers’ Equation Angle Estimation Results of Advection Angle Estimation
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Figure D1: Application of CaStLe-PC to advection estimation from non-linear PDE dynamics.
In the left panel, the first three columns depict realizations of Burgers’ equation under different
advection-to-diffusion regimes; the fourth column depicts the causal stencil identified by CaStLe-
PC; and the final column compares the estimated advection angle with the true advection angle.
The right panel depicts the accuracy of CaStLe-PC under various signal-to-noise conditions. Each
combination of advection and diffusion rates were tested with 500 angles sampled uniformly from
[0°,360°). In low-diffusion (high SNR) scenarios, CaStLe-PC can identify the underlying ad-
vection clearly (top row of left panel and yellow-green columns in right panel). By contrast, in
low-advection (low SNR) scenarios, CaStLe-PC struggles to accurately identify the underlying ad-
vective dynamics (bottom row of left panel and blue bars in right panel). Even in highly diffusive
scenarios, CaStLe-PC is able to accurately estimate the underlying advection when it is sufficiently
strong (around M /¢ > 20) as shown in the middle row of the left panel. Additional details are given
in D.

the angle estimation error, as we would expect in the higher-noise regimes. For low
advection magnitude and ¢ > 0.3, we see an average error approaching the “pure
guessing” value of 90°. Even at high diffusion levels (¢ = 0.5), moderate advection
magnitudes of 5-6 are sufficient to ensure accurate estimation. From these, we see
that CaStLe-PC is able to consistently recover advection structure across a wide
range of SNR regimes. As demonstrated in F, traditional dimension reduction ap-
proaches such as PCA and PCA-varimax, when combined with standard causal
discovery methods, fail to accurately capture the advection dynamics in Burgers’

equation, particularly in identifying the correct advection angle. This highlights
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CaStLe’s unique ability to preserve and extract meaningful causal structures from
nonlinear PDE systems that would otherwise be lost through dimensionality re-
duction.

The takeaway from these results is that CaStLe can not only generalize to con-
tinuous, non-linear models of advection and diffusion, but it can successfully infer
the direction of causality in any advective-diffusive system, given that the diffu-
sion is not so large as to dominate advection. Further, each simulation has only
one signal surrounded by large areas without data or causal information. Despite
this sparsity and the presence of regions where diffusive information flow might
suggest incorrect advection angles, CaStLe successfully identifies the correct ad-
vection angle when analyzing the full space. CaStLe is asked to learn from the
full space, but successfully hones in on the correct advection angle. With these
results, we believe CaStlLe can be applied to a broad range of space-time systems

with advective-diffusive properties to better understand their dynamics.

E Proposed Modification of Statistical Methods for CaStLed

Data

While essentially any consistent PIP may be used in Step C, we anticipate that most
PIPs will be derived from already existing causal discovery algorithms. Often,
these algorithms are statistical in nature and it may be inappropriate to apply them
directly to X due to the seams connecting each time chunk. For a statistical method,

which computes a p-value for each potential edge (smaller p-values leading to
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present edges), we suggest the following chunk testing modification:

1. For each chunk b € {1,..., (N — 1)}, let p;, be the p-value resulting from the

PIP applied to that chunk.
2. Compute T = —-2) ;, Inp,

3. Let pagg = 1 — xzz(N—l)Z(T) where xZ(x) is the cumulative distribution func-

tion (CDF) of a x? random variable with k degrees of freedom evaluate at x.
4. If page < ps«, identify a parent.

This method adapts Fisher’s classical method for combining independent p-values
to our setting. In practice, however, we have found that for sufficiently large T,
this chunking is unnecessary as the proportion of seams in X goes to zero, and the
PIP identifies the correct causal structure despite the small fraction of points of

misspecification (1/7).

F Limitations of Dimensionality Reduction for Space-Time Causal

Discovery

We demonstrate the limitations of dimensionality reduction approaches such as
PCA and PCA-varimax when applied to space-time causal discovery of advective-
diffusive processes. Causal discovery methods in Earth science often employ
these techniques to reduce the high dimensionality of gridded data before applying

causal discovery algorithms. While effective for identifying large-scale telecon-
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nections, we show that these approaches fail to capture the local causal structures
that are essential for understanding space-time dynamics at the grid-cell level.

To illustrate these limitations, we apply PCA and PCA-varimax dimension
reduction followed by PCMCI causal discovery——the procedure described by
Runge et al. (2015¢), Nowack et al. (2020a), and Tibau et al. (2022) and employed
in subsequent work—to each of our case studies: Burgers’ equation, HSW-V, and
E3SMv2-SPA. Our analysis reveals that while dimensionality reduction techniques
can identify dominant modes of variability, they struggle to preserve the spatial
relationships between neighboring grid cells, thus obscuring the local causal path-
ways that CaStLe is specifically designed to recover.

For the PCMCI step, we explored multiple lag values in our experiments and
found that the results were consistently unable to capture the directional advection
structure regardless of lag parameter choice. This suggests that the limitation is
a fundamental constraint of the dimensionality reduction approach. In the results
below, we show the simplest case with a maximum lag of 1.

Figure F1 shows the PCA analysis of Burgers’ equation, where four EOFs
capture approximately 91% of variance but the resulting PCMCI causal graph
fails to recover the directional advection process, demonstrating PCA’s inability
to preserve local causal structures. Figure F2 shows similar limitations with PCA-
Varimax applied to the same Burgers’ equation data, where despite the rotation
enhancing spatial localization of patterns, the causal graph still cannot represent

the known directional advection dynamics. Figure F3 illustrates PCA applied to
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the HSW-V volcanic aerosol dataset, where four EOFs explain 85% of variance
but produce a causal graph that misrepresents the known transport mechanisms.
Figure F4 demonstrates that even with varimax rotation, which provides more spa-
tially distinct patterns in the HSW-V dataset, the resulting causal graph cannot
capture the directional flow of volcanic aerosols. The EOFs were reordered ac-
cording to the identified centroids’ longitude to improve interpretability. Figure F5
shows the application of PCA to the E3SMv2-SPA climate model data, where nine
EOFs account for 87% of variance, yet the PCMCI causal graph fails to detect the
underlying atmospheric circulation patterns. Figure F6 reveals that PCA-Varimax
rotation of the E3SMv2-SPA data, with EOFs similarly reordered by longitudi-
nal position for interpretability, still fails to recover the known directional trans-
port processes, further confirming the limitations of dimensionality reduction for

space-time causal discovery.
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PCA Analysis of Burgers' Equation Solution
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Figure F1: PCA study of Burgers’ equation solution (8 = 45°, M = 6, ¢ = 0.05). Four empirical
orthogonal functions (EOFs) capture ~91% of4@riance, with spatial patterns (left) and tempo-
ral evolution (right). The bottom panels show explained variance distribution and PCMCI causal
graph, which fails to accurately represent the known directional advection process in the underlying

PDF hiochlichtino limitationce of thic annroach for lacal cattceal ctriietitrec 10 ehace_fime cveteamec



PCA-Varimax Analysis of Burgers' Equation Solution
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Figure F2: PCA-Varimax study of Burgers’ equation solution (6 = 45°, M = 6, ¢ = 0.05). Four
empirical orthogonal functions (EOFs) capture2491% of variance, with spatial patterns (left) and
temporal evolution (right). The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known directional advection process in the
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Figure F3: PCA study of the HSW-V dataset, in the time interval 21 days post-eruption. Four
empirical orthogonal functions (EOFs) capture2485% of variance, with spatial patterns (left) and
temporal evolution (right). The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known directional advection process in the
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PCA-Varimax Analysis of HSW-V
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Figure F4: PCA-Varimax study of the HSW-V dataset, in the time interval 21 days post-eruption.
Four empirical orthogonal functions (EOFs) capdge ~85% of variance, with spatial patterns (left)
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PCA study of the E3SMv2-SPA dataset, in the time interval of days 15-35. Nine

empirical orthogonal functions (EOFs) capture ~87% of variance, with spatial patterns (left) and
temporal evolution (right). The bottom panels show explained variance distribution and PCMCI
causal graph, which fails to accurately represent the known directional advection process in the
underlying system, highlighting limitations of this approach for local causal structures in space-

time systems.
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Figure F6: PCA-Varimax study of the E3BSMv2-SPA dataset, in the time interval of days 15-35.
Nine empirical orthogonal functions (EOFs) capture ~87% of variance, with spatial patterns (left)
and temporal evolution (right). Since varimax rotation does not preserve the explained variance
ordering, we reordered EOFs according to the identified centroid’s longitude. The bottom panels
show explained variance distribution and PCMCI causal graph, which fails to accurately represent
the known directional advection process in the underlying system, highlighting limitations of this
approach for local causal structures in space-time systems.
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G Additional experimental details for Section 7.7

CaStLe inherits several of the runtime parameters of the underlying PIP used. In
Section 7.7, we set these values at relatively stringent threshold to highlight the
most robust and important dynamics and to yield a highly interpretable graph;
additional weaker dynamics can be recovered by relaxing these choices at the (po-
tential) cost of additional false positive edges and less interpretability. Data-driven
optimization of these parameters is difficult, though the validation strategies sug-
gested by Allen et al. (2023) may be useful here. Specifically, we set a p-value
threshold of 1 x 107> and removed estimated partial correlations of magnitude
less than 0.35; we note here that, due to the adaptive search heuristics used by
the PIP, the p-value threshold applied here is not a proper measure of statistical
significance, but only a heuristic measure of estimated strength. We note that our
resulting interpretations are generally quite robust to specific choices of these val-

ues.

H Analysis of Spatial Blocking

Here, we briefly investigate two impacts of spatial blocking, of the kind used in
Section 7.7. Spatial blocking is a process in which regions of the global space
are separated into blocks where CaStLe is applied individually and independently.
This can be done for the sake of interpretability and to help ensure the spatial causal

structure is uniform and homogeneous in the blocked space, satisfying Assumption
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S2.

First, we consider the impact of block size on the HSW-V case study. In our
demonstration in Section 7.7.1, we approached block size heuristically, and we
chose a relatively large block size to demonstrate correctness saliently. We found
that results are generally robust to larger and smaller block sizes in the HSW-
V case. In Figure H1, we show that the recovered dynamics in each stencil are
generally the same over space for each block size. We see that larger block sizes
are easier to interpret at a glance, while smaller sizes describe more nuance. We
also found that results were generally robust to block size in the E3SMv2-SPA
case.

Second, we consider the impact of a blocking strategy for causal discovery
generally by comparing results of the PC algorithm to one block in E3SMv2-SPA
to CaStLe-PC’s results from the same data. Our comparison of CaStLe and the
PC algorithm in Figure 4 make it clear that CaStLe captures the spatial evolution
of Mt. Pinatubo’s plume much more effectively and about 80,000 times faster.
However, one may be concerned that sparsity and correctness could be achieved
with blocking alone. In Figure H2a, PC struggles to estimate an interpretable and
physically meaningful graph of the dependence structure in this area because of
the signal redundancy between nonadjacent grid cells and that there are only 20
observations per grid cell and 25 grid cells. Figure H2b illustrates much better
performance from CaStLe, in which CaStLe learns a stencil from the region and

projects it back into the original grid space.
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Figure H1: Results of CaStLe applied to HSW-V 21 days after the Mt. Pinatubo eruption with
three different block sizes, 12° x 12°, 20° x 20°, and 60° x 60°. We find that results are generally
consistent over the same area for each block size, with smaller block sizes allowing for additional
nuance in some areas. Note that the 20° x 20° block panel is similar to the results shown in Figure

3, but more longitudes were added to get a space factorable by more integers, such as 12, 20, and
60.

254



(a) PC algorithm results (b) CaStLe results

Figure H2: The PC algorithm and CaStLe applied to E3SMv2-SPA in the 15° x 15° block between
15.00° to 30.00°N and 75° to 90°E. from the day of the eruption to 20 days later. PC struggles
to estimate an interpretable and physically meaningful graph of the dependence structure in this
area. In contrast, CaStLe is able to identify an interpretable dependence structure that represents
the local dynamics within the space.
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I Analysis of Assumption Violation Examples

Here, we evaluate the impacts of potential violations of CaStLe’s assumptions in

our study of E3SMv2-SPA from Section 7.7.2.

I.1 Time Resolution is Too Coarse (Assumption T1)

The dataset’s time resolution can determine if the temporal locality assumption
(T1) holds. If the time resolution is too coarse, the temporal causal structures may
be marginalized out or unmeasured. Dependencies between neighboring grid cells
may not be manifested in the sparse time sampling. Here, we explore how our
study of E3SMv2-SPA from Section 7.7.2 changes after coarsening the temporal
resolution.

We coarsened the time resolution by two, from a daily to a two-daily resolution.

Figure I1 demonstrates that CaStLe finds much fewer links when the time reso-
lution is too coarse. However, the links that are detected are mostly consistent with

known advective processes.

I.2 Time Interval is Too Long (Assumption T2)

When the time interval is too long, there may be too many causal structures in the
data. This violates temporal causal stationarity (T2). Here, we investigate such a
scenario.

We first computed causal stencils for an extended period, between day 15, the
day of the eruption, to day 65. This is 30 days longer than our initial analysis from
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Days 15-35

Figure I1: Results of using a coarsened temporal resolution (two-daily) in the E3SMv2-SPA study.
CaStLe finds many fewer links in this setting. It is clear that when time is too coarse, causal
structures fail to be detected. However, the remaining links that are found are largely true positives,
suggesting that CaStLe is relatively robust to coarser time sampling.
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the start of the eruption.

Days 15-65

Figure I2: Results of applying CaStLe to a longer time interval from day 15 to 65. CaStLe identifies
more links, indicating it is learning too many causal structures in the data, but still finds many of the
true positives we found in our initial study. This indicates that many of the blocks in this interval
have temporal causal stationarity, leading CaStLe to perform adequately.

We then computed causal stencils for the entire period between day 15 to day

215, roughly six months later.

Days 15-215

BRI AN
’(’(’(’(/"(

i/'( /‘\ \ /‘\

Figure I3: Results of applying CaStLe to a time interval that is too long and contains too many
causal structures, day 15 to 200. We see that CaStLe identifies many links in each block. Compar-
ing them to the winds is ineffective because the wind arrows are averages over the whole period
rather than reflections of how they change in time, which CaStLe is learning from. With such a
density of links, it is further challenging to know which are correct and which are spurious.
Figure 12 shows that when the time interval is longer, CaStLe identifies more
links, indicating it is learning too many causal structures in the data, but still finds
many of the true positives we found in our initial study. Figure I3 demonstrates the

challenges of applying CaStLe to a time interval that contains too many difference
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causal structures. CaStLe identifies many links, creating uninterpretable stencils.
The winds are a poor comparison because each arrow is a temporal average for
that location, which is not representative over the entire interval. CaStLe may be
capturing many spurious links or capturing all of the many fluctuating dynamics
over the interval. Resulting is are uninterpretable stencils with unknown true and
false positives. However, there are some blocks in the equatorial regions with
sparse stencils. That indicates that dynamics were relatively stationary over the

period.

I.3 Grid Resolution is Too Coarse (Assumption S1)

An appropriate grid resolution is important for satisfying the spatial locality as-
sumption (S1). If the grid is too coarse then the underlying spatial structure may
be marginalized out or unmeasured. If it is too small, causal relationships may
appear outside the stencil neighborhood, requiring a radius-2 neighborhood imple-
mentation. Here, we investigate a grid resolution that is too coarse.

We coarsened the grid to 9°, rather than the 3° used in Section 7.7.2. Given
that, to maintain 5 x 5 grid cells per block, each block is again 45° x 45°.

In Figure 4, we see that CaStLe performs very well overall. There are few false
positives and it clearly captures the overall advection dynamics of the system.

We also coarsened the grid to 18°, resulting in 90° x 90° blocks. In Figure 15,
CaStLe performs well in the early time interval, clearly identifying the east-to-west

advection pattern. However, in the later time interval, it finds no spatial structures
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Days 15-35
A

—

Figure 14: Results of using a coarse grid (9°) in the E3SMv2-SPA study. We find that CaStLe per-
forms very well overall. There are few false positives and it clearly captures the overall advection
dynamics of the system.

apart from autodependencies in each block. This is likely because the east-to-west
advection is weaker in this period and the grid is too coarse to capture the narrower
bands of northward advection that dominates the interval.

We find that CaStLe is very robust to this assumption violation. It captures all
of the most dominant advection patterns, while struggling to find smaller, weaker

ones.

I.4 Block Sizes are Too Large (Assumption S2)

In H, we found that CaStLe’s output was robust to very large and very small block
sizes. Spatial blocks are intended to isolate regions such that only one underlying

spatial causal structure exists in the block. If the blocks are too large, then As-
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Days 175-195

Figure I5: Results of using a coarse grid (18°) in the E3SMv2-SPA study. CaStLe performs well in
the early time interval, clearly identifying the east-to-west advection pattern. However, in the later
time interval, it finds no spatial structures apart from autodependencies in each block. This is likely
because the east-to-west advection is weaker in this period and the grid is too coarse to capture the
narrower bands of northward advection that dominates the interval.
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sumption S2 may be violated.
In Figure 16, we used block sizes equal to 45° x 45°. Here, each block has

15 x 15 grid cells. This is in contrast to the 5 x 5 grid cell, 15° x 15° blocks used

in Section 7.7.2.

Days 5—35

e o §

Figure 16: Results of using block sizes too large in the E3SMv2-SPA study. We see that many true
positives are found, but many false positives as well. CaStLe seems to identify multiple contradic-
tory causal structures within many cells, which may lead to more spurious links discovered. Even
where links appear correct, they are largely uninterpretable in the presence of contradictions.

We find that while true positives remain, several false positives appear. Some
positives may be the result of identifying multiple causal structures correctly within
the space, while others may be confused results found because of the high density
of links. In further testing with intermediate block sizes, we found that CaStLe is
moderately robust to this assumption violation. As block sizes approach a more

appropriate size, false positives diminish and true positives remain.
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J Additional GCM Results

Figure J1 depicts results of implementing CaStle with the Bayesian score opti-
mization causal discovery algorithm, DYNOTEARS. We also presented results of
DYNOTEARS applied to our VAR benchmark in Section 7.8.1. Here, we show
that CaStLe-DYNOTEARS is able to recover comparable results to the CaStLe-
PC-stable results shown in Section 7.7.1.
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Figure J1: Application of CaStLe-DYNOTEARS to HSW-V simulation of the 1991 Mt. Pinatubo
eruption. The stencils estimated by CaStLe (white) capture the underlying high-altitude wind fields
(green) using only satellite-measured AOD, with near perfect accuracy in high aerosol regions (red-
orange). On longer horizons (bottom row), CaStLe is able to recover equatorial wind currents as
far away as South America, half-way around the world from Mt. Pinatubo (white triangle). CaStLe
accurately identifies the prevailing westerly atmospheric winds because it was able to identify the
space-time dependence between neighboring grid cells.
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K Additional VAR Results

In Section 7.8.1, we demonstrated the strong performance of CaStLe on VAR-
generated space-time data with fixed sparsity level d = 4; in particular, CaStLed
variants uniformly improve over the performance of equivalent unstructured causal
discovery algorithms. We repeat this analysis for a variety of sparsity levels in
Figures K1 and K2 for the MCC and F; score similarity metrics, respectively. As
in Figure 7.6, the CaStLed variants continue to significantly outperform across
all sparsity levels, d; furthermore, as noted above, we observe that CaStLe can
correctly estimate the underlying grid even on as few as 7' = 10 time samples when
a sufficiently large grid is observed; non-CaStLe methods struggle on larger grid
sizes, consistent with our analyses in the previous section. A time limit of 48 hours
of wall-clock time was applied for each individual graph estimation: performance

properties of methods that did not terminate during this window are not shown

(e.g., DYNOTEARS withd = 6;T = 10; N = 10).
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Figure K1: Matthews correlation coefficient (MCC) comparison between CaStLed and non-
CaStLed causal discovery approaches on 2D dynamics for each sparsity level, including
Granger causality (orange), PC (green), PC-Stable-Single (cyan), PCMCI (red), DYNOTEARS
(purple), and a statistical model of the data generating process (blue). See Section 7.8.1 for experi-
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L. PC-Stable-Single

For the convenience of the reader, we include pseudo-code for the PC-Stable-
Single algorithm of Runge et al. (2019a), itself an adaptation of the PC-Stable
algorithm of Colombo and Maathuis (2014). We use this as the PIP used for the
CaStLe-based analyses shown in Sections 7.7.1, 7.7.2, and D. As our experiments
in the proceeding section show, PC-Stable-Single exhibits small, but consistent

improvements over alternative PIP choices.

Open Research Section

The data generated and used for our HSW-V, VAR, and PDE experiments in Sec-
tions 7.7.1,7.8.1, and D are available on Zenodo viahttps://doi.org/10.5281/
zenodo. 12701546 with GNU Lesser General Public License v3.0 or later (Nichol,
2024). The data used for the E3SMv2-SPA experiments in Section 7.7.2 can be
found in Brown et al. (2024). The code for generating data, running experiments,
and generating figures can be found here https://github.com/jjakenichol/

CaStLe.
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Algorithm 2 PC-stable-single

Precondition: Time series dataset X = {X L x2 . xN }, selected variable X J, maximum time lag

10:
11:
12:
13:
14:

15:
16:
17:
18:

19:
20:

21:
22:

23:

Tmax (default 7,5, = 1), significance threshold opc, maximum condition dimension p;,.y (de-
fault p,yax = Ny, ), maximum number of combinations g, (default g, = 1), conditional
independence test function /.

: function CI(X,Y,Z)

Test X 1l Y|Z using test statistic measure /
return p-value, test statistic value /

1
2
3:
4: Initialize set of parents @(X,j) ={X' _:ic{l,.. . NLtc{l, .., Tar}}

St P
6
7
8
9

Initialize dictionary of test statistic values I™"(X!__ — X!) = oo VX! _€ P(X/)

: for p =0, <oy Pmax 4O

if | Z(X/)] — 1 < p then

Break for-loop > Algorithm has converged
forall X' _in 2(X/) do
qg=—1
for all lexicographically chosen subsets . C | (X)H\{X] .}, with || = p do
g=q+1

if ¢ >= qqx then
Break from inner for-loop
Run CI test to obtain (p-value, I) < CI(X!_., X},.7)

if |1 < "n(X]_, — X!) then > Store min. I of parent among all tests
il —Xi) =1
if p-value > apc then > Removed only after all X/, have been tested

Mark X/, for removal from P (X7
Break from inner loop

Remove non-significant parents from 2 (X)
Sort parents in Z(X}) by I""(X!_, — X/) from largest to smallest
return 2(X/)
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8 M-CaStLe: Uncovering Local Causal Struc-
tures in Multivariate Space-Time Gridded

Data

8.1 Publication Notes

Citation: Nichol, J. Jake, et al. “Space-Time Causal Discovery in Earth System
Science: A Local Stencil Learning Approach.” Unsubmitted.

Publication date: N/A

Conference: N/A

Formatting: The original text has been preserved as much as possible while still
adhering to the formatting requirements of this dissertation.

Data and Software Availability: The paper is currently being prepared for sub-

mission and is not yet publicly available.

8.2 Abstract

Causal discovery tools propose to solve one of science’s most important and chal-
lenging problems, the identification of underlying structure from observed phe-

nomena. Many systems prohibit the feasible or ethical application of more ro-
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bust methods, such as randomized control trials. In particular, space-time systems,
such as the Earth system or ecological systems, are attractive for causal discovery
because they could suffer costly alterations if they are manipulated haphazardly.
However, space-time systems are challenging to evaluate because their discretized
representation as gridded space-time data is often very high-dimensional—possessing
many more grid cells than temporal observations. The CaStLe meta-algorithm in-
troduced by Nichol et al. (2024) proposed to solve that problem in scenarios sat-
1sfying their assumptions. However, it is limited to univariate analysis, identifying
the space-time structure underlying a single quantity.

In this work, we present Multivariate Causal Space-Time Stencil Learning (M-
CaStLe), a multivariate extension to CaStLe. We adapt the two phases of CaStLe to
first collect the multiple variables in the repeating local neighborhood information
in space-time gridded data, and second evaluate the causal parents of variables in
the local neighborhood structure. M-CaStLe produces a multivariate causal stencil
graph, which extends the CaStLe stencil to represent each variable at each location
of the Moore neighborhood. We’ve added a decomposition method for interpret-
ing the multivariate stencil in terms of just spatial dynamics or just inter-variable
dynamics with the spatial graph and reaction graph, respectively. To evaluate
M-CaStLe, we developed a multivariate space-time vector autoregression model
(VAR) benchmark methodology. The multivariate space-time VARs provide data
generation and ground-truth causal stencils for direct evaluation of M-CaStLe.

Our experiments demonstrate that M-CaStLe achieves high precision across
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varying numbers of variables and grid sizes, indicating reliable identification of
true positive links. However, recall decreases with an increasing number of vari-
ables, suggesting more complex systems have more challenging signals to identify.
Further analysis shows that recall improves with stronger signal strengths, even in
systems with up to 200 variables, indicating good performance in very high vari-
able regimes. Comparisons with the PC algorithm reveal that M-CaStLe-PC con-
sistently outperforms PC in high-dimensional settings, highlighting M-CaStLe’s

robustness in complex multivariate systems.

8.3 Introduction

Causal discovery is a set of causal inference tools for estimating the underlying
structure in observed phenomena. While optimal causal estimation requires ran-
domization, in many settings it is infeasible or unethical to apply (Runge et al.,
2019b; Glymour et al., 2019). Thus, causal discovery for space-time systems is
critical for scientific inquiry of complex emergent phenomena in physical systems
because they often present challenges for randomization. For example, we have
one Earth and randomly intervening in its systems is both prohibitively expensive
and unethical due to unknown downstream effects. Likewise, neuroscience and
ecology are prohibitive to random intervention.

Since the advent of Granger causality (Granger, 1969), the Rubin causal model
(Rubin, 2019), causal graphs (Pearl et al., 2016), and the PC algorithm (Spirtes

et al., 1993) (named for its authors, Peter and Clark), causal inference and causal
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discovery of observed data have developed into a rigorous mathematical frame-
work. Today, causal discovery has become a rich literature with many algorithms
and applications throughout the sciences (Glymour et al., 2019; Runge et al., 2023),
including the health, Earth, and social sciences (Ebert-Uphoff and Deng, 2012;
Cooper et al., 2015; Runge et al., 2019b; Nowack et al., 2020a; Feder et al., 2022;
Zanga et al., 2022; Sadeghi et al., 2023). Finally, causal representation learning
is an exciting nascent field is developing that merges the flexibility and predic-
tive power of machine learning with causal discovery techniques (Scholkopf et al.,
2021).

This work presents a causal discovery approach for space-time systems with
gridded data. Unlike space-time systems with point data, such as city-level data,
gridded datasets generally enable the analysis of continuous effects over space,
since they are regular and complete throughout the grid. However, such systems
come with dimensionality challenges. Frequently, the number of grid cells scales
faster than the number of temporal samples per grid cell (Runge et al., 2019b).
Further challenging their analysis, such systems usually have multiple interacting
variables per grid cell that are of scientific interest.

For example, in the Earth system, several interacting quantities may be mea-
sured over tens of thousands of grid cells, with hundreds of observations per vari-
able in each grid cell. Atmospheric data often contains hundreds of thousands of
grid cells, each with several orders of magnitude fewer observations in time. That

imbalance is one aspect of the curse of dimensionality (Bellman, 1957; Biihimann
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and Geer, 2011), where high dimensionality relative to sample size challenges
conventional statistical methods and renders many forms of inference, including
causal discovery, unreliable without dimensionality reduction.

Dimensionality reduction, such as principal component analysis (PCA) (Greenacre
et al., 2022; Weylandt and Swiler, 2024), marginalizes large regions of grid cells
into several one-dimensional time series. Each time series is then used for indi-
vidual variables in the chosen causal discovery algorithm (Runge et al., 2015c¢).
This procedure is effective for identifying large-scale patterns such as climate tele-
connections (Tibau et al., 2022), but eliminates local grid-level interactions by
construction. While large-scale patterns are important aspects of study in com-
plex systems, the nature of their emergence is also important to understand. Local
interactions determine the location and magnitude of larger patterns and other mid-
scale phenomena, such as weather and seasonal patterns in atmospheric sciences.

Nichol et al. (2024) developed Causal Space-Time Stencil Learning (CaStLe),
which is capable of grid-level causal discovery of high-dimensional space-time
data. CaStLe can efficiently identify local causal relationships of a given quantity
in space-time systems where traditional approaches fail. However, many scientific
questions in complex space-time systems require analysis of multiple quantities
per grid cell, such as temperature and soil moisture in Earth system monitoring
of drought conditions (Sun et al., 2021) or infection dynamics in epidemiological
modeling using infection severity, duration of infection, and population age (Gane-

san and Subramani, 2021; Paul et al., 2021).
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In this work, we propose an extension to the CaStLe meta-algorithm enabling
multivariate space-time causal discovery of grid-level data. We show that Multi-
variate Causal Space-Time Stencil Learning (M-CaStLe) can effectively capture
the causal relationships in multivariate space-time systems. Our results demon-
strate that M-CaStLe is capable of accurately estimating local multivariate space-
time structures from gridded data, outperforming the PC algorithm, especially in
high-dimensional settings. This suggests that M-CaStLe is a robust tool for causal
discovery in complex multivariate systems, providing valuable insights into the

underlying dynamics of such systems.

8.3.1 Background and Motivation

CaStLe is a meta-algorithm for causal discovery in high-dimensional space-time
systems. By leveraging local causal regularities, CaStLe transforms the causal
discovery problem from a high-dimensional space with many variables and lim-
ited observations to a low-dimensional embedding with fewer variables and more
abundant observations. This transformation enhances the efficiency and accuracy
of causal discovery, facilitating the identification of causal relationships in their
natural context. The present work extends of CaStLe, aiming to broaden its appli-
cability to multivariate space-time dynamics, making it a versatile tool for analyz-

ing various space-time systems in the physical sciences.
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8.3.2 Foundations of the CaStLe Framework

In many natural and engineered systems, complex global behaviors emerge from
simple local interactions that follow consistent physical dynamics. Nichol et al.
(2024) called such systems partial differential equation (PDE)-like because they
exhibit consistent dynamics defined by interactions between adjacent points in
space, with smooth transitions between dynamical boundaries and equilibria. These
are characterized by a set of fundamental assumptions that constrain their dynam-

ics:

T1) Temporal Locality: for any 7 # 1, X;;_1 / X;, for any spatial coordinates
(i, )
T2) Temporal Causal Stationarity: the dynamics governing the evolution of X; do

not change over time. Thatis, X;; 1 — X;; < X;;_14¢ — Xj ;1 for any time

offset 7.

S1) Spatial Locality: if (i, j) are not neighbors (in a problem-specific sense) then

Xit, 7 Xj, for any tq,1.

S2) Spatial Causal Stationarity: the dynamics governing the evolution of X; do
not change over space. That is, X;; 1 — Xj; & Xi15,—1 — Xjis, for any

spatial offset s.

Here, /> denotes the absence of a direct causal relationship between two variables.
Nichol et al. (2024, Appendix A) describes these assumptions in detail, including
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ways they may be violated and their Appendix I demonstrates some examples of
their violations and CaStLe’s robustness to them. To apply causal discovery, the
causal assumptions the causal Markov condition and faithfulness (Spirtes et al.,
1993) must be additionally assumed. Because of the locality assumptions, the
commonly required causal sufficiency assumption may be relaxed (Nichol et al.,
2024).

Such systems exhibit both temporal and spatial locality. Temporal locality (T1)
dictates that state transitions depend only on the immediate past, preventing “back-
ward causation” and respecting the arrow of time. Spatial locality (S1) ensures that
interactions occur only between proximate elements, eliminating action at a dis-
tance.

The governing dynamics in these systems demonstrate invariance across both
time and space. Temporal causal stationarity (T2) means the rules of evolution re-
main constant throughout the analysis period—the same causes produce the same
effects regardless of when they occur. Spatial causal stationarity (S2) implies that
these rules apply uniformly across the domain—the physical location of an ele-
ment does not alter how it responds to its neighbors. While many macro-scale
spaces contain multiple sets of equilibrium dynamics, there are typically micro-
scale regions containing stationary spatial causality.

These systems can be represented through structural causal models (SCM) of

the form:

277



Xit = filX p(i)—1:Mig) (8.1)

Where X ;) ;1 represents the states of elements in the neighborhood of i at the
previous time step, and 7);; captures stochastic innovations. Under spatial causal
stationarity, the functional form f; is identical for all i, reducing to a single function
f that applies throughout the domain. In short, this space-time SCM implies grid
cells exhibit Granger-causal dynamics, which imply that each grid cell’s temporal
information content encodes the past-history of itself and its immediate neighbors.

This framework encompasses numerous well-studied systems including those
governed by partial differential equations, cellular automata, and various lattice
models in statistical physics. The approach provides a powerful foundation for
both forward simulation and inverse problems—identifying the underlying causal
structure from observed spatiotemporal data.

CaStLe not only seeks to identify local causal dynamics but also to do so for
high-dimensional systems. In some cases, it may be enough to apply causal dis-
covery independently to small groups of local grid cells; however, in many systems
of study, more grid cells are present than observations within each. To accomplish
discovery in this regime, we need to efficiently use all the dynamical information
in a system.

CaStLe leverages the inherent locality and stationarity to collect time series
representing the space-time replicates in such systems. Every grid cell’s time series

encodes the causal influence of its neighbors, and they can be used as informative
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replicates of the system’s local dynamics. CaStLe processes a set of grid cells,
collecting each one’s data on its local dependence, then learns the causal structure
of the grid cells and their neighborhoods.

CaStLe’s first phase is to form the Locally Encoded Neighborhood Structure
(LENS), an embedding representing the Moore neighborhood—a 3x3 matrix of
a grid cell and its eight immediate neighbors. The LENS contains concatenated
time series from each grid cell’s Moore neighborhood so that the local dynamics
from each neighbor is repeated. The embedding is a 3 x3 matrix, with each entry
representing the North West, North, North East, West, center, East, South West,
South, and South East grid positions of the Moore neighborhood. Each entry of
the embedding contains long concatenated time series collected from throughout
the original grid space. Each time series is of length 7' x (N — 2)2, for the grid’s di-
mension N and T time samples per grid cell. The embedding does not marginalize
any data, so no information loss occurs, as would happen during other dimension-
ality reduction techniques. Figure 8.1 is a conceptual diagram depicting using the
local Moore neighborhood to construct the LENS.

Once the embedding is constructed, CaStLe’s second phase, the Parent-Identification
Phase (PIP) applies an adapted causal discovery algorithm to the embedding. Any
time series causal discovery algorithm may be adapted by requiring it to treat the
embedding’s center grid cell as special: it may be the only child in the result-
ing causal graph; parents are unrestricted. This adaptation has multiple effects: it

creates a graph of the generalized ancestry for each grid cell, eliminates would-be
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Figure 8.1: A conceptual diagram of the LENS that CaStLe constructs for learning underlying
local causal dynamics in gridded data. This encoding transforms the original grid space into a
local neighborhood structure without marginalization, preserving all of the local relationships in
the gridded time series data.

unobserved confounding between the embedding’s outer grid cells and their neigh-
bors beyond the embedding, and increases computational and statistical efficiency,
which is detailed below. The result of the PIP on the embedding is the causal sten-
cil graph, a representation of the local causal dynamics between all grid cells in

the system.

8.3.3 Theoretical Properties and Empirical Validation of CaStLe

Nichol et al. (2024) showed that CaStLe exhibits significant performance and effi-
ciency improvements for grid-level causal discovery. It successfully reconstructed
known volcanic aerosol dynamics, driven by stratospheric winds, in the weeks after

the Mount Pinatubo eruption of 1991. We demonstrated its general performance
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Figure 8.2: A demonstration of the full CaStLe process to produce a causal stencil graph on an
example input 4x4 gridded space-time system. In the LENS phase, neighborhood information
is collected from each of the interior grid cells, which are then concatenated to form the LENS.
Finally, the PIP phase applies an adapted time series causal discovery algorithm to learn the space-
time parents of the center node. The learned stencil depicts the underlying space-time structure of
each grid cell in the original data.
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on advective-diffusive dynamics with a Burgers’ equation simulation study. We
compared it to existing causal discovery algorithms with ground-truth defined by
space-time vector autoregression model (VAR) models.

Because CaStLe constructs the LENS, a lower spatial-dimension embedding,
and the PIP limits potential causal children to only the center node, the number
of variables and possible links are both fixed to nine. That property enables much
more efficient causal discovery. Computational complexity is a measurement of
the asymptotic bounding on how many computational resources are required for
increasingly large input sizes. The PC algorithm has a computational complexity
bounded by &(T p>2P), when applied to an p grid cells, with T time samples per
cell. We showed that CaStLe is bounded by &'(T'p).

CaStLe also exhibits improved sample complexity, which measures the asymp-

totic bounds on how many samples are required to ensure correct graph estima-
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tion. The probability of the PC algorithm incorrectly estimating the true graph is
bounded by ~ &'(p”). In contrast, we find that CaStLe’s error probability scales as
~ O (ZTTT) From this, as the grid size grows larger, we find that PC is less likely
to estimate the correct causal graph, while CaStLe is more likely to estimate the
correct graph.

Nichol et al. (2024) also demonstrated several empirical results of CaStLe with
benchmarks and realistic climate model output studies. It was shown that CaS-
tLe can robustly capture the transport patterns of volcanic aerosols emitted by the
1991 Mount Pinatubo eruption. It outperformed the PC algorithm in terms of ac-
curacy and execution time, largely because PC naively sought causal relationships
between all grid cells without the benefits of the LENS. CaStLe was also robust to
moderate assumption violations. The VAR benchmark study compared CaStLe to
popular time series causal discovery methods, including the PC algorithm (Spirtes
and Glymour, 1991), PCMCI (Runge et al., 2019a), and DYNOTEARS (Pamfil
et al., 2020). They found that CaStLe variants performed well, with better re-
sults on larger grids, while non-CaStLe algorithms struggled and performed more
poorly on larger grids. The Burgers’ equation study evaluated CaStLe’s perfor-
mance in different advection speed and diffusivity regimes via advection-diffusion
partial differential equation (PDE) model output. CaStLe performed well except

in settings where diffusion dominated, making advection signals unrecoverable.
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8.3.4 Research Gap and Motivation for Multivariate Extension

Nichol et al. (2024) showed that CaStLe can reconstruct the local space-time causal
structure between grid cells of one quantity, e.g., atmospheric aerosols. While
helpful in understanding the underlying dynamics of a species transporting or prop-
agating in a complex environment, it leaves learning impacts of that transport to
later inference and analysis. Such a manual or post-hoc multivariate inference be-
comes complex as the number of variables increases.

For example, in Nichol et al. (2024), CaStLe identified the space-time evo-
lution of volcanic aerosols in the stratosphere from the Mt. Pinatubo eruption.
Given the rich literature of that eruption, we know that the volcano’s SO, out-
put increased stratospheric temperatures and decreased tropospheric temperatures
for two-to-five years (Dutton and Christy, 1992; Labitzke and McCormick, 1992;
Parker et al., 1996a; Soden et al., 2002). The eruption’s SO, did not directly im-
pact temperature, the plume of gas underwent chemical and physical evolutions,
forming H,SO, and advecting and diffusing around the globe. However, univariate
CaStLe needs to analyze each chemical species separately and cannot determine
interactions between species.

To estimate the space-time dynamics of each variable separately and then in-
fer variable interactions afterward potentially introduces errors and does not have
the benefit of joint estimation, which is available in time series causal discovery,

such as PCMCI (Runge et al., 2019a). Furthermore, learning space-time causal
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structures from each variable independently may miss cross-variable confounding,
leading to space-time estimation errors and incorrect inference of the underlying
physical process.

Joint estimation of space-time dynamics and variable interactions can enable
more complex analyses. For example, SO, follows a chemical and physical causal
pathway to mediate temperature. SO, reacts with water molecules to become
H,SO,. Finally, H,SO, interacts with incoming solar radiation, which impacts
temperatures. Understanding the local space-time dynamics of these aerosol species
as they transport around the globe may help explain local temperature impacts. Do-
mains outside of atmospheric chemistry and Earth systems science where estimat-
ing grid-level multivariate interactions in space-time systems (MacEachren et al.,
1999; Haas, 2002) would be valuable are computational fluid dynamics (Wimer
et al., 2023), spatiotemporal pharmacokinetics (Guarin et al., 2021; Klingelhuber
et al., 2024), and computational chemistry (Higham, 2008; Owen et al., 2024).

Multivariate interactions are challenging to estimate at the grid-level because
the high-dimensionality of datasets observed from space-time systems becomes
more challenging with more variables because each variable entails p more grid
cells to estimate for the same 7 observations per grid cell per variable. CaStlLe
solves the high-dimensional challenge in many univariate space-time systems. Ex-
tending its capabilities to discover variable interactions simultaneously with space-
time dynamics for each variable enables robust discovery of how they interact in

space and time. Doing so while maintaining the interpretability of the graphs at
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Figure 8.3: A schematic diagram of the input, computational phases, and output of M-CaStLe.
Similar to CaStLe’s procedure (c.f. Figure 8.2), the first phase collects local neighborhood infor-
mation into the LENS, which now collects information for each variable’s time series in each grid
cell. The second phase applies the PIP to every variable at every position in the LENS to determine
which variables cause the center variables from each location in the LENS. Finally, the resulting
multivariate stencil graph can be decomposed into the spatial graph and reaction graph for im-
proved interpretability and potential analysis.

scale is also challenging. Multivariate stencil graphs need to contain many more

nodes for each variable and still describe local structures.

8.3.5 Contributions

M-CaStLe solves these challenges by adapting both phases of the original CaStLe
meta-algorithm. The first phase, which restructures the given gridded data into the
LENS, is adapted to restructure multivariate data to preserve space-time and inter-
variable relationships. The univariate PIP sought causal relationships terminating
in only one node (the center). The multivariate PIP is adapted to find parents and
children of multiple sets of nodes for each variable.

These advances enable the simultaneous estimation of space-time dynamics and
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inter-variable interactions, providing a more comprehensive understanding of com-
plex systems. This capability is particularly valuable in fields such as atmospheric
science, where understanding the interplay between different chemical species and
their impact on climate is crucial. We validated M-CaStLe through extensive
experiments on synthetic benchmarks. Our results demonstrate that M-CaStLe
outperforms existing methods in terms of accuracy and computational efficiency,
particularly in high-dimensional settings. The empirical validation shows that M-
CaStLe can robustly capture the causal structure of multivariate space-time sys-

tems, making it a powerful tool for scientific discovery and analysis.

8.3.6 Paper Organization

The remainder of this paper is organized as follows: in Section 8.4 we introduce
M-CaStLe, our multivariate extension to CaStLe; Section 8.5 discusses our bench-
mark’s experimental setup with VARs; Section 8.6 presents a rigorous analysis
of the multivariate results of M-CaStLe benchmarked on multivariate models of
space-time dynamics; and finally we discuss the presented work and future direc-

tions in Section 8.7.

8.4 Methods

Multivariate CaStLe (M-CaStlLe) extends CaStLe’s capabilities to discover local
space-time causal structures in multivariate data. M-CaStLe produces the mul-

tivariate causal space-time stencil graph, which describes how a set of variables

286



interact within their Moore neighborhood over time. The multivariate stencil is
often challenging to interpret immediately. To improve interpretability, we present
the multivariate stencil the reaction graph and the spatial graph, which decom-
pose the multivariate stencil output by M-CaStlLe into a graph of inter-variable
relationships (without a spatial aspect) and a graph of spatial relationships (with-
out variable relationships).

M-CaStLe adapts both phases of the CaStLe meta-algorithm to enable construc-
tion of a LENS containing multiple variables and successful causal discovery of
space-time and inter-variable dependencies within the LENS. Input data consists
of V variables measured on an N X N grid over T time steps, yielding a tensor
X € RVXNXVXT Figure 8.3 depicts each step of M-CaStLe. In this example, we
illustrate a simple 4 x4 original grid space, G, which has V = 3 locally interacting

variables, a, b, and ¢, with T = 500 time samples.

8.4.1 Phase 1: The Locally Encoded Neighborhood Structure (LENS)

Phase 1 collects neighborhoods in the same fashion as the univariate CaStLe, but
it now collects multiple time series per spatial location in the Moore neighborhood
for each variable. The univariate LENS is a 33 matrix where each element con-
tains one time series of length T x (N — 2)2. Since M-CaStLe has V variables, the
multivariate LENS is a 3 x3 matrix where each element contains V time series of
length T x (N —2)2. In short, it is a tensor in R3*3*V*L where L =T x (N —2)?is

the length of each concatenated time series. In Figure 8.3, Phase 1 depicts the pro-
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cess the LENS construction follows to collect time series from each Moore neigh-
borhood as the window slides across G. It collects all three variables from each
grid cell within the neighborhood window and concatenates them to the LENS,
according to their position relative to the center of the neighborhood window and
the respective variable in each position. Like the univariate LENS, there is no
marginalization or loss of data, and its structure allows it to be fully invertible. We
do not have a reason to invert the procedure in this analysis, but it illustrates that

no information loss occurs.

8.4.2 Phase 2: The Parent-Identification Phase (PIP)

In univariate CaStLe, the PIP adapts a given time series causal discovery algo-
rithm, such as DYNOTEARS (Pamfil et al., 2020), to seek the parents of only the
center node in the LENS. To adapt this approach to M-CaStLe, we do the same
for each variable in the center node. Rather than allowing one child in the dis-
covery process, we now allow V children. This has the effect of every variable in
every position in the LENS having a potential causal effect on every variable in the
center position. Resulting is a multivariate stencil, such as the one depicted in the
third panel of Figure 8.3. This example illustrates a stencil of three variables with

dependencies between each over space and time.
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8.4.3 Interpretability: Decomposing the Multivariate Stencil

While the stencil in Figure 8.3 may be interpretable after careful viewing, multi-
variate stencils of more variables or with more dependencies can be challenging to
parse visually. For that reason, we have developed a decomposition scheme to an-
alyze the variable interactions and the spatial structure of all variables separately.
The far right of Figure 8.3 illustrates the spatial graph and reaction graph corre-
sponding to the stencil to their left.

Computing the stencil decomposition is straightforward and similar for both
the spatial and reaction graphs. To compute the spatial graph, the stencil links
are aggregated along the variable dimension, and the location from which they
originate is preserved. For example, in Figure 8.3, two links are coming from
the NE position to the center, a negative dependence (light blue) via a — a and a
positive dependence (orange) via a — ¢, and both of those are aggregated to find
one weakly negative link NE — C in the spatial graph. Note that there is a beeprer —
acenter 11NK in the stencil and that it is represented as an autodependence link in the
spatial graph, illustrated by the center node’s coloring. The node and link colors
directly associate with continuous link dependence strength that is output by M-
CaStLe, but we omit that detail for the example in Figure 8.3.

The reaction graph is computed by aggregating stencil links along the spatial
dimension while preserving the variable dimension. For example, in Figure 8.3,

there are two links ¢ — ¢ in both the N and E locations, strongly negative (blue)
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from the N and weakly positive (red) from the E. Those are aggregated to form
the light-blue ¢ node in the reaction graph. Resulting is a graph of variables that
represents the aggregate strengths of dependencies from any direction.

To aggregate the stencil link coefficients, we use Fisher’s z-transformation. It
stabilizes the variance of the correlation coefficients, making them more suitable
for averaging. The process involves converting each coefficient into a z-score,
computing the arithmetic mean of the z-scores, and then converting the average z-
score back to a correlation coefficient using the inverse Fisher’s z-transformation.
This method ensures that the combined value accurately reflects the underlying

dependencies between variables.

8.5 Benchmarking M-CaStLe with VARs

We developed random and stable multivariate space-time systems with two spa-
tial dimensions using mathematically defined ground-truth causal stencil graphs to

evaluate the performance of M-CaStLe with a variety of system parameters.

8.5.1 Background: Univariate Space-Time VARs

Our methodology for generating data builds upon the work used by Nichol et al.
(2024), which is fully detailed by Nichol et al. (2023). They developed a procedure
for generating benchmark datasets of stable 2D space-time systems through the
systematic construction of coefficient matrices parameterizing VARs of order 1

(VAR(1)s). Causal graphs have a direct mapping from VARs (Peters et al., 2017;
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Runge et al., 2019a), which enables precise benchmark comparisons between VAR
modeled data and causal discovery estimated graphs.
A system on an N x M grid with T time samples, X € RV*M*T with elements Xi jts

can be modeled by a VAR(1) with
X, =AX; 1+mn,, (8.2)

where A is the coefficient matrix encoding linear dependencies between all vari-
ables in the system and 1) represents independent innovations on X for each vari-
able at each time step. In this case, innovations are modeled with a unit normal
distribution.

The space-time VAR methodology initializes a 3 x3 matrix defining local grid-
level dynamics between neighbors, called the neighborhood dependence matrix
(NDM). Random NDMs of predetermined sparsity, d, are generated to describe
how every grid cell in the space is dependent on the grid cells in its Moore neigh-
borhood. To simulate an entire grid, the NDM can be structurally mapped to an A
matrix for the entire grid. For an N x M grid space, A € RVM*NM Finally, most 2D
VARs are not numerically stable. To ensure stability, p(A) < 1.0, where p(A) is
the spectral radius of A (Strang, 2016, p.307). Through the NDM definition, VARs

can simulate locality in physical systems.

291



8.5.2 Multivariate Space-Time VARs

To adapt the space-time VAR procedure for multivariate systems, we grow the
NDM in a new variable dimension, which gets mapped to a larger, flat, A matrix.
The multivariate NDM describes interactions between multiple variables at the
local grid-level, enabling VAR modeling of multivariate space-time dynamics.

For a system of V variables, the multivariate dynamics are represented by set of
V xV 3x3 matrices. Each 3x3 matrix corresponds to the space-time dependence
structure of a particular pair of parent and child variables. Like the univariate
NDM, each entry in each 3x3 matrix is a coefficient value representing the in-
fluence of the entry’s spatial location in the Moore neighborhood on the center
location.

The NDM is mapped to an A matrix, which represents the interactions of every
grid cell-variable on every other grid cell-variable. For a grid of size N xM spa-
tial dimensions and V variables, the matrix A € RVMV>NMV " \yith the computed
A matrix, we again enforce stability by ensuring p(A) < 1.0, where p(A) is the
spectral radius of A.

With a stable A matrix, experimental data can be generated for any number of
grid cells, time samples, local dependencies, and variables. Although A is larger,
the VARs still have the form of Equation 8.2. Since most A matrices will be un-
stable, our implementation uses an accept-reject scheme similar to the univariate

approach of Nichol et al. (2024) to generate stable A matrices:
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1. Generate a random set of 3 x 3 local dynamics matrices, {C;;}, for each pair
of child and parent variables, resulting in V x V matrices. Each C;; has d
non-zero elements, including the central element (autocorrelation), where 1 <
d < 9. Each of the d non-zero elements, {ai}?zl, have a random value 1.0 >

coefficient; > s,.

2. Expand {C;;} to form the matrix A for a grid of size N x M, resulting in

Ac RNMVXNMV.

3. If |Amax(A)| > 1, scale A by [Amax(A)]-
4. If ¢ < s, Ve € A, reject, else accept.

where |Amax(A)| is the maximum absolute eigenvalue of A. This is used to sample
from the set of statistically stationary & spatially homogeneous VARs on a 2D
grid with minimum signal strengths s, > 0.1 and fixed sparsity levels in the range

de{l,2,...,9}.

8.6 Results

We present empirical results of M-CaStLe’s performance on our VAR benchmarks
varying: the number of variables, grid sizes, the number of graph dependencies
(graph edges), and the magnitude of coefficients. These demonstrate that M-
CaStLe 1s suitable for estimation of local multivariate space-time structures from
gridded data. Additionally, we compare M-CaStLe’s performance to the popular
PC algorithm for causal discovery.
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Figure 8.4: Showing precision and recall alongside predicted positive rate, a measure of how often
a positive is predicted among all other predictions. As variables increase, the predicted positive rate
decreases, which diminishes recall.

8.6.1 Metrics

Since VARs map directly to ground-truth causal graphs, we measured M-CaStLe’s
performance using binary classification measures. Let G = (V,E) be the ground-
truth graph where V is the set of nodes and £ C V x V is the set of edges. For any
node pair (i, j) € V x V, a positive instance is defined as (i, j) € E and a negative
instance as (i,j) ¢ E. This enables our usage of precision, recall, and F; score,

defined as follows:

TP
Precision = —— (8.3)
TP+ FP
TP
Recall = ———— (8.4)
TP +FN

B 2 - Precision - Recall

F, (8.5)

~ Precision + Recall
where TP, FP, TN, and FN denote true positives, false positives, true negatives, and
false negatives, respectively. Put simply, precision is the proportion of correctly
detected positives to all detected positives, with a range of [0, 1], where 1 is a

perfect precision; recall is the proportion of correctly detected positives to how
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many positives should have been detected, with a range of [0, 1], where 1 is a
perfect recall; and the F; score is the harmonic mean of precision and recall, with

arange of [0, 1], where 1 indicates perfect graph estimation.

8.6.2 Data Generation

We used the following data generation parameter ranges with 30 replicates each:
* Time samples 7" = 1000
e NXN grid sizes where N € [4,5,6,7,8,9,10]
» Number of variables V € [1,2,3,4,5,6]
* Density d € (0,...0.5]
* Coefficients ¢ € [0.1,1.0]

where density is relative to the stencil graph density: d = ( with L links,

L
3x3xV?2)
such that d < 1. Since a V = 1 system can have up to L = 9, the most allow-
able here are L =4. A 'V = 6 system may have L € [1,...162]. However, not all
densities produced 30 stable systems after 48 hours of the accept-reject scheme
described in Section 8.5.2. It is clear that there are zero systems in the limit of in-
creasing density with a given minimum coefficient size. Appendix A details which
of the above combinations successfully produced 30 systems for analysis. In total,

56,283 experiments were generated, with more experiments for systems of more

variables.
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8.6.3 Multivariate Performance

Figure 8.4 illustrates precision, recall, and positive prediction rate (PPR) in our
experiments as the number of variables increases, with individual lines for each
of the grid sizes. All available densities are marginalized in each line, with 95%
confidence intervals. We found that precision is very high in all cases, regardless
of the number of variables or grid size, with an average value of ~ 0.94. This
indicates that when M-CaStLe identifies a positive link, it is likely to be a true
positive. We found that recall is very high for V = 1 and decreases as the number
of variables increase, with the mean value =~ 0.62. This indicates that M-CaStLe
may be relatively conservative, identifying a little more than half of the true links
in the systems with more variables. However, it may also indicate limitations of
the synthetic data model.

To shed some light on the recall results, we considered PPR. PPR is the fraction
of all possible connections that were predicted as positive, regardless of correct-
ness, given by

TP+ FP

PPR = 8.6
TP+ FP+TN+FN’ (8.6

with a range of [0, 1], where 1 indicates all possible edges were estimated (a fully
dense graph). No particular PPR value necessarily indicates good performance,
because it is a measure of the estimated graph’s density.

In Figure 8.4, we see that recall and PPR are both decreasing as graph size in-

creases (larger grid size and more variables). This possibly indicates that as the
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graphs are getting larger, signals are more challenging to detect. We investigated
the data generation model’s apparent limitations in Appendix A. Figure A7 demon-
strates that fewer stable systems could be generated for larger graphs, relative to
their potential. A8 demonstrates that as the number of links increases among all
systems, the maximum and minimum coefficients in each system quickly decrease.
This indicates that the systems may be more challenging to correctly estimate, sug-
gesting that M-CaStLe’s recall may be more reflective of the data generating model

than being a conservative estimator.

8.6.4 Comparison to the PC Algorithm

Nichol et al. (2024) compared CaStLe to several prior causal discovery methods
and found CaStLe outperformed the others, particularly has the data dimensional-
ity increased. In the multivariate regime, the data’s dimensionality is multiplied by
the number of variables. Multivariate systems should be far more challenging for
causal discovery without dimensionality reduction. Here, we compare M-CaStLe
to the PC algorithm, which is still in popular (Glymour et al., 2019) use and is the
predecessor to most constraint-based causal discovery algorithms.

Figure 8.5 shows the F; score of M-CaStLe-PC and PC with increasing links,
with the number of variables held constant to V = 4. The remaining V' variables
are given in Appendix B.1. We see that M-CaStLe-PC’s F; score is consistently
much higher than PC’s. PC struggles with the very high dimensionality of the

system since it is naive to the spatial and variable structure. Given that F; score is
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Figure 8.5: A comparison between M-CaStLe-PC and PC considering the F; score for V =4 as
the number of links increases on a 4x4 grid. M-CaStLe-PC outperforms PC in every case because
PC struggles with the very high dimensionality of the systems since it is naive to the spatial and
variable structures.

the harmonic mean of precision and recall, we can see that M-CaStLe’s aggregate
performance is between the very high precision and relatively low recall described

above.

8.6.5 Exploring Recall

To better evaluate the reason for M-CaStLe’s relatively low recall, we tested it on a
separate set of benchmark systems. In these, we constructed simple systems with
many more variables and a range of coefficient magnitudes. The systems model
a chain of dependence between each variable where there is one link per variable.
The link is assigned a random parent location in the Moore neighborhood, and
points to the center of the next variable. With this, we model different spatial

relationships between variables but only one between variables. We explored V &
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{10,50,100,200} and a set of 20 coefficients {ci}ilzo logarithmically spaced from
0.01 to 2.0, where ¢; = 0.01 x 102/19, Every link had the same coefficient for each
realization. Each realization had 7" = 1000 time samples and we restricted the grid
size to 4 x4, which is the most challenging for M-CaStLe because there are fewer

spatial replicates to leverage.

1.0 -=
0.8 _
0.6
pr— - A
©
o - A
< 0.4 :
- Number of Variables
A 10
0.2 A 50
o 4 100
00 = 4 200
1072 101 109

Coefficient Magnitude

Figure 8.6: In simple chains of multivariate stencils, even with an extremely large number of
variables, recall can be captured perfectly if the signal strength is large enough.

Figure 8.6 illustrates that recall increases proportionately with coefficient mag-
nitude for all numbers of variables. Recall is O when coefficients are too small
and 1 when they are large enough. There is an inflection interval in the coefficient
magnitudes in which recall increases sharply. The three-parameter sigmoid func-

tions fit to each set set of Vs shows that recall is ordered by V. That means that,
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while high recall is achievable for up to 200 variables, systems with more variables
are marginally more challenging to estimate, which conforms to our expectations.
These results show that high recall is possible in high variable regimes if signals

are strong enough.

8.7 Discussion

We have proposed M-CaStLe, a multivariate extension to space-time grid-level
causal discovery with CaStLe (Nichol et al., 2024). M-CaStLe adapts both the
Locally Encoded Neighborhood Structure construction and Parent-Identification
Phase to learn inter-variable relationships in gridded space-time data. To repre-
sent these complex relationships, M-CaStLe produces a multivariate causal stencil
graph that depicts which variable at each location in a Moore neighborhood causes
each variable. To aid interpretation of the multivariate stencil, we introduced a de-
composition method to extract spatial relationships and inter-variable relationships
separately with the spatial graph and reaction graph.

Like CaStLe, M-CaStLe overcomes the limitations of high-dimensional grid-
ded space-time systems, where there are more grid cells to estimate that time se-
ries samples in each. The inclusion of multiple variables exacerbates the high-
dimensional challenge, but M-CaStLe includes variable structures in the spatial
replicates it leverages to form the LENS. The LENS collects repeating multivari-
ate spatial structures to form a 3x3 spatial data representation of the underlying

dynamics. With that, the PIP recovers the multivariate stencil describing the un-
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derlying causal relationships that define the system’s grid-level behavior.

We developed a multivariate gridded space-time benchmark framework, build-
ing upon the work by Nichol et al. (2023). The benchmark defines mathematical
structures (VAR models) representing the space-time relationships between grid
cells with multiple variables per grid cell. The structures directly translate to causal
graphs for ground-truth evaluation.

M-CaStLe performed well in the benchmark experiments. Its precision and
recall were near 1 in systems with multiple variables when signal strengths were
large enough. We applied the time series adapted PC causal discovery algorithm
to the same benchmarks. We found that M-CaStLe had much better performance
on multivariate systems than the PC causal discovery algorithm.

Recall suffered in highly complex systems cases because more complex sys-
tems exhibited smaller signal strengths per interaction. This supports our hypothe-
sis that larger and more complex systems with many interacting components have
fewer stable parameterizations. That is additionally supported by recent work in-
vestigating the piranha problem (Tosh et al., 2025), which describes the inevitable
consequence that large complex systems will converge to weaker signals to main-
tain stability.

While we have demonstrated that M-CaStLe can identify multivariate space-
time dynamics, more work is needed to understand its application in real-world
settings. Nichol et al. (2023) demonstrated CaStLe on the advective, transient

dynamics of the Mount Pinatubo eruption’s volcanic plume. A natural next step
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would characterize the atmospheric chemistry of the SO, — H,SO, pathways and
how it mediates solar radiation and surface temperatures. One challenge described
by Nichol et al. (2023) was having sufficient spatial and temporal data resolutions
to capture the effects of interest on the grid-level. Earth system models can out-
put data at sufficiently high resolutions, as they must compute in them to model
realistic physics (Golaz et al., 2022), but input/output speeds and storage limita-
tions may sometimes be bottlenecks. Nonetheless, as technologies improve, more
expressive datasets will be available and more meaningful analysis methods will
be critical for their evaluation. Further, satellite imagery now produces very high
spatial resolutions, but, depending on the quantities and regions of interest, may
have lower temporal sampling rates. However, as more satellites are deployed
and technologies continue to improve, they will provide a greater wealth of data.
Other application domains, such as computational chemistry, fluid dynamics, and
spatiotemporal pharmacokinetics can modeled or observed at sufficiently high res-
olutions given their smaller scale in comparison to the Earth system.

While some dataset limitations still exist, Nichol et al. (2023) proposed other
future research directions that may yield value in spite of those limitations. In
particular, where spatial resolution is insufficiently matched temporal resolution,
extending CaStLe and M-CaStLe to collect and evaluate larger neighborhoods,
such as a radius-2 Moore neighborhood, could enable finding causal relationships
that skip over immediately adjacent grid cells.

In this work, we have introduced M-CaStLe, a multivariate extension to the
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grid-level space-time causal discovery meta-algorithm, CaStLe. M-CaStLe ad-
dresses the significant challenge of estimating causal relationships in high-dimensional
space-time systems with multiple interacting variables, which traditional approaches
struggle to handle effectively. By enabling the simultaneous estimation of space-
time dynamics and inter-variable interactions, M-CaStLe can enable advances in
our understanding of complex systems, particularly in fields such as atmospheric
science, computational fluid dynamics, computational chemistry, spatiotemporal
pharmacokinetics, and epidemiological modeling. Our benchmark experiments
demonstrate that M-CaStLe outperforms existing methods in accuracy, making it
a robust and valuable tool for scientific discovery and analysis. Univariate CaStlLe
made a significant step in the analysis of high-dimensional grid-level dynamics and
M-CaStLe makes multivariate space-time analysis possible. As a powerful tool for
uncovering intricate causal relationships, M-CaStlLe paves the way for more in-
formed decision-making and deeper insights into the underlying mechanisms of

complex phenomena.
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Appendices
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A Completed Data Generation Parameters

As noted in Section 8.6, not all parameter combinations generated stable systems.
Here, we present the parameter ranges that did successfully generate 30 replicates
to produce out results. We additionally evaluate the range of coefficient sizes gen-
erated, demonstrating the difficulty of creating complex systems with strong sig-

nals and many interdependencies.

Parameter Ranges
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Figure A7: Parameter ranges used in our experimental design, showing the link count distribu-
tion for each grid size and variable count combination. Each horizontal line represents the span of
network links tested, with each parameter combination having at least 30 replicate experiments (n
values shown). Our experiments covered grid sizes from 4 x4 to 10x 10 and 1-6 variables per grid.
All experiments used 1000 time samples and coefficient values between 0.1 and 1.0. The network
density, d, defined as the ratio of actual links, L, to maximum possible links d = (3X3L—sz), where
d € (0,...0.5]. Not all density values produced 30 stable systems within our computational con-
straints, particularly at higher densities. This visualization shows which parameter combinations

successfully generated sufficient replicates for statistical analysis.
Parameter ranges used in our experimental design, showing the link count dis-
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tribution for each grid size and variable count combination. Each horizontal line
represents the span of network links tested, with each parameter combination hav-
ing at least 30 replicate experiments (n values shown). Our experiments covered
grid sizes from 4x4 to 10x10 and 1-6 variables per grid. All experiments used
1000 time samples and coefficient values between 0.1 and 1.0. The network den-
sity, defined as the ratio of actual links (L) to maximum possible links in a 3x3
stencil graph (d = L/(3x3xV?)), ranged from near zero to 0.5. Not all theoretical
density values produced 30 stable systems within our computational constraints,
particularly at higher densities. This visualization shows which parameter combi-

nations successfully generated sufficient replicates for statistical analysis.

Max and Min Link Coefficients vs Number of Links
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I Max Link Coefficient
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Figure A8: The relationship between link coefficients and the number of links present. As the
number of links increases, maximum (blue) and minimum (green) link coefficients show a clear
decreasing trend, with their distribution becoming narrower and centered around lower values. This
reveals that networks with more links have weaker signals, suggesting that highly interconnected
systems cannot be stable with large dependencies.
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B Additional VAR Results

In this appendix, we present additional results related to the performance of our
proposed method, M-CaStLe, with VAR benchmarks. We delve into various met-

rics that evaluate the effectiveness of M-CaStLe.

B.1 PC Comparison Results

We examined the impact of the number of variables on key performance indicators
such as F; score, precision, and recall. We provide a comparison between M-
CaStLe-PC and the time series PC algorithm. This analysis, illustrated in Figure
B9, emphasizes how M-CaStLe-PC consistently outperforms PC across various
scenarios, particularly as the number of links increases in a 4 x 4 grid. The results
underscore the challenges faced by PC in high-dimensional environments, where

its naive approach to spatial and variable structures limits its effectiveness.
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Figure B9: Comparisons between M-CaStLe-PC and PC considering the F; score, precision, and
recall for all V as the number of links increases Ot a 4 x4 grid. M-CaStLe-PC outperforms PC in
every case because PC struggles with the very high dimensionality of the systems since it is naive
to the spatial and variable structures.



9 Conclusion

This dissertation’s research rests upon the shoulders of 100 years of data-driven
knowledge discovery. It does so by advancing our understanding of what contem-
porary methods are capable of for complex systems and filling a critical research
gap in the discovery of underlying local dynamics. The Causal Space-Time Stencil
Learning (CaStLe) meta-algorithm developed here enables scalable causal discov-
ery of grid-level dynamics in multiple variables for high-dimensional data—an
important and elusive advancement in causal discovery research, particularly for
the Earth sciences. These contributions equip scientists to approach more nuanced
problems to explain the complex systems that rule our environment.

This chapter first summarizes Parts I and II of the work detailed in this disser-
tation and then explores exciting future avenues of research. Part I explored the
foundational work I completed in exploring the capabilities of machine learning
feature importance and state-of-the-art causal discovery for structure learning in
the Earth sciences. Part II described my contributions to grid-level causal discov-

ery with CaStLe and M-CaStLe.
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9.1 Part I: Synthesis of Foundations Work

9.1.1 Machine Learning Feature Importance for Climate Models

Chapter 3 sought to learn if machine learning (ML) feature importance can be used
to identify differences between climate model ensemble members’ output data and
observed data from satellite reanalysis products. In particular, I wanted to under-
stand if I could predict and explain the Arctic’s minimum yearly sea ice extent.
Sea ice extent measures the square area of sea covered by ice, an important factor
in Arctic life and trade vessel navigation. I trained ML models on 10 Arctic fea-
tures that predict yearly sea ice extent minimums. Comparing ML model outputs
between Arctic datasets gave us an understanding of their differences.

My methodology used separate random forest regression (RFR) (Breiman, 2001)
models to learn from an observational dataset and five Energy Exascale Earth Sys-
tem Model (E3SM) (E3SM Project, 2018) simulation ensemble members. Random
forests are ML models formed from aggregated decision trees. As RFR models
train, they simultaneously build Gini importance values as part of the tree struc-
tures. It determines which features provide the most predictive power and encodes
them in its Gini importance values. Thus, Gini importance describes how impor-
tant each training feature is for the model’s predictive power.

With the six trained models, I compared the calculated feature importance val-
ues to understand differences in the datasets. The baseline was data collected from

satellite reanalysis products, which are observational datasets that use sophisticated

310



models to interpolate missing data where clouds obstructed satellites. With that,
I could compare its feature importance values with those of RFR models trained
on the climate model simulation runs. I found important similarities between the
datasets, suggesting that the models captured some fundamental dynamics in the
Arctic climate. The E3SM model runs were the most similar to each other and had
some noticeable differences with the observational dataset. While both datasets
identified the same six important features, the E3SM datasets consistently over-
weighted these features, with both ranking and magnitude discrepancies.

This work contributes to the broader climate analysis toolset by demonstrating
how explainable machine learning can be used to learn about complex datasets.
The work shows how physics-based models and ML can be used in tandem to
learn more about critical systems in the Earth’s climate. ML analyses like this
can enhance climate model evaluation to improve existing model development and
tuning practices. While more complex ML models proliferate, this work illustrates
one important reason to maintain interpretability and explainability. Rather than
simply demonstrating that discrepancies exist, analyses like this can help pinpoint
potential sources of the discrepancies and lead climate model developers to the
right place for refinement.

However, ML feature importance metrics are limited (Mandler and Weigand,
2024). The models themselves are subject to critical failures, such as various biases
(Mehrabi et al., 2021), Simpson’s paradox (Selvitella, 2017), and the Clever Hans

effect (Lapuschkin et al., 2019), which can harm prediction performance or even
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make them appear to have high predictive skill, whereas it performs poorly outside
the given training and testing datasets (Lee and Chen, 2025). Feature importance
itself can be misleading and failure-prone due to issues such as multicollinear-
ity between features (Cammarota and Pinto, 2021). Even when everything works
as intended, it is important to know that ML feature importance is not a causal
description of the data’s underlying generating process. However, it is rather a de-
scription of the trained model itself. (Parr and Wilson, 2021; Parr et al., 2024)

This research has been significantly extended and advanced with follow-on
work by Brown et al. (2025), where several coauthors from our original study de-
veloped a novel pathway detection methodology. They went beyond a comparative
analysis to create networks of connected features based on random forest feature
importance to relate climate quantities. Their work builds on our initial claim that
ML feature importance can be used to obtain insights into systems’ underlying
structure. The progression from feature importance comparisons to network con-
struction demonstrates the continued impact of our initial insights.

The work in this chapter has become a part of a broader literature on machine
learning for the Earth sciences (Labe and Barnes, 2022; Konya and Nematzadeh,
2024; Lao et al., 2024). In the subsequent chapters, I investigated causal inference

frameworks to understand underlying dynamics better.
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9.1.2 Causal Discovery for Climate Model Evaluation

Chapters 4 and 5 are complementary works where I explored applying a state-
of-the-art causal discovery algorithm for the Arctic sea ice system. Chapter 4
discusses the research framework and methodology, and Chapter 5 discusses the
implementation and results. This work extends the RFR feature importance ap-
proach in Chapter 3 to a causal discovery framework.

The PCMCI (Runge et al., 2019a) time series causal discovery algorithm was
applied to Arctic climate features that may explain sea ice extent. PCMCI produces
causal directed acyclic graphs (DAGs) that if its assumptions are satisfied, repre-
sent the estimated causal relationships between given features. While the RFR fea-
ture importance values describe what features are important, causal discovery can
help answer why relationships exist between features. Comparing causal graphs es-
timated from different datasets and data sources enables a more mechanistic com-
parison. It can answer whether two data sources are structurally similar.

I used the F; score, the harmonic mean of precision and recall, as a similar-
ity metric for comparing estimated causal graphs. I found that all data sources
(observed and E3SM simulated) had similar graphs. However, the E3SM graphs
were more dense, implying that more features were interconnected. This seems
to corroborate our RFR feature importance finding that E3SM feature importances
were over-weighting features, but more rigorous analysis is needed to confirm that

connection more generally.
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While the F; score is a good starting point for graph similarity, it cannot pin-
point where the graph differences are. I proposed further work to develop more
node-level comparison metrics to better understand structural similarities and dif-
ferences. I additionally recommended more subregional analyses—both the RFR
and causal analyses evaluated quantities spanning the entire Arctic, and more
meaningful insights may be gleaned from relating smaller regions within the Arc-
tic.

Developing a better understanding of the smaller-scale processes that accumu-
late to produce emergent phenomena in the Earth system was the impetus for the

work in Part I1.

9.2 Part II: Discovery of Local Dynamics

9.2.1 Grid-Level Benchmarking of PCMCI

Chapter 6 developed grid-level space-time benchmarks for causal discovery meth-
ods and evaluated the PCMCI (Runge et al., 2019a) time series causal discovery
algorithm. PCMCI was developed for highly autocorrelated time series data. It
has been applied extensively in the Earth sciences (Runge et al., 2019¢). How-
ever, its application methodology has been limited to regional analyses in which
Earth science time series are obtained from dimensionality reduction methods such
as weighted averages, principal component analysis (PCA), and related methods

(Runge et al., 2015c; Tibau et al., 2022).
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Our grid-level benchmark began with a 1D spatial grid and was extended to a
2D grid, for which each grid cell contained a time series with defined dependencies
on its immediate neighbors. Both were structured as vector autoregression models
(VARs), which enables a mathematically defined model that generates data and
maps directly to a ground-truth causal graph. Using graph similarity metrics to
compare PCMCT’s estimated causal graph with each dataset’s underlying VAR, I
found PCMCI struggled to estimate the graphs well, except when it had unreal-
istically high amounts of time samples per grid cell. In short, I determined that
significant algorithmic advances would be needed to apply causal discovery like
PCMCI at the grid-level.

The work presented computational advances as well. While using VARs for
systems modeling and causal discovery benchmarking is not new (Runge et al.,
2019d), my innovation was using them to model stable space-time dynamical sys-
tems with locally dependent grid cells. I produced gridded space-time data using a
sliding dot product with a local neighborhood dependence matrix (NDM). In that
way, they are similar to how cellular automata are defined, in which a single grid-

level rule determines complex global behavior.

9.2.2 CaStLe: Grid-Level Causal Discovery

In Chapter 7, I introduced CaStLe, a grid-level causal discovery meta-algorithm.
CaStLe addresses the fundamental challenge of causal discovery that I identified

previously: many space-time gridded datasets are high-dimensional in practice.
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High sample complexity reduces the power of causal discovery’s statistical esti-
mators. CaStLe remedies this by two central premises: underlying dynamics act
locally, each grid cell influences only its neighbors, and neighboring grid cells gen-
erally exhibit similar dynamics. Through these, CaStLe leverages locality and sta-
tionarity to collect informative spatial replicates for local causal structures, which
boosts efficiency and efficacy of the causal discovery task.

CaStLe produces a novel causal graph type, the causal stencil graph, which is
a spatially structured graph representing a Moore neighborhood of nodes, which
represent grid cells. The Moore neighborhood is a grid cell and its eight immediate
neighbors. The stencil graph describes which neighbors are causal parents of the
center node, enabling full representation of local causal structure.

CaStLe has two phases to estimate local grid-level structures. The first phase
reorganizes the data into a smaller spatial representation, which I name the Locally
Encoded Neighborhood Structure (LENS) in later work, which forms a 3 x 3 spa-
tial embedding without marginalizing any data points. This embedding captures
local causal structures by representing the Moore neighborhood allowing the de-
tection of dependencies from all adjacent directions. The LENS phase multiplies
the number of available samples through its collection of spatial replicates. Math-
ematically, this phase maps RM*NxT _ R33%L on an M x N grid over T time
steps; L= T (M — 1)(N — 1) concatenated time series points.

The second phase is the Parent-Identification Phase (PIP), which applies an

adapted time series causal discovery algorithm to target identification of the causal
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parents of the LENS’s center cell. Through that, the it can be determined which
spatial neighbors influence the center cell. Any time series causal discovery algo-
rithm may be implemented in this phase, given that it can be adapted. While not
exhaustive of all existing algorithms, the adaptation has been trivial in our expe-
rience. Finally, once the PIP is applied to the LENS, the causal stencil graph is
estimated.

I demonstrated the efficacy of CaStLe on three benchmark problems: atmo-
spheric aerosol advection, the VAR benchmark presented in Chapter 6, and Burg-
ers’ equation, a partial differential equation (PDE) model of advection and dif-
fusion. First, CaStLe correctly reconstructed the stratospheric aerosol advection
dynamics from the 1991 Mount Pinatubo eruption with data from two climate
models. VAR benchmarks enabled a careful parameter study of many different
gridded systems with exact ground truth. It also contained a comparison of CaS-
tLed methods and alternative causal discovery approaches, in which CaStLe out-
performed all others. Finally, the study of Burgers’ equation demonstrated that
CaStLe can generally filter out diffusion “noise” to recover the primary transport
mechanism. It shows that CaStLe can be applicable in many advection-transport
systems, which are common in the Earth system.

Theoretical analysis showed marked improvement over the stat-of-the-art. Al-
gorithms based on the PC algorithm will be bounded by a computational complex-
ity of (T p32P), whereas CaStLe is bounded by &(T p), for T time samples per

p grid cells. Our analysis of CaStle’s sample complexity shows that its accuracy
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does improve as grid sizes increase. This is in contrast to traditional approaches,
which struggle more as grid sizes get larger.

CaStLe is generally applicable to physics-governed space-time systems that
satisfy the locality and stationarity assumptions. These include many processes
in Earth science, fluid dynamics, and other fields where effects propagate locally
through space and exhibit consistent or smoothly changing dynamics across re-
gions. It can be applied in extremely data-poor settings, where only short time
intervals are observed. It is especially valuable in settings in which grid-level dy-
namics define the phenomena under study and marginalization would destroy that
information. These include advective, transient, and non-periodic phenomena such
as volcanic eruptions, wildfires, and traveling weather fronts. CaStLe is a flexible
meta-algorithm, enabling implementation with today’s best causal discovery al-
gorithms and those of the future, including causal representation learning. It is
highly extensible, being adaptable to multiple variables, more than two spatial di-
mensions, longer time lags, and larger local neighborhoods.

CaStLe provides another path for physical model evaluation by elucidating
where and why behavior does not match intended dynamics. For the first time,
grid-level processes are recoverable with causal discovery, which opens the door
to future multi-scale analyses to determine how local structures give rise to emer-
gent global patterns. However, this initial version of CaStLe is univariate—it can
only estimate space-time dynamics of one quantity, such as aerosols. It would be

significantly more valuable estimating the space-time dynamics of multiple vari-
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ables and their interactions. This is precisely what Chapter 8 addresses.

9.2.3 M-CaStLe: Multivariate Grid-Level Causal Discovery

I followed the development of CaStLe with an extension enabling multivariate
analyses simultaneously with space-time structure discovery. Chapter 8 details
the methodological innovations making that possible. We adapted both phases of
CaStLe, developed a method for interpretability, and benchmarked M-CaStLe.

CaStLe’s LENS was adapted to include multiple variables per time series. The
mapping from the given gridded space to the multivariate LENS is represented by
the transformation RV*N>VXT _y R3x3xVXL \where L =T (M —1)(N — 1) denoted
the length of each concatenated time series. With this, multiple variables’ space-
time structures are captured. CaStlLe’s PIP was adapted by allowing each of the
variables in the center grid cell of the LENS to be children and no other grid cells.
That allows for an adapted time series causal discovery algorithm to estimate the
multivariate space-time dynamics underlying the given data.

M-CaStLe was validated using the spatial VAR benchmark detailed previously
with a multivariate extension. I found that M-CaStLe significantly outperforms
the PC algorithm for grid-level multivariate causal discovery. It had remarkably
high precision, and its recall was mediated by the size of coefficients in each VAR.
Systems with more dependencies require smaller coefficients in order to be stable,
but the signals become more challenging to detect amid the noise.

M-CaStLe is the first causal discovery approach to enable grid-level causal dis-
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covery of multiple variables. This new capability can facilitate new research di-
rections in physical systems such as the Earth sciences, computational chemistry,
ecology, fluid dynamics, and pharmacokinetics. It presents many opportunities for

interdisciplinary collaborations to analyze systems in a new way.

9.3 Connections and Research Frontiers

The research detailed in this dissertation traces a methodological journey from cor-
relative machine learning approaches to mechanistic causal discovery frameworks
for complex physical systems, with an emphasis on Earth science. The work spans
multiple scales, progressing from regional analyses to tackling high-dimensional
grid-level dynamics. The primary contribution, CaStLe, accomplished grid-level
discovery for the first time by leveraging locality and stationarity principles—
simplifying the causal discovery task without sacrificing spatial information through
dimensionality reduction. Instead, CaStLe maintains critical spatial structure by
collecting informative spatial replicates. The resulting causal stencil graph de-
scribes local causal structures between grid cells in a highly interpretable format.
M-CaStLe enables a more comprehensive system understanding by extending ca-
pabilities to multiple variables. This work provides scientists with new tools to
discover how local dynamics give rise to emergent global phenomena by bridging
statistical learning with physical interpretation. The following explores these con-
nections and highlights promising research frontiers that build upon these method-

ological foundations.
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