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ABSTRACT

The adaptive immune response is a complex defense mechanism that develops over

time to recognize and eliminate pathogens with remarkable precision and durability.

This dissertation investigates the dynamics, scaling, and efficiency of the adaptive

immune response through a synthesis of computational modeling, mathematical

analysis, and agent-based simulations. First, we analyze the topology of the lym-

phatic network and investigate the T cell search time to find the lymph node that

is containing the matching dendritic cell. Second we show how the scaling of lymph

node number and volume with body mass, leads to scale-invariant search times for

T cells locating antigen-bearing dendritic cells across species. Third, we develop

an analytical and numerical framework for extreme first passage time (EFPT) in

confined three-dimensional volumes, revealing a transition from inverse-linear to

inverse-logarithmic scaling of the fastest searcher’s discovery time as the number of

searchers increases. This framework is validated against large-scale Monte Carlo

simulations modeling T cells searching for a central target. Finally, we construct

an agent-based model of B cell–mediated immunity to examine affinity matura-

tion, antigenic drift, and vaccine efficacy against rapidly mutating viral variants.

By representing receptors and epitopes in shape space and simulating somatic

hypermutation and clonal selection, our model predicts population dynamics of

B cells, antibodies, and antigens over repeated exposures. Together, these studies

elucidate fundamental principles of immune surveillance and response timing, with

implications for translational vaccine design and broader applications in search

theory, chemical kinetics, and complex systems.
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Chapter 1

Introduction

The immune system is a complex system of organs, tissues, cells, and molecules

that defends the body against infections, cancer, and other threats. As the

body’s primary defense mechanism, it is designed to recognize and neutralize

harmful agents, known as pathogens. Our first line of immune defense consists

of the physical barrier (skin, mucous membrane), which prevents pathogens

from entering the body [150]. If this barrier is breached, the innate immune

response, the second line of defense, is activated. This non-specific defense

mechanism involves immune cells such as macrophages that rapidly respond

to a wide range of invaders through processes like phagocytosis. The adaptive

immune response, the third line of immune defense, is a specific response

that develops over time. Unlike the innate immune system, it’s slow to

respond initially. But after the first encounter it remembers the pathogen,

ensuring future responses are much faster and effective. It is triggered by the
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presence of antigens (fragments of pathogens) and involves the activation of

T cells and B cells. The immune response is characterized by the interactions,

relationships, associations, and interactions among these components, which

define the behavior and functionality of the system.

A key event that initiates the adaptive immune response is the encounter

between dendritic cells (DCs) and naive T cells. When a pathogen enters

our body, DC collects and carries the fragments of the pathogen, known

as antigens, to the closest lymph node. Inside the lymph node, naive T

cells search for the antigens. Upon encountering a dendritic cell presenting

a cognate antigen, naive T cells activate, proliferate, and travel through

lymphatic vessels to the infected tissues to destroy the specific pathogen

(Figure 1.1).

While dendritic cells carry processed (fragmented) antigens for T cells

recognition, pathogens or their intact antigens in tissue fluid enter lymphatic

capillaries and carried through lymphatic vessels to the nearest lymph node. B

cells can directly bind to intact antigen via their B Cell Receptors (BCRs) and

the help from activated helper T cells. B cells then enters into the germinal

centers (GCs), [151]. where they proliferates, differentiate into plasma and

memory B cells, and undergo somatic hypermutation Figure 1.2. Plasma cells

secrete antibodies to fight against the pathogen; memory B cell remembers the

antigen, protecting against reinfection; and somatic hypermutation mutates

the B cell gene to generate diversity to bind the antigen with high affinity.

A fundamental aim of my research is to investigate the dynamics of the
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Figure 1.1: Simplified Schematic of T Cell Activation by Dendritic
Cells. 1) A pathogen infects tissue, in this case for illustration, the lung. 2)
DCs carry antigen from tissue through the lymphatic vessels to the draining
lymph nodes (LNs). 3) DCs show antigen in the lymph node. 4) Näıve T
cells search for cognate antigen presented on the surface of DCs. 5) T cells
activate upon encountering DC presenting cognate antigen. 6) Activated
T cells replicate exponentially, and some become killer T cells that travel
through the bloodstream to the sites of inflamed, infected tissue. 7) T cells
kill the infected cells that display cognate antigen. We model the timing of
search and activation in steps 4 and 5, where the adaptive immune response
is initiated; the timing of this process depends on LN size.

3



Figure 1.2: Simplified Schematic of B Cell Activation and Function
in Germinal CenterThis figure shows the different stages of B cells after
its encounter with an antigen. Once it binds with the antigens,
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adaptive immune response during infection in order to gain a deeper under-

standing of its components’ behavior and functionality within the immune

response system. Understanding the complex interaction of the components in

the adaptive immune response is important to effectively model the immune

system and to make breakthroughs in drug discovery and disease treatment. A

key aspect of this interaction is the initial first contact time, the time it takes

for a cognate immune cell to encounter its target antigen, which fundamentally

governs the timing and efficacy of the immune response. The concept of

first contact time, popularly known as extreme first passage time (EFPT), is

not only unique to immunology but also appears across diverse disciplines

such as chemical kinetics, physics, and complex systems. For example, in the

immune system, an immune response is initiated when the very first T cell

encounters an antigen [30]; In chemical kinetics, for example, reaction rates

are often limited by the time required for molecules to diffuse and interact [94].

Similarly, in ecological and search theory contexts, first-passage times dictate

how efficiently searchers (e.g., predators, molecules, or information packets)

locate their targets within large or disordered environments. [102]. These

parallels suggest that biological systems may have evolved highly efficient

mechanisms for locating targets in complex, noisy environments, offering

inspiration for cross-disciplinary modeling approaches.

A major motivation to study the immune system is to develop effective

vaccines, especially against rapidly mutating viruses. Viruses, especially those

prone to rapid mutation, present significant challenges for comprehensive
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modeling and long-term vaccine development. A prime example is SARS-

CoV-2, which has garnered global attention since its emergence in late 2019.

According to the CDC [55], approximately 1.2 million deaths have been

reported in the United States due to this virus. Despite relentless and

thorough efforts by researchers to understand and combat SARS-CoV-2,

accurately modeling the behavior and impact of such viruses remains complex.

This complexity is largely due to their high mutation rates, which often lead

to the emergence of new variants that can evade existing immune responses.

Consequently, predicting and modeling the effectiveness of vaccines across

all variants of a rapidly mutating virus like SARS-CoV-2 has proven to be a

difficult task. Therefore, understanding how the immune system initiates and

scales its response is key to developing strategies that offer broader and more

durable protection.

This dissertation addresses key questions regarding the dynamics, scaling,

and efficiency of the adaptive immune response.The main contributions of

this research are as follows:

• We investigate how the topology of the lymphatic network affects the

time a T cell takes to reach the lymph node carrying antigen-bearing

DCs. This investigation leads us to understand how the scaling of lymph

node distribution can affect the expected time of finding the desird

lymph node by T cell.

• We investigate how the lymph node number and volume scale with
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body mass. This study is important to understand how the underlying

population of T cells in a lymph node scales with body mass. Following

the scaling of the volume with body mass, we study the time it takes for

the adaptive immune response to occur in mammals while examining

the interaction of cognate T cells and dendritic cells in the lymph node

for systemic and local infection. This study of the first time interaction

between T cells and antigen-bearing DC is extremely important as this

one single event triggers the immune response through replication and

mutation. By finding the scaling relationship between body mass and

the contact times between T cell and DC, one can estimate the time to

initiate the immune response in any-sized animal, and this information

is particularly helpful in designing a vaccine covering a large section of

animals.

• Motivated by the study of the scaling of immune response time, we

also explore the first interaction (EFPT) of searchers and targets in a

confined space. This study provides a deeper understanding of target-

searcher interactions in an immunological context. This research could

potentially provide insight into the mechanisms of the adaptive immune

response and how target-searcher interactions can influence the efficiency

of this response in a confined space.

• We study EFPT in large-scale, confined 3D environments. We model

how EFPT between searchers and targets changes as the number of
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searchers increases. We explore the scaling behavior of EFPT and

investigate two key hypotheses: EFPT scales inversely with the number

of searchers N (EFPT ∝ 1
N

) and EFPT scales inversely with the

logarithm of N (EFPT ∝ 1
log(N)

). This investigation is critical not only

in the immunological context but also in broader fields such as chemical

kinetics, robotics, and information theory, where understanding efficient

search in high-dimensional spaces is a foundational challenge.

• We study the population dynamics of B cells, antibodies, and antigens

for repeated exposure of different antigen variants. Understanding

this population dynamics is crucial for developing effective vaccination

strategies and understanding the immune response to viral infections.

We developed a model to investigate the varying efficacy of vaccines

against SARS-CoV-2 variants. The model can be used to design vac-

cines through antigenic combinations that promote long-term immune

protection by targeting a large number of SARS-CoV-2 variants.

1.1 Modeling the Lymphatic System

Our first study investigates how the topology of the lymphatic network affects

the time required for T cells to search for the matching antigen presented

by dendritic cells in lymph nodes. We have extended a previous method

that mapped the human lymphatic network and inferred the topology of

the lymphatic network in mice. By comparing the modeled and observed
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topologies, we demonstrate that they are similar to each other and consistent

with observed immune response times. This finding is crucial for translating

immune response times in mice, where most experimental work is conducted,

into anticipated immune response times in humans. Our analysis predicts

that the lymphatic network’s topology facilitates fast immune response times

for large systemic infections, despite the animal’s significant increase in mass.

However, T cells may require more time to locate small, localized infections

in larger animals.

Our analysis shows that the physical structure of the lymphatic network

facilitates scale-invariant immune response. For large and systemic infections

that require a large and fast response, T cells navigate the lymphatic network

to find infected LN equally fast in large and small animals.

1.2 Scaling the Lymphatic System and Im-

mune Response

Given the mounting threat of emerging zoonotic diseases to humanity, it

is crucial to comprehend how the adaptive immune response varies across

species. While laboratory species such as mice are commonly used as models to

extrapolate immune function in humans, their physiology differs significantly

from that of larger mammals. In [49], we demonstrated that the volume (VLN )

and number (NLN ) of lymph nodes exhibit a unique scaling relationship with
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body mass (M) as follows,

VLN ∝ M
1
2 ln(cM)

NLN ∝ M
1
2

Critically, we showed that the first step of initiating the adaptive immune

response occurs faster in the lymph nodes of larger animals, including humans

than in smaller animals like mice. This finding challenges the conventional

assumption that larger body size necessarily leads to slower immune response

times [85, 160, 12]. Our work highlights the importance of the initial first-

contact timing in the adaptive immune response, which is influenced by the

number of immune system ”searchers” available. Specifically, our results

suggest that the timing of the adaptive immune response is proportionally

faster in larger animals with more searchers, while the mean response time

remains independent of the number of searchers. This study provides im-

portant insights into the fundamental mechanisms underlying the adaptive

immune response across species and emphasizes the need for further research

to fully understand the implications of these findings for human health.

1.3 Initial First Contact Time Dependency

The initial discovery time in biological search processes where multiple

searchers attempt to find one or more targets is critical in initiating down-
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stream events. This is evident in a wide range of contexts, from foraging

behavior in ant colonies [102, 40] to immune surveillance, where the first T

cell to encounter an antigen initiates the immune response [30]. While most

research in biological search studies the mean contact time [120], physicists

have studied the extreme first passage time (EFPT) [89, 88], which is the

time it takes for the fastest searcher to find their target. However, most

analytical frameworks for EFPT are limited to asymptotic conditions where

the number of searchers approaches infinity. These models are less effective

in realistic biological scenarios involving finite and often small populations

of searchers. To address this limitation, we proposed a mathematical model

that works for a small to moderate number of searchers in confined reflective

volumes—representative of bounded biological environments such as lymph

nodes. Our work suggests that when the density of searchers is low, the initial

first contact time (IFCT) decreases approximately linearly with the number

of searchers, a trend we termed IFCT hypothesis. As the density increases,

the scaling shifts to a logarithmic decrease, consistent with the universal

formula of EFPT. To arrive at this result, we considered searchers undergoing

Brownian motion within a 3D reflective domain, initially placed at a fixed

distance from a central target. We also examined the effect of scaling the

search volume—specifically, the volume of a lymph node—while keeping the

number of searchers constant. These findings are not only significant in the

context of immunology but can also be generalized to other domains such as

chemical kinetics, ecology, and molecular search processes.
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1.4 Extreme First Passage Time in Large-

Scale Models

Most prior studies focus either on single searcher dynamics [112] or asymptotic

behavior as the number of searchers approaches infinity [91]. In contrast,

EFPT—which characterizes the behavior of the first successful searcher among

many—remains less well understood across the full range of searcher numbers.

In our previous work [51], we addressed this gap by demonstrating a

scaling transition of EFPT in a bounded 3D search domain with reflective

boundaries in an immunological context. We showed that EFPT decreases

approximately linearly with a limited to moderate number of searchers and

transitions to decreasing logarithmically as the number of searchers increases

to infinity. This result, situated in an immunological context, modeled T cells

searching for a single antigen within a confined volume.

In this work, we extend and generalize our previous work in several key

ways: We test the robustness of the observed EFPT scaling transition for large-

scale model, by adopting a more abstract model, removing immunological

constraints. The model allows to study generic searcher-target interactions

with unit-step Brownian motion. We develop and validate an analytical

framework based on Lawley’s formulation [88] to predict the critical transition

point between the two scaling regimes.

This investigation not only enhances our understanding of search efficiency
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in immune responses but also contributes a generalizable model of search

dynamics applicable to a wide range of disciplines, including applied physics,

chemical kinetics, and robotics. It bridges a gap in existing literature by

providing a full-spectrum view of EFPT scaling across different regimes of

searcher populations.

1.5 Examining Affinity Maturation and Anti-

genic Drift with an Agent-Based Model

The immune system’s ability to recognize and respond to a vast array of

antigens relies on the remarkable diversity of B cell receptors (BCRs), each

with unique antigen specificity. Once the BCRs and antigen epitopes (a

specific part of the antigen that B cell recognizes) matches at a certain level,

B cells bind with the antigen and plasma B cells produce antibodies targeting

the antigen to form immune complexes. Affinity is the strength of this binding

between the B cell/antibody and the antigen. Antigenic distance refers to

the degree of similarity between antigens and B cells/antibodies computed

using the affinity.

In this work, we developed an agent-based model (ABM) to study how

the adaptive immune system responds to evolving viral threats, particularly

focusing on B cell–mediated immunity. Our model captures the interactions

between B cells (näıve, plasma, and memory), antibodies, and antigens,

representing their receptors and epitopes in a Euclidean shape space. Binding

13



between these agents is determined by Hamming distance, allowing us to

simulate affinity-based interactions and the formation of immune complexes.

This work is important because the immune system’s ability to recognize

and neutralize pathogens depends on the affinity. With repeated exposure to

the same antigen, B cells undergo affinity maturation to produce antibodies

with higher binding strength. However, as viruses mutate (antigenic drift),

new variants can emerge that are increasingly distant from the original strain

in antigenic space. This can reduce the effectiveness of pre-existing immunity.

This issue has been well documented in cases of influenza, and there is a

concern that it is occurring in SARS-CoV-2 given successive variants of

concern (VOC).

Our model explores how such antigenic drift impacts immune recognition

and cross-reactivity, especially in the context of immune imprinting (prior

exposure influencing future responses).

Utilizing our immune response model, we predict vaccine efficacy for

individuals receiving a wide-range of SARS-CoV-2 VOC. By simulating

SARS-CoV-2 variants of concern (VOCs), we aim to better understand how

existing immunity might respond—or fail to respond—to new variants. This

insight can inform vaccine design and public health strategies.

In the following sections, I will be discussing related works, completed

works, and my proposed work toward my complete dissertation work.
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2.2 abstract

The lymphatic system is a networked structure used by billions of immune

cells, including T cells and Dendritic cells, to locate and identify invading

pathogens. Dendritic cells carry pieces of pathogens to the nearest lymph

node, and T cells travel through the lymphatic vessels and search within

lymph nodes to find them. Here, we investigate how the topology of the

lymphatic network affects the time it takes for this search to be completed.

Building on prior work that maps out the human lymphatic network, we

develop and extend a method to infer the lymphatic network topology of mice.

We compare search times for the modeled and observed topologies and show

that they are similar to each other and consistent with observed immune

response times. This is relevant for translating immune response times in

mice, where most experimental work occurs, into expected immune response

times in humans. Our analysis predicts that for large systemic infections,
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the topology of the lymphatic network allows immune response times to

remain fast even as animal mass increases by orders of magnitude. This work

advances our understanding of how the structure of the lymphatic network

supports the swarm intelligence of the immune system. It also elucidates

general principles relating swarm size and organization to search speed.

2.3 Introduction

Adaptive immunity evolved in vertebrates to recognize and remember novel

pathogens, enabling a faster response time to subsequent infections. In

contrast to most biological rates, which are systematically slower in larger

animals (scaling as M1/4, where M is body mass [85, 160, 12]), the adaptive

immune response time is relatively invariant across several orders of magnitude

of mammalian body mass [23, 14]. Immune response is a swarm intelligence

problem with billions of interacting agents searching for pathogens without

central control, and it is a model for scale-invariant search in swarms.

T cells are adaptive immune cells that can recognize novel pathogens in

lymph nodes, and then replicate and disperse into tissues to find and kill cells

infected by those pathogens. The movement of T cells through the lymphatic

system increases contact with antigens and amplifies the immune response

[154]. Similar to eusocial insects, information transmission in this liquid brain

[149] is mediated through direct agent contact and chemical signals among

agents that navigate complex and varied environments [109].
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Each T cell can bind to a particular subset of cognate antigens. DCs

gather antigen from tissues, travel to and enter nearby lymph nodes (LNs)

through the lymphatic network, and display the antigen on their surfaces. T

cells search LNs for DCs displaying cognate antigen, and if a match is made,

the T cells activate, proliferate, and circulate to the site of infection where

they kill infected cells. The time it takes to initiate an adaptive immune

response depends on two factors: 1) the speed with which T cells travel

through the lymphatic system to LNs containing DCs displaying antigen, and

2) how quickly T cells find those DCs once inside the LN.

In this work, we analyze T cell travel time through the lymphatic network

to find DC’s in mice and humans by extending the algorithm of Savinkov

et al. [138], that models only the human lymphatic networks. While most

lab studies that show how the immune system works are conducted on mice,

most of the literature on modeling the lymphatic network is based on humans.

The lack of data makes it challenging to build a general model of lymphatic

networks for mice and other mammals.The model parameters are updated

based on best-fit values by comparing empirically observed anatomical data

with the graph resulting from the algorithm. We expand the network metrics

used by the algorithm to better fit the model to empirical data. Using the

inferred network model we compute the expected time for T cells to find LNs

containing DCs presenting cognate antigen. We run a random walk search

on the simulated and observed lymphatic networks to find the average time

T cells need to reach the LNs containing cognate DCs. We find that the
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generated and actual anatomical graphs have similar statistics. The resulting

search time over the network is similar in mice and humans for systematic or

mass-dependent infections, but it is longer in humans than in mice for small

infections that only reach a single LN.

2.4 Related Work

Several studies have modeled the human lymphatic system [127, 155, 138]. In

[155], the authors use computational geometry to build graph models of the

human lymphatic network in order to explain the general features underlying

the 3D structural organization of the lymphatic system. The model is based on

available anatomical data (from the PlasticBoy project [2]), which estimates

the lymphatic system’s structure and analyzes the topological properties

of the resulting models. In [138], the authors developed and implemented

a computational algorithm to generate the algorithm-based random graph

of the human lymphatic system. Some fundamental characteristics of the

observed data-based graph [155] and the algorithm-based graph of human

lymphatic system graph models are analyzed.

In [162] Wiegel and Perelson hypothesize that LN number and size evolved

to minimize two competing goals: the time to transport antigen from an

infected area to the nearest LN and the time for immune cells to find the

antigen inside the LN. Banerjee and Moses [13] use an ODE model to estimate

that, empirically, immune response times are independent of host body size.
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(a) (b)

Figure 2.1: Comparison of simulated and observed lympahtic networks. (a)
Mouse lymphatic network graph based on anatomical data with 36 nodes
and 49 edges. edges. (b) Example simulated graph of the mouse lymphatic
system. Algorithm parameters: Nv = 36, Ninp = 13, Nl = 5, Pe = 0.851,
Po = 0.66.

2.5 Methods

2.5.1 Lymphatic Network Simulation Algorithm

Savinkov et al [138] developed an algorithm that generates a random directed

human lymphatic network graph with no cycle from a reference human graph.

We extend their work by adding another step to the algorithm to simulate T

cells traveling through the circulatory system to enter LNs. The steps are

given in Algorithm 1. We used data from [81] to create a reference graph

of mice to compare with the simulated graph. Out of 5 input parameters

in the algorithm, three parameters, number of nodes Nv, number of input

nodes Ninp, and number of layers Nl are explicitly set to match the anatomy-

based graph’s properties. Based on the comparison metrics characterizing the

topology of an anatomy-based graph (described in Section 2.5.2), the value

of the other two parameters, probability of new edge creation Pe at each step

and probability that the created edge connects nodes from different layers Po,
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are set to produce graphs with similar topological structures.

2.5.2 Comparing simulated graphs to observation

We have used the following topological properties defined in [138] to compare

the observed graph with the current state of the simulated graph for humans

and mice: The number of input nodes Ninp, Maximum degree of graph ∆G,

Girth of the graph, g, The diameter of the graph, D, Radius of the graph, r,

Average path length, IG, The energy of the graph, En, The spectral radius

of the graph, ρ, Edge density of the graph, ρd, The clustering coefficient,

C (transitivity). We also introduced the following graph properties to the

list: Number of separators, nsep: is the number of nodes removal of which

disconnects the graph ndegi: is the number of nodes with degree i. Gl: is the

average degree of of nodes in each layer l and, nl: is the number of nodes in

each layer l.

Since number of node connections and layers are larger in larger animals,

ndegi and nl are also larger. Thus, the objective function has more parameters

in larger animals. To produce a similar graph that matches these topological

properties, we tune the parameters Pe and Po. We collect these parameter

values for the minimum value of the objective function, ω. For a number of

properties, the objective function is defined as:

ω =
a∑

i=1

(
si(G) − si(G∗)

si(G∗)
)2 (2.1)
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where

s(G) = (n,m, ninp,∆G, g,D, r, IG, En, ρ, ρd, C, nsep, ndeg1 , .., ndegmax , G1, .., Gl,

n1, .., nl)
T

This objective function penalizes the topological discrepancies of graph G from

the target graph G∗ and weighs them with (si(G∗))−2 to bring discrepancies

of different components of vector s to a single scale.

2.5.3 Search Algorithm

To run the search algorithm, we randomly choose a source node ns from which

the T cell initiate a random walk through the graph. We consider that the

LNs that contain matching DC, designated V ′ ∈ V , are distributed within

the lymphatic network in three ways for different kinds of infections.

• Random Systemic: Systemic infections can spread to multiple lymph

nodes throughout the body, i.e., in HIV. For this case, we assume that

the V ′ are distributed randomly over the lymphatic network.

• Clustered: A cluster of LN can contain antigen if an animal gets a

vaccine injection with inoculation dose adjusted to size, or if an animal

breathes in a respiratory virus where the amount of inhaled virus is

proportional to lung size. For such cases, we distribute the V ′ nodes

in clusters. We randomly pick one node and run Breadth-First Search

(BFS) to make the clusters. We exclude the circulation node 0 from

being in the cluster.
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Table 2.1: Summary statistics for observed and simulated graphs of mice and
humans characterizing their topological properties. For the predicted graphs,
we present the statistics obtained over 10,000 graphs for human and 500 for
mice.

Parameter Mice observed graph Mice simulated graph Human observed graph Human simulated graph

G(n,m) (36, 53) (36, 49) (996, 1117) (996, 1029)

Ninp 13 13 357 357

Maximum degree, ∆G 24 26 8 16

Girth, g 3 3 3 4

Diameter, D 4 4 40 39.96

Radius, r 3 3 30 28

Average path length, lG 1.34 1.42 12.79 15.3

Energy, En 37.17 36.40 1224.5 1190

Spectral radius, ρ 5.81 5.91 3.51 4.18

Edge density, ρd 0.04 0.04 0.001127 0.001038

Clustering coefficient, C 0.12 0.11 0.027 0.0004

Number of separators, nsep 5 9 401 496

• Single: If an animal steps on a thorn and gets a local infection of a fixed

size, or a mosquito bite transmits an illness into the blood, then the

same small amount of infection is injected into the animal regardless of

its size. For both of these cases, we randomly pick one node |V ′| = 1

that contain cognate DC.

We compute the time it takes for each T cell using a random walk to reach

the first LNs that contains DCs holding cognate antigen. We follow Perelson

and Weigel’s prediction that the number of LNs in mammals scale with ∝ M
1
2

[120], for the random systemic and clustered scenarios, |V ′| ∝ M
1
2 . For the

uniform random and clustered V ′, we assume the number of LNs that are

bearing the cognate antigen-bearing DCs (|V ′| are 5 and 275 in mice and

humans, respectively representing 7% and 3.6% of LN.
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2.6 Results

2.6.1 Modeled Lymphatic Network

We run the extended algorithm to generate lymphatic networks for humans

and mice. Figure 2.1a, and Figure 2.1b show the resulting observed and

simulated graphs for mice. The first three parameters of the algorithm for

mice are collected from [81]. For P0 and Pe, we take their values that give the

objective function’s minimum value in Equation (2.1). They are compared

numerically in Table 2.1 based on the topological properties, described in

Section 2.5.2.

From Table 2.1 we can see that the properties are very similar for observed

and simulated graphs for mice and humans. Some properties vary slightly,

but the statistic from the objective function gives the overall best match of

the simulated graph to the observed graph. We collect the time data the DC

takes in humans and mice respectively to reach the LN containing cognate T

cell from the infected area after running the random walk, shown in Figure 2.2.

The time for T cells to encounter a target LN is shorter in humans than in

mice for random and clustered target LNs. That is because there are more

target LN in humans, and we consider only the time to find the first target

LN. The search to find a single V ′, takes much longer in humans because

there are many more LN in humans (996) compared to mice (36).
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Figure 2.2: Average Number of Hops to Find a LN with Cognate
Antigen after running the random walk on 500 observed and algorithm-
based graph of mice and human. The random bars represent that |V ′| are
randomly distributed over the graphs. There are 275 LNs containing the
cognate T cell out of 996 LNs in human and 5 LNs out of 36 LNs in mice.
The cluster bars represent |V ′| are distributed in clusters over the graphs.
There are 275 LNs containing the cognate T cell out of 996 LNs in human
and 5 LNs out of 36 LNs in mice. The single bars represent that there is
only one LN (|V ′| = 1) chosen at random carrying the cognate T cell out of
996 LNs in human and 36 LNs in mice.

2.6.2 Predicted Time

We compare the search time of a single T cell to find a target LN to actual

immune response times to determine if our model predictions are reasonable.

We calculate times from hop counts and estimates of the time between hops,

shown in Table 2.2. Since we only model a portion of the overall adaptive

immune response, that is, the time taken for a single T cell to conduct a

random walk through the lymphatic network to find an infection, we cannot

predict the speed of the overall immune response. For mice LN mean residence
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time in LN per hop is approximately 13 h [154], and for sheep 19 h [101]. Since

sheep and humans masses are similar (40 kg–160 kg for sheep [22] and 43 kg–

140 kg for humans) [158], we approximate residence times in humans with

those of sheep. Multiplying these residence times by the hop counts from

Figure 2.2 results in Table 2.2. We find that the predicted time for a single

T cell to find a LN with cognate antigen is on the same order as observed

immune response times for systemic infections in mice and humans. According

to [116, 106, 82, 153, 35] the mean adaptive immune response time in mice for

influenza and LCMV infection is 5.3 days and in humans for SARS-CoV2 its

5.1 days [92, 74, 86]. This means that for systemic or whole-organ infections

(where the number of LN increases with body mass), typical T cells can find

the a LN with antigen during the time available to proliferate and amplify

the growing immune response. In contrast, the time to find a single LN with

antigen is orders of magnitude longer. This suggests that not many T cells

would reach the single LN during the time of adaptive immune amplification.

However, in small infections, a global response is likely not to be needed.

We expect the T cells that reside in the local LN to be sufficient to respond

to small local infection [13]. The actual timing depends on many factors,

including the fraction of LN containing target DCs, V ′ and the number of

cognate T cells searching for those DCs. We do not consider lymph vessel

or blood residency times in these estimates, because those times are small

relative to the time within LN [154].
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Table 2.2: Predicted times for T cell to enter LN containing cognate DC
based on hop count. H. sapiens and M. musculus LN residence times are
taken to be 19 h. Time given in days (d).

M. musculus H. sapiens

Observed Simulated Observed Simulated

Random Clustered Random Clustered Random Clustered Random Clustered

Hops 11 15 9.3 13 3.8 4.1 3.9 3.4

Time (days) 5.9 d 8.3 d 5 d 7 d 3 d 3.3 d 3 d 2.7 d

2.7 Discussion

We simulated the lymphatic network for mice, ran a random walk process

on the resulting graph, and predicted the time for a typical T cell, searching

that graph for a LN with cognate antigen. We examined three scenarios

corresponding to different infection patterns: random systemic infection,

clustered infection, and infection in a single LN. Our results show that the

time for each T cell to search for clustered and randomly distributed systemic

infections in lymph nodes is on the same order as observed immune response

times to systemic infections such as influenza and COVID-19 in humans and

mice. In contrast, the time for a T cell to find a single LN is far longer,

requiring thousands of network hops that would take years of search time in

humans or a month in a mouse. However, we suggest that such long search

times for small localized infections may be adaptive. For systemic infections

that require a large response, T cells quickly discover LN with DCs presenting

antigen, but T cells are not recruited to small local infections when they are

not needed – local infections are responded to only by the small number of T
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cells that already reside in the lymph node where the infection is presented on

DC. This analysis shows that the physical structure of the lymphatic network

facilitates scale-invariant immune response. For large and systemic infections

that require a large and fast response, T cells navigate the lymphatic network

to find infected LN equally fast in large and small animals. In one sense, the

adaptive immune system exemplifies the kind of decentralized control typical

in swarm intelligence: immune response is fast and adaptable based on the

independent action of billions of immune cells that communicate locally and

navigate complex tissue environments. However, the decentralized search is

constrained by the network structure of the lymphatic system that provides

a form of global guidance in physical space. That structure contributes to

the extraordinary scalability of response.
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3.2 Abstract

Understanding the speed of the adaptive immune response across mammals is

important as humanity faces increasing threats from novel zoonotic pathogens.

We show that the initial adaptive immune response time is equivalent in

mice and humans. We explain this deviation from the expectation that

larger animals have slower physiology due to an unusual relationship between

the sizes and numbers of lymph nodes and animal size. We show that
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pathogens are recognized more quickly in larger lymph nodes, allowing novel

antigens to be discovered faster in larger lymph nodes, compensating for other

physiological times slowing in larger animals. More generally, our analysis

of initial first contact times introduced in this paper defines regimes under

which any population of searchers gains speed proportional to population size,

benefiting large population size for many search problems in biology.

3.3 Introduction

In mammals, most biological processes slow down as an animal’s size increases

following a quarter-power scaling law [85, 160, 12]. While the cause of quarter-

power scaling is debated [24, 95, 107], empirical observations consistently

show that smaller mammals have faster physiology and life history, and larger

mammals have slower rates over longer times [28, 161, 121, 137]. For example,

humans who are 2500 times larger than mice, are predicted to have heart

rates, breathing rates, and gestation times that are seven times slower than

mice; observed values are within a factor of two of prediction: seven to 14

times slower [28, 31, 104]. However, the time to initiate a detectable adaptive

immune response, which might theoretically be expected to slow by this same

amount, remains surprisingly fast and consistent across species (Table 3.1),

despite the challenges posed by longer distances for immune cells to travel in

larger animals (Figure 1.1, step 2).

From an evolutionary perspective, it is logical that immune response times
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scale faster than typical quarter-power scaling expectations since large animals

could not survive a months-long delay in responding to exponentially growing

pathogens. However, the mechanisms enabling larger mammals to respond as

fast as smaller mammals remain unclear.

A second well-established scaling relationship is that organ size typically

scales linearly across animals. For example, the heart, liver, and kidney are

1000 times larger in animals weighing 1000 times more [24]. In this paper,

we show that this linear relationship holds for the spleen but not for LNs.

LN size, number, and location vary with body mass due to their distribution

throughout the body. We hypothesize that this non-linear allocation of LN

size and number enhances immune response speed, compensating for other

trade-offs in adaptive immunity (Figure 1.1, steps 4 and 5). We describe how

more searchers in larger LN contribute to the unique scale invariance of the

immune response.

Prior research has explored how LN size and number vary with body size

and how that impacts the timing of the adaptive immune response [118, 7].

Perelson and Wiegel [120] theorized that if the benefits of larger LNs size and

number were equally important and the total volume of LNs scales linearly

with body mass, LN size and number should scale with the square root of

body mass (M
1
2 ). Our study provides the first empirical data to test these

theoretical predictions.

The benefit of more LNs is clear because a higher density of LNs reduces the

mean distance between potential infection sites and the closest LN (Figure 1.1,
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step 2) [13]. However, the benefit of larger LNs is unclear. [120] predicts that

typical search times should be independent of the LN volume. That is, if

the density of cells is approximately constant, then a typical T cell or B cell

would find its target in approximately the same amount of time, regardless of

LN volume (Figure 1.1 steps 3 and 4). Thus, the trade-off between LN size

and number remains unclear. Why wouldn’t a human have many thousands

of LN, each as small as those of mice?

In previously published work [52], we present a mathematical model that

predicts initial first contact times between searchers and targets distributed

at random in a volume. Through simulations, we explore how the number of

searchers, the distribution of searchers and targets, and the initial distances

between searchers and targets affect initial first contact times. In this work,

we develop a mathematical prediction for IFCT and test that prediction in

simulations, to show that the first T cell contact with a DC is faster in larger

LNs with larger T cell populations.

In most models, T cells contact cognate DC at the same time and start

proliferating all at once. This is delayed in larger LNs due to the slower

interaction between the last T cells and DCs. This delay implies that larger

animals should take longer to initiate an immune response. However, we

show that humans, which are thousands of times larger than mice, initiate an

immune response just as quickly. Our IFCT model explains this observation.

The IFCT model assumes that T cell proliferation begins as soon as the first

T cell makes contact with a DC, which occurs earlier in larger LNs. As a
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result, the IFCT model predicts significantly higher numbers of proliferating

T cells in larger LNs compared to smaller ones, enabling larger animals to

respond rapidly to infections with larger numbers of activated T cells.

3.4 Time to Initiate the Adaptive Immune

Response Is the Same in Humans and

Mice

We first establish that the timing of the first detectable adaptive immune

response is similar in humans and mice. Table 3.1 shows that for a range of

novel viral and bacterial pathogens, activated T cells are first detected in LN

or tissues in both species within 4-10 days, with a typical detection time of 6

days. The time to detect activated T cells reflects the time for cells to move,

activate, and proliferate, in addition to the search process we will focus on in

the later part of this paper.

We note that the first detection of activated T cell populations is distinct

from the peak T cell concentrations that are often measured in blood. It can

take additional time to reach the peak after initial activation, particularly in

larger animals. For example, peak T cell concentrations are observed in 5-10

days in mice [164, 106] and 14-28 days in macaques and humans [99, 144].
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Table 3.1: Time to Initial Detection of Activated T Cells in Mice and
Humans. Data are rounded to the nearest day (d). Means are calculated
from the midpoints of each reported range of times observed in experiments.
Remarkably, the mean, minimum, and maximum times are very similar in
mice and humans.

M. musculus (24 g) H. sapiens (62 kg)

Flu: 5 d [116, 106] Dengue: 7 d [57]

Flu: 4 d–6 d [82] Flu: 6 d [21]

Flu: 5 d–7 d [153] LCMV: 4 d–5 d [35]

HSV: 5 d–7 d [19, 32] RSV: 7 d–10 d [65]

LCMV: 5 d–7 d [72] SARS-CoV2: 4 d [100, 86]

SARS-CoV2: 5 d–10 d [164] SARS-CoV2: 6 d [77, 125]

SARS-CoV2: 7 d [141] SARS-CoV2: 7 d [92, 74]

Staph: 6 d [139] Staph: 7 d [20, 84]

Staph: 9 d [130]

Mean: 6 d Mean: 6 d

Min: 4 d Min: 4 d

Max: 10 d Max: 10 d
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Figure 3.1: Lymphoid Organ Scaling with Mass. Each data point
represents a species shown on the log-log axis. The dashed lines show the
regression fit. (A) Spleen Volume of 38 species is best fit by the regression
cMµ with c = 1.2 and exponent µ̂ = 1.1 (95% CI [0.95, 1.2]). (B) Lymph
Node Volume is best fit by c1M

µ ln(c2M) with c1 = 1, c2 = 1, and µ̂ = 0.62
(95% CI [0.55, 0.69]) for 16 species. (C) Number of Lymph Nodes for 10
species is best fit by cMµ with c = 4 and µ̂ = 0.52 (95% CI[0.40, 0.64]). The
p-value of the exponents is significant at the 0.01 level.

3.5 Empirical Scaling of Spleen Size

Figure 3.1(A) shows that spleen volume [103, 93] scales linearly with mass

(also see Table 3.3). A linear regression on log-log transformed data was

used to derive an exponent, µ̂ of 1.05 with 95% CI [0.95, 1.2] and with

R2 = 0.91. Although the data are consistent with the expectation of linear

scaling of spleen size with M , we also found that the data are consistent with

an additional logarithmic increase (M ln(cM)) (See Section 3.9.2). Such a

nonlinear scaling could accommodate the predicted logarithmic increase in

lymphocyte diversity with M hypothesized in [120].
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3.6 Empirical Scaling of Lymph Node Size

and Number

Wiegel and Perelson [120] propose LN number and size scaling based on

two key assumptions: first, maximizing LN volume and number are equally

important, and second, the total LNs volume scales approximately linearly,

proportional to body mass M (noting that scaling is also predicted to accom-

modate a small logarithmic increase in T cell diversity with mass). Based on

these assumptions, they predict that the volume of a typical LN, VLN, scales

as follows, where c is a constant,

VLN ∝ M
1
2 ln(cM). (3.1)

The number of LNs, NLN, scale as,

NLN ∝ M
1
2 (3.2)

Figure 3.1(B) shows the scaling of LN volume with mammal mass for 16

species from mass 24 g (mice) to 4500 kg (Elephant). Regression of the form

VLN = c1M
µ ln(c2M), produces, c1 = 1, and c2 = 1, µ̂ = 0.62, 95% CI [0.55,

0.69]. This is close to, but slightly higher than, the predicted 1
2

exponent.

Excluding the logarithmic term would yield a higher exponent of µ̂ =0.81,

95% CI [0.56, 1.1]. Figure 3.1(C) also shows the scaling for LN number. The
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best fit for 10 species, with mass ranging from 24g (mice) to 690 kg (Horse),

for NLN = cMµ is c = 3.8, µ̂ = 0.52, 95% CI [0.40, 0.64], consistent with

the hypothesized exponent value of 1
2
. The data roughly align (though not

perfectly) with the theoretical predictions given in Equations (3.1) and (3.2),

as well as the linear scaling of spleen volume. Based on the scaling equation,

we can roughly estimate human spleen volume, LN volume, and LN number

relative to mice mass. Our theoretical expectation is that the spleen should

be 2500 times larger, LN volume 350 times larger, and LN number 50 times

greater in humans than in mice. Actual values from Table S1 are within a

factor of two of these approximations. Given the more than three orders

of magnitude difference in the sizes of humans and mice, predictions that

are within a factor of two of empirical estimates are useful approximations,

similar to the physiological scaling predictions of heart rates, breathing rates,

and gestation times described in the introduction.

3.7 Initial First Contact Times with Respect

to Animal Mass

To derive a prediction for the time for the first T cell to find its cognate

antigen-presenting DC within a LN, we first consider a generic search problem

between a population of T cells, NTC, and a population of DCs, NDC that

the searchers are looking for in a LN volume V . In Section 3.9.4, we prove

38



Derivation 1 for the initial first-contact time, τinit:

τinit ∝
λ

NTCNDC

Where λ is defined as the mean first-contact time in a volume between a

single T cell and a single DC. Celli et al [27] showed that λ scales linearly

with volume (λ ∝ V ). Since we have the product of NTC and NDC in the

denominator, search times decrease linearly with the increase of both T cells

and DCs. Using Derivation 1 we predict search times within LNs assuming

Equation (3.1), i.e. that volume is proportional to M
1
2 ln(cM). We also

assume that the number of T cells of each clonal line is proportional to M ,

and therefore NTC is proportional to M
1
2 in each of M

1
2 LNs. We model a

simplified scenario in which DCs transports a single type of antigen to LNs,

and we only consider the T cell population that is cognate to that antigen.

We derived (Derivation 1) and simulated the model for the constant density

of T cells. In this paper, we consider two bounding cases for the scaling of

the number of antigen-carrying DCs.

In the first case, we assume that the number of DCs in an animal is

proportional to M so that the number in any particular LNs is proportional

to M
1
2 . This mirrors the scaling of cognate T cells, which is relevant for

systemic infections that increase linearly with M , like widespread respiratory

infections such as SARS-CoV-2, affecting a substantial portion of lung tissue.

In this case, the amount of antigen carried by DCs would be proportional to
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lung volume and M . Since we assume that DCs carry a number of antigens

to the draining LN that is proportional to M
1
2 , then M

1
2 DCs would migrate

to each LN. In Section 3.9.4, we derive Prediction 3.2, Prediction 3.1 by

substituting NTC ∝ M
1
2 and VLN ∝ M

1
2 ln(cM) into Derivation 1. Under this

assumption that the number of DCs carrying a particular antigen in a LN is

proportional to M
1
2 , the expected τinit will scale as M− 1

2 ln(cM), predicting

that τinit is shorter in the larger LNs of larger animals. This prediction is

validated through our IFCTs simulation shown in Figure 3.2(A), where the

result (red circles) aligns closely with the prediction (red line). Additional

analysis of this case with a constant density of searchers and targets is shown

in [52] demonstrating that τinit scale as inversely proportional to volume.

For the other extreme bounding case of the number of DCs, we consider

a small localized infection, akin to a pinprick. Here, the initial infection is

introduced at a single point, resulting in a small infection that does not scale

with animal size. Thus, in this case, we model the number of DCs carrying

antigen to each LN as a small constant, and the expected τinit scales as

ln(cM). We compare this prediction to our simulations, shown in Figure 3.2,

panel B in green. The prediction and simulation align closely with each other,

indicating that τinit scales logarithmically with animal size. Table 3.2 shows

that even in the extreme case with only a small constant number of DCs, T

cells still contact those DCs fairly quickly even in a large animal.

Table 3.2 shows the predicted τinit for both systemic and localized infections.

The scaling relationships result in predicted τinit of less than an hour in
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Table 3.2: DC-T Cell Initial First Contact Times considering 2 cases:
i) assuming the number of DC in LN scales with M0.5 (constant density of
antigen-bearing DC from a systemic infection) and ii) a constant number of
DC in LN (NDC = Constant). We estimate times for each case, considering
that T cells move in using either Brownian motion or a persistent random
walk.

NDC ∝ M
1
2 NDC = Constant

Mass Brownian
Motion

Persistent
Ran-
dom
Walk

Brownian
Motion

Persistent
Ran-
dom
Walk

24 g (Mouse) 31 min 28 min 17 min 14 min

1 kg 9.5 min 9.1 min 35 min 28 min

62 kg (Human) 1.7 min 1.6 min 55 min 60 min

humans and mice for both cases. While most of our simulations use Brownian

motion to model T cell searchers, we also investigate the empirically observed

persistent motion observed in LNs in our prior work by Fricke et al. [59].

Persistent motion decreases cell contact times by a relatively small factor.

Figure 3.2 shows that both predicted and simulated τinit for systemic and

localized infections. This intuitive outcome arises because the time for the rare

fortunate first contact is expedited when more T cells are present. However,

the advantage of a large population doesn’t benefit the typical T cell, as the

last T cell-DC encounter takes longer in larger LNs.

In addition to modeling the first time for any T cell to contact its cognate

DC, we also consider the mean first-contact times (τ̄) for a typical T cell to

contact its cognate antigen-bearing DC using a constant density of T cells for
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both systemic and local infection, following the approach outlined in [120] (See

Supplementary Figure 3.3 and Supplementary Table 3.6). For the systemic

infection, where τinit ∝ M− 1
2 ln(cM), τ̄ scales logarithmically with body mass

as M0 ln(cM) and for the local infection, where τinit ∝ M0 ln(cM), τ̄ scale

as M
1
2 ln(cM). τinit emphasizes the critical role of timely first encounters in

initiating an effective immune response, while τ̄ reflects the collective behavior

of T cells in a population.

The initial first contact time has practical implications for immune system

modeling. To demonstrate this we reanalyze the empirical data presented

in [36] using the IFCT model (see Supplementary Section 3.11 for details).

In[36], the model assumes that contact between all T cells and DCs happens

simultaneously. We implement this assumption in a Median model (see

Supplementary Section 3.11 for details) using the median first contact time

from our simulations. We compare this to our IFCT model which accounts

for the time for each individual T cell to first contact its DC target. After

5.8 days and 5.6 days post-infection for two different epitopes - NP118 and

GP283, the Median model predicts peak T cell populations of 3.9 × 107 and

1.2 × 106, respectively, whereas the IFCT model predicts more than double

these values at 9.1 × 107 and 3.4 × 106 - nearly twice as large.

Additionally, we run simulations to estimate the peak T cell population

in smaller and larger LN over 8 days in a simple model that focuses on the

exponential growth of T cells upon contacting their target DC. The IFCT

model predicts peak T cell populations that are 2.7 and 40 times larger than
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the Median model estimations for smaller and larger LNs, respectively.

Thus, by accounting for the rare early first contact, we estimate larger T

cell populations, particularly in larger LN.

3.8 Discussion

The time to initiate the adaptive immune response is similar in mice and

humans despite the three-order of magnitude difference in their mass. This

unusual mass invariance in adaptive immune response times is accompanied

by an unusual scaling of the organs in which adaptive immunity is initiated.

LN number and volume both scale sublinearly with mammal mass (M), with

exponents close to the theoretically expected 1
2
. This contrasts with spleen

and other organ volumes that scale approximately linearly with M . Theory

predicts one-half exponents to arise if scaling up LN size and LN number

have equal benefits. An obvious benefit of more LNs is the distance from a

site of infection to the nearest LNs is reduced, reducing time to transport

antigen to the LNs [120, 13].

Here we show the benefit of larger LNs: the search for antigen-bearing

DCs happens faster in the larger LN. Given the observed scaling of LN volume

(∝ M
1
2 ln(cM)), and assuming constant density of T cells and DCs in LN, we

predict faster initial contact time in larger LN by a factor of M− 1
2 ln(cM).

We validated this prediction in our simulations (Figure 3.2, panel A red circles

and lines).
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This result explains the hypothesis proposed in [120] - there is a benefit

to larger LN volume as well as larger LN number, and the approximately

one-half exponents suggest that evolution has found a middle ground in which

immune cells and antigens move quickly from sites of infection into nearby

LN, and T cells find antigens quickly within larger LN.

Our IFCT model, parameterized to match empirical observations of T cell

population growth, shows a twofold increase in T cell population compared

to previous estimates that were based on the mean first contact time rather

than the initial first contact time (Supplementary Section 3.11). The faster

growth of T cell populations could fight pathogens more effectively than was

previously modeled.

According to metabolic scaling theory, quarter-power metabolic scaling

relationships [160, 12] arise from systematic increases in transport time

through the cardiovascular network in larger animals. Here we argue that

immune response times arise from systematic changes in the lymphatic network

with animal size [50]. Unlike the cardiovascular network, which directs flow

from a single, central heart, the decentralized lymphatic network allows

immune cells to move through LNs with varying sizes, locations, and numbers.

This presents an alternative, and more flexible, way to scale that allows the

immune response to meet the evolutionary imperative for rapid response

against exponentially growing pathogens.

Here, we have highlighted one advantage that the distributed lymphatic

network provides: balancing the speed of transport to LNs with many small
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LNs with the faster detection of antigen within a few large LNs. However,

there are other constraints on LN size and number. For example, LN must

be big enough to hold a sufficient diversity of B and T cells and a sufficient

number of exponentially growing activated B and T cells during an infection;

both of these may vary with animal size. It remains an open question to fully

explain how the scaling of LN size and number, the complex dynamics of

replicating T cells [37], and the movement of both antigen and T cells into LN

[50] result in such similar times (6 days) to observe the first T cell replication

in both mice and humans in Table 3.1.

More generally, our analysis shows a benefit of large size that has not been

previously appreciated. While nearly all scaling relationships show that bigger

animals are slower, here we show that first search times are faster in larger

mammals. This makes sense intuitively - when there are more searchers, the

first target is found faster. This phenomenon has been studied by physicists

as extreme first passage times [90]. In contrast to our findings of a linear

speedup with size, previous extreme first passage time (EFPT) analyses find

a much slower speedup that is only logarithmic with the number of searchers.

The differences arise because EFPT considers an infinite number of searchers,

all starting their search at the same physical location, with search trajectories

that overlap. In contrast, in the LN search problem, a finite number of

dispersed searchers in the 3D volume of a LN can be considered independent

of each other, leading to a much greater (linear) advantage of large search

populations that we identify here.
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The different scaling properties of initial first contact times and typical

first contact times are particularly relevant when the first contact causes a

cascade of downstream events. In the initiation of adaptive immunity, when

cognate T cells contact DCs, the T cells replicate (Figure 1.1 step 5), and

changes occur in the LN, including slowing the egress of other T cells. Thus,

the first contact changes the dynamics of subsequent searches. Further, the

exponential growth of T cells begins once the first contact is made. Subsequent

T cell contacts can amplify the T cell response, but the initial first contact

causes the first T cell replication (Figure 1.1, step 5) that produces activated

T cells to locate infection in tissues (Figure 1.1, step 7). The first arrival

time of T cells in tissue is important in controlling exponentially growing

pathogens, as has been shown in response to SARS-CoV-2 infection [144] and

in our simulations of the timing of T cell response [110].

Understanding the different scaling properties of initial and mean first

contact times is also relevant for other immunological processes, for example,

the B cell search for T cells in LN (modeled in [120]) and effector T cell search

for infected cells in peripheral tissue (modeled in [110]). The analysis here

suggests that initial contacts may happen faster in larger animals with more

immune cells, but typical and last contacts (i.e., those that clear an infection)

might take longer [?].

This variation in immune response can affect the timing and duration of

infection and infectiousness in animals of different sizes; this, in turn, can

affect how diseases spread across animal communities [44]. The distinct scaling
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properties of first, typical, and last search times warrant further study in

immunology and biology more broadly. The different times to achieve typical,

first, and last search events affect any biological search that involves large

numbers of searchers. For example, the first ant in a colony that finds food

should similarly depend on colony size, and when that first event happens,

communication of the food location changes the search times for the typical

ant in the population [53, 109]. Similarly, the first individual with a rare

genetic mutation that confers some fitness advantage occurs faster in larger

populations and then changes the downstream dynamics. Thus, we suggest

that understanding how the timing of the initial first successful search depends

on the number of searchers is an essential and previously neglected question.

3.9 Methods

3.9.1 Data Collection and Analysis for Animal Mass,

Spleen Volume, Lymph Node Volume, and Lymph

Node Number

Using published data, we create a dataset of LN numbers for 10 species, LN

volumes for 16 species, and spleen volumes for 36 species. The data and

references used in our analysis are summarized in Table 3.3. When published

animal masses are reported as a range, we use the midpoint in our analysis.

We use the median when multiple values are published for the same LN.
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Table 3.3: Published Spleen Volume, Lymph Node Volume and
Lymph Node Numbers.
Mean values and citations for body mass, spleen volume, lymph node (LN)
volume, and LN number used in this paper. The number of LNs is the maxi-
mum reported value assuming that omissions are more likely than additions.

Common Name Binomial Animal Mass Spleen Vol. LN Vol. #LN (Max)

Lab Mouse Mus musculus 24 g [148, 46, 1] 37 mm3 [46] 2.9 mm3 [46] 32 [81]

Egyptian tomb bat Taphozous perforatus 27 g [148] 24 [4]

Greater Mouse Tailed Bat Rhinopoma microphyllum 28 g [148] 26 [4]

Mongolian Gerbil Meriones unguiculatus 57 g [148] 38 [80]

Hamster Mesocricetus auratus 130 g [148] 260 mm3 [60] 39 [80]

Egyptian Fruit Bat Rousettus aegyptiacus 130 g [148] 46 [4]

Tree Shrew Tupaia belangeri chinensis 140 g [145] 14 mm3 [145]

Tarsius spectrum Tarsius tarsier 170 g [148] 30 mm3 [113]

Common marmoset Callithrix jacchu 310 g [113] 400 mm3 [113]

GuienaPig Cavia porcellus 380 g [78] 4.2 mm3[66]

Rat Rattus norvegicus 320 g [148] 720 mm3 [79] 2.4 mm3 [136] 84 [80]

Central American squirrel Saimiri oerstedii 610 g [113] 860 mm3 [113]

Common squirrel monkey Saimiri sciureus 660 g [113] 900 mm3 [113]

Three-striped night monkey Aotus trivirgatus 740 g [113] 1800 mm3 [113]

Cotton-top tamarin Saguinus oedipus 790 g [113] 1600 mm3 [113]

Northern greater galago Galago garnettii 800 g [113] 2100 mm3 [113]

Grivet Cercopithecus aethiops 1.4 kg [113] 2900 mm3 [113]

Tufted capuchin Cebus apella 2.2 kg [113] 2300 mm3 [113]

Possum Trichosurus vulpecula 2.7 kg [148] 200 mm3 [76] 67 [76]

Rabbit Oryctolagus cuniculus 3 kg [45] 62 mm3 [45, 67, 70]

White-faced capuchin Cebus capucinus 3.1 kg [113] 11 000 mm3 [113]

Crab-eating macaque Macaca fascicularis 3.3 kg [113, 143] 6800 mm3 [113] 410 mm3 [108]

Cat Felis catus 4.5 kg [10] 760 mm3 [126, 140]

Bonnet macaque Macaca radiata 4.5 kg [113] 7300 mm3 [113]

Blue monkey Cercopithecus mitis 4.9 kg [113] 81 000 mm3 [113]

Black howler Alouatta caraya 5 kg [113] 8800 mm3 [113]

Southern pig-tailed macaque Macaca nemestrina 5.2 kg [113] 9600 mm3 [113]

Rhesus macaque Macaca mulatta 5.2 kg [113] 4100 mm3 [113]

Lar gibbon Hylobates lar 5.7 kg [113] 13 000 mm3 [113]

Japanese macaque Macaca fuscata 5.8 kg [113] 4400 mm3 [113]

Tana River mangabey Cercocebus galeritus 6 kg [113] 5100 mm3 [113]

Collared mangabey Cercocebus torquatus 5.1 kg [113] 8600 mm3 [113]

Mantled howler monkey Alouatta palliata 6.2 kg [113] 44 000 mm3 [113]

Stump-tailed macaque Macaca arctoides 6.2 kg [113] 9300 mm3 [113]

Black-handed spider monkey Ateles geoffroyi 7.6 kg [113] 39 000 mm3 [113]

Koala Phascolarctos cinereus 10 kg [39] 600 mm3 [68]

Formosan rock macaque Macaca cyclopis 10 kg [113] 7600 mm3 [113]

Olive baboon Papio anubis 13 kg [113] 16 000 mm3 [113]

Yellow baboon Papio cynocephalus 13 kg [113] 17 000 mm3 [113]

Chacma baboon Papio ursinus 15 kg [113] 18 000 mm3 [113]

Dog Canis lupus familiaris 22 kg [54] 48 000 mm3 [54]

Chimpanzee Pan troglodytes 30 kg [113] 90 000 mm3 [113]

Sheep Ovis aries 50 kg [54] 95 000 mm3 [54]

Dolphin Sotalia fluviatilis 60 kg [148] 1800 mm3 [146]

Human Homo sapiens 62 kg [113, 158] 160 000 mm3 [113] 560 mm3 [114] 1200 [123]

Gorilla Gorilla gorilla 65 kg [113] 180 000 mm3 [113]

Goat Capra hircus 88 kg [98] 210 mm3 [98]

Pig Sus scrofa 120 kg [148] 330 000 mm3 [54] 2000 mm3 [134, 135]

Camel Camelus dromedarius 390 kg [124] 30 000 mm3 [3, 124]

Cattle Bos taurus 540 kg [54] 860 000 mm3 [54] 4200 mm3 [75]

Horse Equus caballus 690 kg [148] 950 000 mm3 [54] 8000 [8]

Elephant Loxodonta africana 4500 kg [71] 5300 mm3 [71]
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When animal sex is reported, we use male values, because many studies that

specifically report LN sizes for female animals are studying the effects of

cancer, which impacts LN volume [4].

We compute the spleen volume from the mass using the spleen tissue density

(1.1 g mL−1 [29]). When published LN numbers were given as a range, the

upper limit is used in our analysis. We use the median values of the number

of LNs reported for multiple strains of mouse. LN volumes are approximate

estimates for each species, which are obtained using various methodologies

in order to facilitate comparisons, as LNs volumes can vary significantly,

even within a single individual, particularly in larger animals. For instance,

Qatarneh et al. [123] give ranges from 2 mm to 38 mm for human LN diameter.

Sometimes, the total volume of each LN is reported, but often only the width

and length, or possibly just length, is reported. To estimate volume, we

assume LNs are spherical in the case of a single measurement and ellipsoid in

the case of two measurements. This may be a source of error in estimating

the LN volume. Publications also vary in the number of samples used. When

a publication reports values for multiple LNs or from multiple individuals,

we take the median value. Different measurement methods, i.e., imaging vs.

physical measurements using calipers, may introduce additional variation

in the estimated volumes of LN. Although several sources measure a large

subset of LNs in larger animals (Table 3.3), we are not aware of a complete

size estimate for all LNs in any large animal. However, human LN size is

particularly well studied, which provides some context to interpret variation
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in LN size. Typically human LN is estimated to be approximately 1 cm in

diameter, and diameters larger than 2 cm are considered abnormal or a sign

of a disease [142, 38]. We use the mean value of the middle of the range in

[115], which is exactly 10.25 mm, and consistent with the 1 cm rule of thumb.

3.9.2 Alternative Hypothesis of the Scaling of Spleen

Volume

Although the spleen volume data are consistent with the expectation of linear

scaling of spleen size, we also tested an alternative of nonlinear scaling based

on the hypothesis that the total population of T cells and B cells should

be proportional to mass M , multiplied by a logarithmic term (ln(cM), c =

arbitrary constant, M = animal body mass)[120]. This assumes that the

number of T cells in each clonal line (that recognize a specific antigen) is

proportional to M , and the diversity of T cell clones increases logarithmically

with M based on the diversity of receptors expected by shape-space theory

[119, 162]. This prediction is consistent with humans’ slightly larger T cell

repertoire compared to mice [11, 26, 157, 73].

Including a logarithmic term in the regression results in a best-fit exponent

of µ̂ = 0.99. The Akaike’s Information Criterion (AIC) [6] values for the

models with and without logarithmic terms are 23 and 21, respectively. The

lower AIC value slightly favors the model without logarithmic terms, but

with such close AIC values, the theorized logarithmic term to accommodate
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greater lymphocyte diversity in larger animals also is plausible.

3.9.3 Statistical Analysis

We assessed the goodness of fit of our regression models to empirical data

by computing the R-squared value, using the fit function in MATLAB for

the linear model (the LN number, spleen volume without the log term) and

the Akaike’s Information Criterion (AIC) value, using the fitnlm function in

MATLAB for the non-linear model (LN volume, spleen volume with the log

term). We computed p-values using the fit function in MATLAB, which uses

a two-tailed t-test.

3.9.4 Derivation of Initial and Mean First Contact

Times

We derive mathematical equations to determine the expected first-contact

times (τ) between T cells and different numbers of DCs carrying antigen

within LNs. We follow the assumptions and approach in Perelson and Wiegel

[120] and the Brownian motion model of contact time detailed in Celli et al.

[27]. All the notations used in this paper are listed in Table 3.4.

Assumption 1. We assume encounter times are memoryless, and therefore,

exponentially distributed. Specifically, if the number of T cells that recognize

a given antigen in a LN is NTC, then the probability that one DC chosen at

random encounters any of the cognate T cells in time t, P (Tt), can be modeled
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Table 3.4: Notation Variables used in this work.

M Body mass

VSpleen LN volume

VLN LN volume

NLN LN number

c Arbitrary constant

NDC Number of DCs of antigen per type per LN

NTC Number of T cells of antigen per type per LN

λ Mean first-contact time between intra-LN a single cognate DC and a T cell

t Time interval for intra-LN cognate DC-T cell random encounter

τinit Expected value of intra-LN single cognate DC-T cell pair initial first-contact time

τ̄ Mean value of intra-LN cognate DC-T cells first-contact time

µ scaling exponent

with an exponential distribution [27],

P (Tt) =
NTC

λ
e

−tNTC
λ

Note that we experimentally validated that the assumption that contact

times are exponentially distributed is reasonable. We found that in all

simulations, the exponential fit was better than a normal distribution fit

according to the sum square error (SSE) and AIC (see Figure 3 and Table 2

in [52])

Definition 1. λ is the mean contact time between a single searcher and a

single target within a volume V . Celli et al. [27] showed that λ ∝ V .

Derivation 1 (General Scaling Formula for Expected Initial First Contact

Time). The expected initial first contact time is equal to the mean first contact
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time between a single searcher and a single target in a volume divided by the

product of the number of searchers and the number of targets present in the

volume.

Given there are NDC targets and NTC searchers, then from Assumption 1,

the probability that at least one searcher encounters a target between time 0

and time t is,

P (T < t) =
NDCNTC

λ
e

−tNDCNTC
λ

To obtain the expected encounter time, we integrate over all time,

τinit =

∫ ∞

0

tNDCNTC

λ
e

−tNDCNTC
λ dt

τinit =
λ

NDCNTC

Derivation 1 states that the expected first contact time is inversely proportional

to the product of the number of T cells and DCs. In other words, as the

product of these two quantities increases, the expected first contact time

decreases.

Assumption 2. To model the initial and mean first contact time, we make

the parsimonious assumption that T cells and DCs are initially uniformly

distributed within the T cell zone of the LN.

Derivation 2 (General Scaling Formula for the Mean First Contact Time).

The mean time a searcher takes to make first contact with a target scales as
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volume divided by the number of targets.

From Definition 1 λ scales with volume V . From Assumption 2 the cells

are uniformly distributed. Following Perelson and Weigel [120], the time

to find a target is inversely proportional to the number of targets (NDC),

yielding:

τ̄ ∝ V

NDC

Assumption 3. In order to model search times within a LN, we assume that

the number of T cells of each clonal line in an animal is proportional to M ,

and therefore NTC is proportional to M
1
2 in each of its M

1
2 LNs.

Assumption 4. Perelson and Wiegel [120] predict that the volume of a LN

(VLN) scales as M
1
2 ln(cM) this is to accommodate the greater clonal diversity

of larger mammals.

Derivation 3 (Initial First Contact Time Between Cognate T Cell and

DC Within the LN). the expected initial first contact time between cognate

populations of DCs and T cells scales logarithmically with mass divided by

the number of DCs, i.e.,

From Definition 1 we have λ ∝ VLN and from Assumption 4 we have

VLN ∝ M
1
2 ln(cM), therefore

λ ∝ M
1
2 ln(cM)
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Substituting λ into Derivation 1 and M
1
2 for NTC from Assumption 3, yields

the expected initial first contact time in a LN:

τinit =
λ

NDCNTC

∝ M
1
2 ln(cM)

NDCM
1
2

τinit ∝
ln(cM)

NDC

We derive τinit for two relevant bounding cases: 1) the number of DCs

responding to infection is proportional to M (i.e., a constant density of DCs

respond to a systemic infection). Therefore, the number in a single LN is

assumed proportional to M
1
2 in each of the M

1
2 LN. 2) when the number of

DCs responding to an infection is constant, reflecting a localized infection.

For each of these boundary cases, we derive the expected initial first contact

time and the mean first contact time.

Prediction 3.1 (Initial First Contact with Constant Density of DCs). The

density of cognate DC is constant with respect to M , and the number of LNs

scales with M
1
2 . Hence the number of DCs (NDC) per LN scales with M

1
2 .

Substituting the scaling of DCs in Derivation 3, we have NDC ∝ M
1
2 ⇒ τinit ∝

M− 1
2 ln(cM).

Prediction 3.2 (Initial First Contact with Constant Number of DCs). Sim-

ilarly, if the number of DCs presenting cognate antigen in LNs is constant

as M increases then we substitute a constant for NDC in Derivation 3. Then
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the expected initial first-contact time scales logarithmically with mass, i.e.,

NDC = C ⇒ τinit ∝ ln(cM).

In addition to modeling the initial first time for a T cell to contact its

cognate DC, we also consider the mean first-contact times (τ̄) for a typical

T cell to contact its cognate antigen-bearing using a constant density of

T cells and DCs, following the approach outlined by Perelson and Wiegel

[120]. Consistent with their predictions, we find a logarithmic increase in τ̄

(Figure 3.2, panel A, top blue line). Considering the other extreme case of

a constant number of DCs carrying the relevant antigen, we predict mean

contact times to increase with M
1
2 ln(cM).

Derivation 4 (Mean First Contact Time Between Cognate T Cell and DC

Within the LN). The mean time a T cell takes to make first contact with a

particular DC displaying cognate antigen when the LN volume scales with

mass, scales as M
1
2 ln(cM) divided by the number of DCs, i.e.,

τ̄ ∝ M
1
2 ln(cM)

NDC

The result follows immediately from substituting the value of VLN from

Assumption 4 into Derivation 2.

Prediction 4.1 (Mean First Contact with Constant Density Scaling). The

density of cognate DCs is constant with respect to M , and the number of LNs

scales with M
1
2 . Therefore, NDC per LN scales with M

1
2 . Substituting the
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scaling of DCs in Derivation 4, the expected mean first-contact time scales

logarithmically with mass, i.e., NDC ∝ M
1
2 ⇒ τ̄ ∝ ln(cM).

Prediction 4.2 (Mean First Contact with Constant Number Scaling). Simi-

larly, if the number of DCs presenting cognate antigen in LNs is constant as

M increases, then we substitute a constant for NDC in Derivation 4. Then

the expected mean first-contact time scales as mass to the one-half power, i.e.,

NDC = C ⇒ τ̄ ∝ M
1
2 ln(cM).

3.9.5 Agent Based Model

To validate our mathematical model, we implement an agent based model,

termed IFCT using the MASON libraries [97] in Java. The model simulates

two types of agents - T cell (searchers) and DC (targets). Both are uniformly

distributed within a cubic representation of a LN. LN space is modeled as a

continuous Cartesian grid in three dimensions with fixed reflective boundaries.

IFCT model is run as a discrete-time simulation, with each time step

representing one second. At the beginning of each simulation run, a predefined

number of T cells and DCs are initialized (see Table 3.5). The positions

of DCs are static throughout the simulation. T cells, on the other hand,

move in each time step with either Brownian motion or a persistent random

walk, which was modeled from empirical data in Fricke et al. [59] (Note

that previous analysis [27, 120], assumed Brownian motion). Supplementary

Table 3.6 contains the results from both types of walks, demonstrating their
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Table 3.5: Experimental factor levels used in the ABM experiments.

Mass (M) 10 g 1 × 102 g 1 × 103 g 1 × 104 g

1 × 105 g

VLN ∝ M
1
2
ln(cM) 7.3 mm3 46 mm3 220 mm3 920 mm3 3600 mm3

NTC ∝ M
1
2 20 63 200 630 2000

NDC ∝ M
1
2 80 250 800 2500 8000

NDC = constant 200 200 200 200 200

similarity. Figure 3.2 and Supplementary Figure 3.3 shows the result of

Brownian motion. Following the hypothesis given in [120], we assume T cells

scale ∝ M
1
2 . We model T cell motion without considering collisions so that

T cells pass through each other.

We run the IFCT model for the two bounding cases, one in which NDC ∝

M0, i.e. a constant, and another where NDC ∝ M
1
2 . Each case is simulated for

five different animal mass (M) values. For each M, we run 100 experimental

replicas for each combination of factors where the initial distribution of the

T cells and DCs are stochastic. We assume that there is a contact between

a T cell and DC when their centers are within 10 microns. The simulation

result from IFCT model confirms that the distribution of contact times is

exponential, an assumption that underpins the theoretical derivation.

3.9.6 Fitting Exponents Using the ABM

The first contact time between any cognate DC and T cell initiates the

adaptive immune response. To compute exponent µ over M in the initial
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first-contact time formulas from the experimental data, we first generate a

generic formula by combining Prediction 3.1 and Prediction 3.2 as follows,

τ ∝ Mµ ln(cM)

For ease of presentation, we convert the generic formula to base 10 as follows,

log10(τ) = log10(aM
µ ln(cM))

= log10(a) + µ log10(M) + log10(ln(c) + log10(M) ln(10))

If we set, C1 = log10 a and C2 = ln(c) then,

log10(τ) = C1 + µ log10(M) + log10(C2 + log10(M) ln(10))

and exponentiating,

τ = 10C1+µ log10(M)+log10(C2+log10(M) ln(10))

Perelson and Wiegel in [120] ask how long it takes for a single B cell to

encounter a T cell given assumptions Equations (3.1) and (3.2). This approach

considers the mean time it takes any particular B cell to encounter a T cell.

They proposed a formula for the mean first contact time, τ̄ , which a B cell

needs to make first contact with some T cell of the complementary clone
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should scale like,

τ̄ ∝ VLN

NTC

(3.3)

We used the same method to compute the fitted exponent value for the mean

first contact time in our code (see the Supplement), as described above for

the initial first contact time.
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Figure 3.2: Theoretical Predictions for Search Time vs Animal Mass
are Consistent with Simulations of T Cell Contact Times in Lymph
Nodes. Panel A: For systemic infection (NDC ∝ M

1
2 ), the predicted

initial first-contact time (τinit) scales as τinit ∝ Mµ ln(cM) with µ = −0.5
(dashed red line). The fit (solid red line) to simulated data (red circles)
gives µ̂ = −0.53 (95% CI[-0.61, -0.45]). Panel B. For small localized
infections (NDC ∝ M0), the theory predicts the initial first contact time as
τinit ∝ Mµ ln(cM) with µ = 0 (dashed green line). The best fit (solid green
line) to simulated data (green points) gives µ̂ = 0.0(95% CI [-0.01, 0.01]). 100
simulations were run for each LN volume that was estimated (from Eqn 1)
for each value of M. The simulations for these two cases are consistent with
theoretical predictions.
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Supplementary materials for
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Adaptive Immune Response

3.10 Mean First Contact Time

Table 3.6 shows the predicted values of mean first contact times τ̄ for both

systemic and localized infections. For larger mammals, τ̄ is predicted to range

from several days to weeks, which is far longer than the observed times for T

cells to find their DC targets in the LN and replicate to detectable numbers.

Thus, we suggest that the mean first contact time is not relevant for initiating

the adaptive immune response, although it may be an important factor in

determining the magnitude or timing of the peak T cell response.

Figure 3.3 shows that how both predicted and simulated τ̄ scale for

systemic and localized infections. For systemic infection where NDC scale as

M
1
2 , the prediction is τ̄ ∝ M0ln(cM) and the fit from the simulation gives
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Table 3.6: DC-T Cell Mean First Contact Times considering 2 cases:
i) assuming the number of DC in LN scales with M0.5 (constant density of
antigen-bearing DC from a systemic infection) and ii) a constant number of
DC in LN (NDC = Constant). We estimate times for each case, considering
that T cells move in using either Brownian motion or a persistent random
walk.

NDC ∝ M
1
2 NDC = Constant

Mass Brownian Motion Persistent Random Walk Brownian Motion Persistent Random Walk

24 g (Mouse) 0.80 d 0.78 d 0.65 d 0.51 d

1 kg 1.7 d 1.8 d 9 d 7.1 d

62 kg (Human) 2.9 d 3 d 17 wk 13 wk

τ̄ ∝ M0.01ln(cM). The slight increase in τ̄ for systemic infection in Figure 3.3

indicates that τ̄ increases logarithmically with mass, despite the near-zero

exponent of M.

For a localized infection (NDC = Constant), τ̄ scales as M
1
2 . This intuitive

outcome arises because the time for the rare fortunate first contact is expedited

when more T cells are present. However, the advantage of a large population

doesn’t benefit the typical T cell, as they don’t experience a faster encounter.

3.10.1 Mean First Contact Times Within an Abstract

Volume

If the density of T cells and DCs are kept constant, NTC ∝ NDC ∝ V , then

from Derivation 1,

τinit ∝ V −1 (3.4)
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That is, given a constant density of T cells and DCs, the time for the initial

first contact between a T cell and a DC is inversely proportional to the LN

volume. When the density of the targets is constant, NDC ∝ V , then from

Derivation 2, the mean first contact time is constant with respect to volume,

in sharp contrast to tinit:

τ̄ ∝ V 0 (3.5)

These simple equations predict that if a constant density of searchers look

for a constant density of targets in a larger three-dimensional space, the first

contact will happen faster, the speedup will be proportional to the volume in

which the search takes place, and the mean first contact will be constant across

all LN volumes. We simulate a uniform random distribution of searchers and

targets in Figure 4 from [52] which shows that initial first contact times scale

inversely proportional to volume. Figure 3.3 shows that for uniform random

distribution of searchers and targets, the mean first contact is constant across

volume as predicted by Equation (3.4) and Equation (3.5). The inverse linear

dependence of τinit on both NDC and NTC occurs because each searcher is

assumed to search for each target independently. This assumption holds for

searchers moving with a random walk in a three-dimensional space, leading to

an exponential distribution of search times (see Figure 3 and Table 2 in [52])
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3.11 Model Validation

We used experimental data from De Boer et. al. [36] to validate that our

IFCT simulations provide biologically realistic estimates of the times for

T cells to first contact their cognate DC. We compared contact times and

resulting peak T cell populations from two models. We compare our IFCT

model that explicitly represents the time that each T cell takes to contact its

cognate DC to a Median model that uses the median first contact time as

the estimated contact time for all T cells to contact their cognate DC. We

show that the median contact time that we estimate from our IFCT model is

consistent with data and assumptions in [36]. We also show that explicitly

considering the variation in contact times leads to larger estimated peak T

cell populations.

We set the parameters of our IFCT simulation to correspond to the

empirical system modeled in [36]: 60 precursor T cells searching for DCs in a

spleen of volume 46 mm3 for two different epitopes (NP118 and GP283). We

note that these empirical findings are close to our scaling estimate that a 37

mm LN should contain 63 T cells (Table 3.3).

Following [36], we consider four post-infection phases from the initial

infection until the T cells reach their peak population:

1. travel time for a T cell and antigen carrying cognate DCs to travel to

the spleen (ttravel)
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2. initial contact time between the T cells and their cognate antigen-

bearing DC (τinit)

3. activation time it takes for a T cell to become fully activated upon

encountering the cognate DC (tact)

4. proliferation time it takes for activated T cells to replicate (trep).

We define recruitment time (trec) as

trec = ttravel + τinit + tact

The model of the mouse spleen [36], which we call the Median model, uses

the same trec and the same τinit for every T cell. In [36], trec was estimated to

be 1.2 days for epitope NP118 and 1.7 days for epitope GP283. The model

in [36] does not explicitly estimate τinit. Here we estimate this time for all

T cells as the median of all initial contact times (τmedian
init ) collected from our

IFCT model.

In our IFCT simulation, we draw each contact (τ iinit) from our simulation

that ranges from 0.47 hrs to 150 hrs (0.019 days to 6.4 days) with a median

(τmedian
init ) time of 22 h (0.9 days). The list of first contact times for each

simulated T cell is available here: 1.

To compare the IFCT model to the Median model, we compute the sum of

the travel time and activation time (ttravel+act = ttravel + tact) by subtracting

1https://docs.google.com/spreadsheets/d/1ur3b4BpyfezHVAKFbyul0Y7N X9-QGB
A BxZjYZuvsA/edit?usp=sharing
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the median first contact time τmedian
init from the recruitment time trec.

ttravel+act = ttravel + tact = trec − τmedian
init

This gives us the summation of travel and activation time to be 6.8 hr and

18.8 hr for NP118 and GP283 epitopes respectively.

We calculate proliferation times (trep) as the inverse of proliferation rates

rrep in [36] given as 2.9 per day for epitope NP118 and 2.6 per day for epitope

GP283. Thus trep is 0.39 days and 0.35 days for these epitopes. [36] estimated

that proliferation stops, reaching the peak population tpeak, at day 5.8 for

epitope NP118 and at day 5.6 for epitope GP283. The IFCT model assumes

the exponential growth occurs between tirec and tpeak, and we define that

remaining time tirem for each T cell i as follows,

tirem = tpeak − ttravel+act − τ iinit

We continue this until tirem >= trep so that we only count the T cells that

complete proliferation before the tpeak. The total number of T cells (Npeak)

at tpeak was calculated in the IFCT model as

Npeak =
n∑

i=1

et
i
rem∗rrep

In Figure 3.4, we show the correspondence of the mean T cell population

dynamics of 10 simulations from the IFCT model with data from [36] over
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Table 3.7: Parameters and Peak Population estimates from the
Median and IFCT models. The recruitment time and proliferation time
are from [36]. The travel and activation time (ttravel+act) represents the
corresponding time after subtracting the median first contact time (τmedian

init )
from the recruitment time (trec). Peak T cell populations are after 5.8 days
and 5.6 days post-infection for epitope NP118 and GP283 respectively. The
median first contact time in the Median model is 22 hr for all T cells and the
first contact time is different for every T cell in the IFCT model.

Parameter Symbol Units NP118 GP283

Recruitment Time trec days 1.2 1.7

Travel and Activation Time ttravel+act days 0.26 0.76

Proliferation Time trep days 0.35 0.39

Peak T cell Population Based on Fits

Median Model Estimation 3.9 × 107 1.2 × 106

IFCT Model Estimation 9.1 × 107 3.4 × 106

Fold increase 2.3 2.1

time and with data from Median Model at tpeak. Table 3.7 shows that the

IFCT estimated peak T cell populations at tpeak are twice as high as the

Median model.

This analysis shows two things. First, the median first contact time τmedian
init

calculated from our IFCT simulations is consistent with times in [36] when the

recruitment time trec is broken down into travel, simultaneous contacts, and

activation phases. Second, when we model the process in which each T cell

finds its cognate antigen and then proliferates exponentially, the population

of T cells begins growing earlier and reaches a higher peak compared to the
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modeling of the average T cell in prior work.

3.11.1 Analysis of IFCT model effect on peak T cell

population across different lymph node sizes

We further analyze T cell population growth for systemic infection (NDC ∝

M0.5). For simplicity, we don’t consider the travel time and activation time;

we model the proliferation that begins after the first contact time τinit between

T cell and DC. We consider the T cell population reaches its peak at tpeak,

giving us trem as

trem = tpeak − tinit

We compare the population in the Median and IFCT models for two cases: a

smaller LN of 46 mm3 with 60 T cells and a larger LN of 3600 mm3 with 1733

T cells. The LN size (VLN) and its corresponding T cell numbers (NTC) are

determined based on Assumption 4 (VLN ∝ M0.5 ln(cM)) and Assumption 3

(NTC ∝ M0.5). We assume the population reaches its peak at tpeak = 8th day

after the first T cell reaches the DC.

Figure 3.5 illustrates that the IFCT model begins replication immediately

after the initial T cell contact (0.02 days for the smaller LN and 0.0015 days

for the larger LN) which captures the critical early interactions between T

cells and DC. In contrast, in the Median model, the initiation of the T cell

replication is delayed until the median contact time (0.9 days for the smaller

LN and 2.06 days for the larger LN). Table 3.8 shows the population at
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day 4 and day 8 in both models. This early start in the IFCT model is

consistent with biological evidence that T cells begin proliferating as soon as

they encounter an antigen, a key event in initiating the immune response. As

a result, the IFCT model predicts consistently higher T cell populations. By

the time the Median model initiates proliferation, the IFCT model predicts

239 T cells in the smaller LN and 59700 T cells in the larger LN, which are 3.98

and 33.67 times higher, respectively, than the Median model’s predictions at

the median contact times of 0.9 and 2.06 days for smaller and larger LN. This

substantial early proliferation in the IFCT model is particularly advantageous

in larger LN with more T cells.

The ratio between the IFCT model predictions and the Median model

predictions remains approximately proportional over time (2.68 for smaller

LN and 41.44 for larger LN).

Additionally, Figure 3.5 shows that the T cell replication starts early in

the smaller LN compared to the larger LN in the Median model. This is

primarily because the median first contact time is longer in the larger LN

than in the smaller LN. While the initial first contact occurs 13.33 times

faster in the larger LN (0.0015 days) compared to the smaller LN (0.02 days),

the final first contact is almost twice as slow in the larger LN (7.62 days)

compared to the smaller LN (3.98 days). During the time difference between

the median contact times of the smaller and larger LNs, the smaller LN

undergoes approximately 11 more rounds of replication than the larger LN.

However, in reality, replication in larger animals likely continues for a longer
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Table 3.8: Comparison of T Cell Population Growth Predictions for
Smaller and Larger Lymph Nodes Using Simplified Median and
IFCT Models at Day 4 and Day 8. The table illustrates the median
contact time and T cell population estimates after 4 and 8 days for a smaller
LN (60 initial T cells) and a larger LN (1733 initial T cells) based on the
two models. The Median model assumes simultaneous contact for all T cells,
while the IFCT model allows for individual first contact times. X-fold growth
represents the ratio between IFCT and Median model predictions for each
scenario.

Smaller LN w/ 60 T cells Larger LN w/ 1733 T cells

Median Contact Time (days) 0.90 2.1

After day 4 After day 8 After day 4 After day 8

Median Model Prediction 4.8 × 105 5.2 × 1010 4.7 × 105 5.1 × 1010

IFCT Model Prediction 1.3 × 106 1.4 × 1011 1.9 × 107 2.1 × 1012

Fold increase 2.7 2.7 40 41

duration, they may eventually catch up to the population in the smaller LN,

despite the initial delay.

3.12 Caveats and Limitations

There are several caveats to consider in the empirical and modeling work

we present here. First, all data we provide are species averages, and many

are difficult to estimate from empirical data. Few studies have counted the

total number of LN in different species, introducing potential variability.

Additionally, estimating LN volumes accurately from one or two length

measurements is difficult, particularly in large animals where LN sizes may

vary dramatically within individuals. See Section 3.9 for further details on
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potential biases from measurements. However, the approximate LN volumes

reported in published literature show a clear trend with animal mass, allowing

us to understand significant differences in LN size and number. This is

validated by comparing data between the best-studied species – humans and

mice. The distribution of LN volumes within animals remains a question for

future studies.

Our mathematical models and simulations are, of course, simplifications of

the complex search processes that occur in LNs. We model the search process

as a Brownian random walk in a cube or sphere without considering the

crowding or structures that may influence how T cells move in LNs, although

we do consider alternate movements that mimic real T cell movement patterns

[59] and find that realistic movement decreases search times by only a small

percentage (Table 3.2 in the main file).

The assumption that T cells and DCs are uniformly distributed throughout

the T cell zone at any given time is only an approximation. In reality, T cells

and DCs enter LNs through lymphatic vessels over time. We simplify the

complex dynamics of how T cells bind to different antigens presented by DC

by considering only a single clonal line of T cells and a single antigen. It is

unclear how many different clonal lines of T cells might match a particular

antigen or the number of antigens DCs present from any given pathogen.

There are empirical and theoretical suggestions that the clonal diversity of

T cells increases slowly with M . Figure 3.1 in the main file shows spleen

volume, and LN volume scaling could accommodate a linear increase in T
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cells per clonal line and a logarithmic increase in the number of clonal lines.

Still, more data are needed to test this hypothesis.

Because our IFCT model is focused on search times within LN, we do

not address other potential causes or consequences of LN size and number.

Physiological and anatomical constraints exists on the size, number, and

placement of LN. LNs have multiple functions, for example, holding the

population of exponentially growing B cells and T cells, which would logically

also constrain the minimum size of LN. How these factors influence LN size

remains an open question.

Finally, many factors determine the scaling of immune response times

that we do not address here. The magnitude and scaling of the times to

complete multiple steps in Figure 1.1 could be affected by the animal’s size

and metabolism. In particular, the transport of antigen from peripheral tissue

to LN by DC would be longer in larger animals if DC speed is constant

and LN are lower density and therefore further apart [13]. T cells might be

expected to replicate more slowly in larger animals, following the typical

quarter-power slowdown with body mass. This would mean it would take 7

times longer for T cells to replicate in humans vs. mice, but we are aware of

no evidence of such systematic differences.

Perelson has hypothesized that LN might be metabolically privileged

locations with sufficient metabolic resources for T cells to replicate as fast in

humans as mice [120]. Finally, the timing of adaptive immune responses is

intricately connected to innate immune responses, which have their own scaling
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properties, e.g., those investigated in [43]. Others have identified differences in

components of immune response across species [7, 34], suggesting a complex

relationship between animal size and immune response that is important

for translating observations between laboratory animals, animal sources of

zoonotic disease and humans. While we leave a full accounting of factors

that contribute to the scaling of adaptive immune response times to future

work, the analysis we present here points to the decentralized architecture of

the lymphatic network with sublinear increases in LN size and number with

animal size as a key factor explaining how the adaptive immune response can

be nearly as fast in large vs. small animals.
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Figure 3.3: Theoretical Predictions for Mean Search Time vs Animal
Mass are Consistent with Simulations of T Cell Contact Times in
Lymph Nodes. Panel A: For systemic infection (NDC ∝ M

1
2 ), the

predicted mean first-contact time is τ̄ ∝ Mµ ln(cM) with, µ = 0 (dashed blue
line). The best fit (solid blue line) for the corresponding simulated data (blue
points) gives the exponent µ̂ = 0 (95% CI [-0.01, 0.01]). Panel B. For small
localized infections (NDC ∝ M0), the predicted mean first-contact time, is
τ̄ ∝ Mµ ln(cM) with µ = 0.5 (dashed purple line). The best fit (solid purple
line) to the simulated data (purple points) gives the value for the exponent,
µ̂ = 0.50 (95% CI [0.49, 0.51). The simulations for all these two cases are
consistent with theoretical predictions.
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Figure 3.4: T Cell Population Growth From the IFCT Model Com-
pared to Empirical Data and Median Model. Panel A depicts the T cell
population over time in response to epitope NP118 for 5.8 days post-infection
and Panel B depicts the same for epitope GP283 for 5.6 days post-infection.
Blue data points are empirical data from [36] representing T cell populations
at specified time points post-infection. The red data point is the Median
model prediction of the peak T cell population. The green line shows the
estimates from the IFCT model parameterized by data in [36].
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Figure 3.5: T Cell Population Comparison Between Simplified Models
for Smaller and Larger Lymph Nodes. The figure compares the log-
transformed daywise T cell populations predicted by the Median model and
IFCT model upto 8 days of exponential growth. The red dashed line represents
the Median prediction for a smaller LN (60 initial T cells), and the red solid
line corresponds to the Median prediction for a larger lymph node (1733
initial T cells). The green dashed line represents the IFCT model for a smaller
LN (60 initial T cells), and the green solid line corresponds to the IFCT
prediction for a larger lymph node (1733 initial T cells).
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4.2 Abstract

Many biological scenarios have multiple cooperating searchers, and the timing

of the initial first contact between any one of those searchers and its target

is critically important. However, we are unaware of biological models that

predict how long it takes for the first of many searchers to discover a target.

We present a novel mathematical model that predicts initial first contact

times between searchers and targets distributed at random in a volume. We

compare this model to the extreme first passage time approach in physics

that assumes an infinite number of searchers all initially positioned at the

same location. We explore how the number of searchers, the distribution

of searchers and targets, and the initial distances between searchers and

targets affect initial first contact times. Given a constant density of uniformly

distributed searchers and targets, the initial first contact time decreases

linearly with both search volume and the number of searchers. However,

given only a single target and searchers placed at the same starting location,

the relationship between the initial first contact time and the number of

searchers shifts from a linear decrease to a logarithmic decrease as the number

of searchers grows very large. More generally, we show that initial first contact

times can be dramatically faster than average first contact times and that

initial first contact times decrease with the number of searchers while average

search times are independent of the number of searchers. We suggest this

is an underappreciated phenomenon in biology and other collective search
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problems.

4.3 Introduction

There are many biological examples of a large number of searchers attempting

to find one or more targets. Sometimes, the first target discovered by the

first lucky searcher is particularly important because it results in a cascade

of downstream events. For example, in ant colonies, many ants forage for

food; when the first one is successful, it may use pheromones to recruit

other searchers. Thus, the time for the first ant to discover food may have a

disproportionate impact on resource collection rates. Similarly, näıve T cells

search for cognate antigen in lymph nodes. When T cells bind with target

antigen they activate and replicate in an exponentially growing population of

cells. Thus, the timing of the first contact by the first T cell that finds its

target is particularly important in initiating the adaptive immune response.

In these examples, the time it takes for the initial discovery of a target (what

we call the initial first contact time) may be more important than the average

time of all of the searchers to find their first targets. Here we develop and

analyze mathematical models and computer simulations to understand which

factors affect initial first contact times.

In immune system models, it is common to consider the mean or median

search time for a typical T cell to find its target, e.g., [120, 162, 87, 27, 50].

An analysis of initial first contact times in three-dimensional volumes has
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only recently been investigated in a series of publications [90, 89, 91], but

these models do not apply to T cell search that motivated our work. The

derivations in these other studies apply to searchers that start in a single

location and search for a single target, and they rely on population sizes that

approach infinity. We call the predictions of initial first contact times from

such models t∞.

In this work we derive initial first contact time predictions for finite

populations of searchers, tfin. This model initially assumes a number of

searchers and targets distributed at uniform random within a volume, and

we predict how tfin scales as the number of searchers increases. We then test

different search scenarios, assess when assumptions made by the tfin and t∞

models hold, and compare simulated initial first contact times predicted by

tfin and t∞.

While we were motivated to develop tfin to predict how quickly the first T

cell would find its target antigen in a lymph node, we also examine whether

tfin can explain other search scenarios relevant for social insects and other

collective foragers. Many studies have investigated how colony size affects

social insect foraging, finding that larger colonies are more complex [9], mass

recruitment is more effective in larger ant colonies [16], but waggle dances

are not necessarily more effective in larger bee colonies [42]. [122] found

larger colonies searched an area faster and [5] found larger colonies found

more events. However, none of these studies modeled whether the first event

that triggered subsequent recruitment was found faster in larger colonies.
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Some studies suggest this may be the case. For example, a field study by

[40] found that larger honeybee colonies found resources faster, and as a

result, overall foraging rates were better for larger colonies. Our previous

field study[53] also found that larger seed harvester ant colonies found piles

of seeds faster; however, neither of these studies had sufficiently detailed

estimates of forager population size paired with and first discovery times to

establish a quantitative relationship between the two. That is the focus of

the models we build and analyze here.

Here we develop a model that predicts the initial first contact time for

a finite number of searchers (tfin). We simulate search in different scenarios

in order to validate conditions under which our theoretical assumptions do,

and do not, hold. Our goal in this paper is not to test model predictions

with biological data (which we leave to future work), but we parameterize

our simulations to reflect the numbers of T cell searchers, antigen-carrying

dendritic cell targets, and lymph node volumes across mammals. We show

that tfin depends on the number of searchers (N). In scenarios where multiple

searchers are involved, such as foraging ants, bees, or immune cells, a larger

number of searchers can increase the likelihood of discovering a target quickly.

We predict that more searchers exploring the environment increase the chances

that one will stumble upon the target quickly, whether that target is a seed,

a flower or an antigen. Our goal is to provide quantitative predictions and

simulations that test this qualitative expectation given different numbers and

placements of searchers and targets in different search volumes. In this paper
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we develop a general model of intial first contact times, considering various

placements of searchers and targets, and we compare our analysis for finite

N to physics models of initial first contact times that assume an infinite

number of searchers all starting in the same location. This work is a step

toward a more general biological theory of first contact times. While we are

unaware of quantitative models or data of initial first contact times, physicists

have developed an extensive literature analyzing extreme first passage time

(t∞) [129, 88, 15, 159], an approach that predicts the time it takes for the

fastest among an infinite number of searchers to find its target. However,

t∞ generally only considers search problems in which searchers all start at

the same location and search for a single target, the number of searchers

is assumed to approach infinity, and most work considers searchers on a

one-dimensional line. To address these discrepancies from biological reality,

we propose a mathematical model designed to predict first contacts in the

immune system. Motivated by [49], tfin is an idealized model of the initial

first contact times between T cells and dendritic cells within the lymph node.

This first contact is the critical step that initiates adaptive immunity and is a

key factor in determining how long it takes T cells to control a viral infection.

We consider a finite number of T cells as searchers and dendritic cells as

targets, with both distributed uniformly in a bounded space representing the

lymph node. We show in simulations that tfin is proportional to the volume of

the search space and inversely proportional to both the number of searchers

and the targets. We investigate the influence of two factors that can reduce
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search time when there are more searchers: 1) the initial distance between

the searchers and the targets and 2) the chance that a searcher happens to

take a direct path to the target. We expect that both the shortest distance to

a target and the most direct path to the target will decrease when there are

more searchers because both of these fortuitous events are more likely to occur

at least once when there are more searchers. The major contributions of this

paper are that we 1) develop a model (tfin) that predicts initial first contact

times for a finite number of randomly distributed searchers and targets, 2)

compare tfin to the t∞ model that assumes an infinite number of searchers all

starting in one location, 3) analyze the models in four scenarios (cases 0-3)

with varying searcher and target distributions in order to provide insights

into the applicability of tfin and t∞ in different biologically relevant scenarios,

and 4) simulate idealized versions of those scenarios to examine how well

the analytical predictions correspond to those scenarios. We consider the

following cases: In case 0, we consider a random distribution of multiple

searchers and multiple targets. We test whether tfin assumptions are met and

whether simulations are consistent with tfin predictions. We then compare

tfin to t∞, which assumes only a single target. Thus, for all other cases (1-3),

we consider a single target located at the center of the search space (T = 1),

and all searchers start at the same fixed point at some specified distance

from the target (See Figure 4.1). The different predictions of the t∞ and tfin

approaches are summarized for each case in Table 4.1.
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4.4 Predictions and Computational Methods

4.4.1 Summary of Scenarios

We show four scenarios in Figure 1. The tfin and t∞ predictions of initial first

contact times differ because each approach rests on different assumptions.

The casewise predictions are summarized in Table 4.1.

• Case 0: For multiple searchers and multiple targets, both distributed at

uniform random and with a constant density of searchers and targets,

tfin is expected to be inversely proportional to the volume of the search

space and the number of searchers (N), Equation (4.5). One of the

primary assumptions for t∞ is that all the searchers start from the same

location; since that assumption does not hold in case 0, t∞ does not

make a prediction for case 0.

• Case 1: For a fixed initial distance between all the searchers and a

single target, tfin is expected to decrease linearly with the number of

searchers, according to Equation (4.7) (the same as case 0). In contrast,

t∞ predicts the initial first contact times to decrease logarithmically

with N (Equation (4.13)).

• Case 2: For a fixed number of searchers, tfin is expected to increase pro-

portionally to the cube of the distance between all the searchers starting

from the same location and the target according to Equation (4.8). Our
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analysis of t∞ predicts that t∞ scales quadratically with the distance in

Equation (4.14).

• Case 3: If the density of searchers remains constant within a given

volume, but all searchers initiate their search from a common starting

point, tfin is expected to be constant in Equation (4.9). t∞ is expected

to scale with length squared divided by N in Equation (4.15).

While tfin and its underlying assumptions were originally formulated for Case

0, with multiple searchers and targets distributed randomly in a volume,

we extend the examination of tfin to cases 1-3 to assess whether it applies.

Similarly, t∞ and its assumptions were initially designed for Case 1 with the

number of searchers approaching infinity. We explore how well the predictions

of tfin and t∞ correspond to simulations given that the original assumptions

may not hold in all cases. We note that our predictions for tfin are based on

an assumption that each searcher is independent, resulting in an exponential

distribution of search times [27]. We will show that the assumption holds in

case 0 (the original scenario that tfin was developed for), but it may not hold

for other cases.

4.4.2 Analysis of tfin

We initially developed tfin to predict the initial first contact time given ran-

domly distributed searchers and targets in a volume. We assume that the

contact times between the searchers and targets are memoryless random pro-
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Figure 4.1: Graphical Representation of the Simulated Cases. In all
cases there are multiple searchers (N). Here, V is the search space, T is
the number of searchers, N is the number of searchers,LST is the length of
the distance from the searchers to the target. In case 0, there are multiple
targets and the targets and searchers are distributed at uniform random in
the volume, and their density is constant as the volume increases. In cases 1 -
3, there is a single target and the searchers are all located at the same place at
distance LST = 0.25 L from the target so that searchers are equidistant from
the target and the boundary. In case 1, the number of searchers N increases
(indicated by the larger circle on the right) while LST and V are constant. In
case 2, N is constant, and LST and V increase (indicated by the larger box on
the right). In case 3, N, LST and V all increase (indicated by the larger box
size and larger circle on the right). We assume LST is proportional to V 1/3.
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Table 4.1: Comparison of t∞ and tfin. We assumed an exponential
distribution of search times and a finite number of searchers in our model
of tfin. In contrast, t∞ assumes an infinite number of searchers and that the
fastest searcher will follow the shortest (and therefore, most direct) path to
the target.

Experimental variation in N, T and V t∞ prediction tfin prediction

Case 0 (N , T and V increase;
multiple searchers and targets
are distributed at uniform ran-
dom)

no prediction E[tfin] ∝ N−1

Case 1 (N increases, V is con-
stant; searchers start at one
location; single target)

E[t∞] ∝ 1

ln(N)
E[tfin] ∝

1

N

Case 2 (N is constant, V in-
creases; searchers start at one
location; single target)

E[t∞] ∝ L2 E[tfin] ∝ L3

Case 3 (N and V increase;
searchers start at one location;
single target)

E[t∞] ∝ L2

lnN
E[tfin] ∝ 1
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cesses, such that the first contact times of each searcher follow an exponential

distribution. This is shown in case 0 as a bounded cube with N searchers

looking for a number of targets (T ). If the probability that a searcher finds

the target in time t is P (Tt), then the probability P (Tt) that at least one

searcher encounters a target between time 0 and time t can be modeled with

an exponential distribution,

P (T < t) =
NT

λ
e

−tNT
λ (4.1)

Here, λ is the mean contact time between a single searcher and a single target

within a volume V . [27] showed that

λ ∝ V (4.2)

To obtain the expected encounter time, we integrate over all time,

E[tfin] =

∫ ∞

0

tNT

λ
e

−tNT
λ dt =

λ

NT
(4.3)

By replacing λ with V from Equation (4.2) in Equation (4.3) we get,

E[tfin] ∝ V

NT
(4.4)

• Case 0 (N, T, and L all increase, Multiple Targets):

Here we assume there are multiple searchers and targets and the density
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of searchers and targets are constant, N ∝ T ∝ V , then from Equa-

tion (4.4) we get,

E[tfin] ∝ V −1 ∝ N−1 (4.5)

That is, given a constant density of searchers and targets, the time

for the initial first contact between a searcher and a target is inversely

proportional to the search volume and the number of searchers. In this

scenario, the initial first contact predicted tfin speeds up linearly with

N .

In Figure 4.3 we show that simulations of case 0 generate exponentially

distributed contact times among all of the searchers in a simulation, consistent

with the primary assumption in tfin. In (Figure 4.4) we show that the initial

first contact times produced by the simulations are consistent with the (tfin)

prediction. Next, in order to compare our tfin prediction to the t∞ prediction,

we consider 3 other cases with searchers starting at the same location and

searching for a single target. Thus we set the number of targets T = 1,

simplifying Equation (4.4) to

E[tfin] ∝ V

N
(4.6)

In addition to allowing us to compare the predictions of the tfin and t∞

approaches, these scenarios also give us insights into the contribution of two

factors that determine tfin: (1) the initial distance between the lucky first

searcher and the nearest target versus (2) the directness of the path of the
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lucky first searcher toward the target because in these scenarios we fix (1) the

distance between all searchers and the target.

(1) (2) (3)

Searcher Target

Figure 4.2: Schematic Showing Simulations of Sases 1 - 3. Multiple
searchers (pink) looking for a target (green) in a confined cubic region, with
the target placed at the center. The figure (A) shows the initial setup where
all the searchers are in the same location with a fixed distance LST = 0.25L
from the target at the center of a fixed volume (Case 1). (B) the search
progress at the 250th step, with the searchers moving via Brownian motion
and (C) the first contact between a searcher and the target (Highlighted in
yellow). In Case 1, we fixed volume at 8 mm3 and systematically increased
the number of searchers (N) from 5 to 100 000. In Case 2, we increased V
from 8 to 33 000 mm3 (L from 2 to 32) with fixed N . In Case 3, we increased
both V and N with the N ranging from 240 to 1 000 000 by scaling with
the volume (N ∝ V ). In Case 0, with randomly distributed searchers and
multiple targets (not shown) we increased V , T and N with the N ranging
from 20 to 2000 (N ∝ V ), T ranging from 80 to 8000, and V ranging from
8 to 790. Each simulation was replicated 30 times for each combination of
parameters.

• Case 1 (N increases, V is constant, Single Target):

92



Since V is constant and N increases, Equation (4.6) is simplified to:

E[tfin] ∝ V

N
∝ 1

N
(4.7)

This case with a single target in a fixed volume gives the same prediction

as case 0 for multiple randomly distributed searchers and targets in

an increasing volume: as N increases, the expected initial first contact

time decreases linearly.

• Case 2 (N is constant, V increases, Single Target):

Since V = L3 and N is constant, Equation (4.6) becomes,

E[tfin] ∝ V

N
∝ L3 (4.8)

In this scenario, the expected initial first contact time increases linearly

with the volume. As the search volume (and therefore L) increase, it

takes more time for the searchers to cover the increased space required

to find the target.

• Case 3 (N and V both increase, Single Target) In this scenario

we set N ∝ V , so that Equation (4.6) predicts,

E[tfin] ∝ V

N
∝ 1 (4.9)

Thus if density is constant, tfin is predicted to be constant across volumes.
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4.4.3 Analysis of t∞

The t∞ prediction was developed by physicists to describe the time for the

first of an infinite number of searchers to find a target in an idealized search,

originally on a one-dimensional line [159, 129]. The theory has recently been

expanded to more dimensions and more complex searches [88, 15, 90, 131],

but most formulations consider only very large N that approaches infinity.

t∞ predicts that,

E[t∞] ∝ L2
ST

4D ln(N)
, N → ∞ (4.10)

where N is the number of searchers, D is a diffusivity, and LST is the distance

between the identical starting location of all searchers and the target. The

model assumes searchers move via a random walk. The time for the first

searcher to reach the target is, in essence, the rate of spread of the furthest

of the diffusing searchers. That diffusion creates a Gaussian distribution of

distances from the start location. The logarithmic term in the denominator

comes from determining the time it takes for the tail of the distribution to

reach the target.

The full derivation of Equation (4.10) is in [90] (Equation 5-7, Section 2.1).

t∞ predicts that the distance traveled by the fastest searcher increases slowly.

As the number of searchers increases, the time required for the first searcher

to reach the target decreases as a slow logarithmic function of N . Note that

this formulation of t∞ doesn’t specifically address how the volume of the
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search domain affects search time; it considers only the distance between

searcher and target. This is because the approach assumes that the fastest

searcher will be the one that has taken the most direct path from the start

location to the target; any searcher that meandered through the full volume

of the search space would not be the first searcher to arrive, and therefore

would not be relevant to the initial first contact time. This argument only

holds for large N that approaches infinity. However, many biological search

processes have a finite number of searchers within a bounded volume, for

example, immune cells search in the volume of a lymph node or an infected

organ, and foraging animals search within a 2D or 3D territory. We consider

only the 3D case here and set LST to scale with the side L of the volume V

of the search domain such that ,

LST ∝ L ∝ V 1/3 (4.11)

For simplicity, we consider a constant rate of diffusivity (D). By replacing

LST with L and D with a constant, Equation (4.10) gives us a simplified

expression for t∞ in a bounded volume of length L:

E[t∞] ∝ L2

ln(N)
, N → ∞ (4.12)

We consider three cases for Equation (4.12).

• Case 1 (N increases, L is constant, Single Target):
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In this case, we assume that LST remains fixed. As the number of

searchers N increases, we reformulate the equation Equation (4.12) by

ignoring scaling constants to obtain a prediction from t∞,

E[t∞] ∝ L2

ln(N)
∝ 1

ln(N)
N → ∞ (4.13)

This equation predicts that as N grows, the expected time for finding

the target decreases logarithmically with N. The diminishing returns

of adding more searchers are evident, indicating that large groups of

searchers only slightly reduce the search time compared to smaller

groups when the distance (L) is fixed.

• Case 2 (N is constant, L increases, Single Target):

In this case, we keep N constant while V (and therefore LST ) increase.

Then, Equation (4.12) becomes,

E[t∞] ∝ L2 (4.14)

In this scenario, t∞ is predicted to increase with L2 while volume

increases with L3.

• Case 3 (N and L increase, Single Target): In this case, N increases

proportional to V , leading to:

E[t∞] ∝ L2

ln(N)
, where N ∝ V ∝ L3 (4.15)
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The different predictions from t∞ and tfin are summarized in Table 4.1.

4.4.4 Computational Experiments

In order to test the tfin prediction for Case 0 and the competing predictions

of tfin and t∞ for cases 1-3, we conduct a series of experiments using an agent-

based model implemented in Biodynamo [18]. We consider that a contact

happens when the centers of a searcher and a target are within 10µm distance.

Hence the physical sizes of searchers and targets do not affect search times.

To simulate T cells searching for dendritic cells in the lymph node, we utilized

a model of Brownian motion parameterized from empirical data of T cell

movement in lymph nodes from [59]. Figure 4.2 illustrates the experimental

setup of our simulations designed to test the predictions of the tfin and t∞

approaches to estimating the initial first contact times in the 4 cases shown

in Figure 4.1.

The scarcity of empirical data presents a challenge in directly matching

the numerical simulations to real biological systems. We acknowledge this

limitation and took steps to align the simulation parameters in case 0 with

available data from the immune system. We chose search volumes to match

the range of sizes of mammalian lymph nodes and estimated numbers of

searchers to match the number of T cells in each clonal line that search

for antigen-bearing dendritic cells in each lymph node and also estimated

the number of targets for case 0 to match the number of dendritic cells

in lymph node carrying the same type of antigens. The purpose of the
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computational simulations is to establish a proof of principle showing how

the initial first contact times vary with N and various other specifications

of the search problem. Our intent here is not to test our predictions with

biological data, but rather to demonstrate through simulations how various

mathematical assumptions and predictions hold given simple simulations

using finite numbers of searchers, targets, and volumes that approximate

different biological scenarios. Our simulations validate cases where different

approaches (tfin and t∞) are (and are not) able to predict biologically relevant

phenomena. All the data used in our analysis are summarized in an online

dataset. 1

4.4.5 Fitting Exponents Using the ABM

In order to fit model predictions to simulated data, we estimate the best-fit

exponents that relate initial first contact times to the dependent variable

in each scenario. We first consider the generic formula in Equation (4.4) as

follows,

E[tfin] ∝ V i

N jT k
(4.16)

1https://docs.google.com/spreadsheets/d/1AiWJ2onZYN5F-42LNLv-14kUluWyQhG
SD3JFk-mNT4Q/edit?usp=sharing

98

https://docs.google.com/spreadsheets/d/1AiWJ2onZYN5F-42LNLv-14kUluWyQhGSD3JFk-mNT4Q/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1AiWJ2onZYN5F-42LNLv-14kUluWyQhGSD3JFk-mNT4Q/edit?usp=sharing


For ease of presentation, we convert Equation (4.16) to base 10:

log10(E[tfin]) = log10(
aV i

N jT k
)

= log10 a + i log10(V ) − j log10(N) − k log10(T ) (4.17)

If we set, C1 = log10 a then,

log10(E[tfin]) =C1 + i log10(V ) − j log10(N) − k log10(T ) (4.18)

and exponentiating,

E[tfin] = 10C1+i log10(V )−j log10(N)−k log10(T ) (4.19)

For Case 0, where numbers of searchers and targets maintain a constant

density as volume increase (i.e., V ∝ N and T ∝ N), we further simplify

eq. (4.18) because N , V , and T scale isometrically, thus we can substitute a

single scaling exponent to reflect the scaling in terms of N :

log10(E[tfin]) =C1 + µ log10(N)

We use linear regression on log-transformed simulation data to determine the

value of the scaling exponent µ. This provides the final scaling relationship
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between tfin and N for case 0.

E[tfin] = 10C1+µ log10(N)

We fit the scaling constant C1 to the simulated data.

Similarly, for Case 1 where there is a single target (log10(1) = 0), N

increases and V is constant (i log10(V ) = C2), we simplify eq. (4.18) as,

log10(E[tfin]) =C1 + C2 − j log10(N) − 0

=C1′ − j log10(N)

where C1′ = C1 + C2. We again use linear regression on log-transformed

simulation data to determine the value of the scaling exponent j. We use the

same procedure to estimate scaling exponents for cases 2 and 3 for tfin; and

for t∞ for Cases 1-3.

4.5 Results: Comparing model predictions to

simulated data

The tfin approach to estimating the initial first contact times was developed

for case 0 in which a uniform random distribution of searchers and targets are

placed in a volume with constant density so that N and T increase linearly

with V . The key assumption in tfin is that initial first contact times (the
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Figure 4.3: Distribution of Contact Times of All Searchers within
One Volume for Case 0. We show the distribution of the first contact
times in two (out of 30) simulations of case 0. Panel A shows the distribution
of 629 first contacts for 629 searchers with 2533 targets in a 921 mm3 search
volume. Panel B shows the distribution of 1989 first contact times for
1989 searchers with 8011 targets in a 3640 mm3 search volume. Data are
plotted as a histogram of probabilities of the initial first contact time of
each searcher on the y-axis for the contact time given on the x-axis. The
theoretical probability density functions (PDF) of a Gaussian distribution
and an exponential distribution for the same mean and standard deviation
as the data are shown for comparison. The data are visually consistent with
an exponential distribution. The result of the goodness of fit tests (SSE
and AIC) in Table 4.2 are consistent with our assumption of the exponential
distribution of the first contact times.

first time any one of the searchers comes into contact with a target) are

exponentially distributed within each simulation. This allows us to predict

that the first time the first searcher in a given simulation will contact a target

is 1
N

. We found that in all case 0 simulations, an exponential distribution

was a good fit. We compare to a Gaussian to demonstrate the difference in

sum of squares error (SSE) and Akaike information criteria (AIC) (Table 4.2).
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Figure 4.4: tfin Predictions Compared to Simulations Corresponding
to Case 0: Constant Density, Multiple Targets. Each red circle
represents the time for the first searcher, in a population of N searchers, to
contact its target, where N is varied along the x-axis. The initial first contact
time for each replicated simulation is shown as red dots. tfin is predicted to
scale as N−1 (dashed green line, Equation (4.5)). The dotted purple line
shows the regression through the simulated data: E[tfin] ∝ N−1.05 with a
95% CI [−1.1, −0.98] for the exponent, consistent with the exponent of -1
predicted by tfin. Variance among the initial first contact times for a given
N ranges from 0.25 to 0.36. In contrast, the mean search times (blue dot),
averaged over all N searchers in each simulation, across the same values of N ,
are much larger and do not vary with N , and have extremely low variance,
all less than 0.003. 100 replicates are used to calculate the mean first contact
time and the initial first contact time for each value of N ; thus there are 100
blue and 100 red points for each value of N .
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Table 4.2: Statistical comparisons of the Gaussian and exponential distribution
fit to the initial first contact times for case 0. The exponential distribution has
lower mean SSE and AIC values than the Gaussian distribution, indicating
a better fit to the data. 100 simulations were replicated for each number of
searchers. Numbers are given to two significant digits.

Number of searchers

20 63 200 630 2000

Exponential SSE 8.1.2 × 10−8 4.6 × 10−10 4.6 × 10−11 4.6 × 10−12 7 × 10−13

AIC 2600 2800 3000 3200 3400

Gaussian SSE 1.3 × 10−8 6.7 × 10−10 1.2 × 10−10 3.7 × 10−11 1.9 × 10−11

AIC 2600 3000 3300 3900 4300

In Figure 4.3, we show example probability distributions from two sets of

simulations. These and the other simulations show a close fit to an exponential

distribution.

Given that the simulation validated the assumption that first contact

times are exponentially distributed for case 0, we then test the prediction

that tfin ∝ 1
N

from (Equation (4.5)). In figs. 4.4 to 4.7 we compare model

predictions with regression fits for the simulation data. The predicted scaling

relationship with respect to N or V are depicted by adjusting the vertical

intercept through a constant fit. For tfin, the scaling constant was chosen

to align the predicted line with the data corresponding to the smallest N ,

and for t∞, the constant was selected to match the largest simulated N .

Consequently, these figures are intended to demonstrate how the simulation

results conform to the model predictions regarding the systematic variation

in initial first contact times as a function of N or V . The fitting procedure is
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detailed in Section 4.4.5.

Figure 4.4 shows a very close correspondence between the tfin prediction

and the simulated data. We also show that initial first contact times are

orders of magnitude faster than the mean first contact times. The mean

search time is (unsurprisingly) unaffected by N , and it is far less variable.

This demonstrates that our model for tfin accurately predicts 1
N

scaling for

its intended use case, and that initial first contact times are substantially

faster than mean contact times. We now test whether tfin can be extended

to 3 search scenarios with a single target and all searchers placed at the

same initial location. We compare tfin predictions to t∞ predictions that

assume an infinite number of searchers. For case 1 we compare tfin and t∞

predictions given a single target in a constant search volume while increasing

N across simulations. This was the scenario t∞ was designed for, assuming

N approaches infinity. Figure 4.5 shows that for small N < 103 initial first

contact times decrease approximately linearly with N , consistent with our

tfin prediction that initial first contact times are proportional to 1
N

; for large

N ≥ 103, simulations are approximately consistent with the t∞ prediction,

proportional to 1
ln(N)

(Equation (4.13)). Thus, even in this search scenario

that differs from the original scenario envisioned by the tfin approach, tfin

approximates initial first contact times for biologically relevant numbers of

searchers, while t∞ better approximates initial first contact times for larger

N .

For case 2 we compare tfin and t∞ predictions to simulations where N is
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Figure 4.5: tfin and t∞ Predictions Compared to Simulations Corre-
sponding to Case 1: Single Target, Constant Volume, Increasing N.
Each red circle represents the time for the first searcher, in a population of N
searchers, to contact its target, where N is varied along the x-axis. 30 simula-
tions were run for each value of N , and the first contact in each simulation is
shown. The pink dotted line connects the medians of the simulated data. The
green line shows the tfin prediction (Equation (4.7)) and the blue line shows
the t∞ prediction (Equation (4.13)), both fitted to the simulated data. The
regression through the simulated first contact points N < 103 is N−1.1 with
95% CI [−0.86, −1.3] consistent with the tfin prediction for small N . The
regression through data (pink line) where N >= 103 gives t∞ ∝ log(N)−1.94

with a 95% CI [−2.1, −1.8] which is slightly steeper than the 1/ log(N) pre-
diction of t∞. Prediction lines are shown with scaling constants set to fit the
median of either the smallest (for tfin) or largest (for t∞) simulated data.
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Figure 4.6: tfin and t∞ Predictions Compared to Simulations Corre-
sponding to Case 2: Single Target, Increasing Volume, Constant
N. Symbols are replicated from Figure 5. The green line shows the tfin ∝ L3

prediction and the blue line shows the t∞ ∝ L2 prediction. The regression
through the simulated data is t ∝ L2.17 with 95% CI [2.14, 2.2], close to the
t∞ prediction.
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fixed and V increases. Figure 4.6 shows that the simulations are very close to

the t∞ prediction that time is proportional to L2, and considerably less steep

than the tfin prediction which is proportional to L3. Similarly, the simulation

tests of case 3 in which both N and V increase are considerably closer to the

t∞ prediction (L2/ln(N)) than the constant tfin prediction.
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Figure 4.7: tfin and t∞ Predictions Compared to Simulations Corre-
sponding to Case 3: Single Target, Increasing Volume, Increasing
N. Symbols are replicated from Figure 5. The green line shows the tfin ∝ 1
prediction and the blue line shows the t∞ ∝ L2/ ln(N) prediction.
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4.6 Discussion

4.6.1 Summary

We developed an analytical model, tfin, designed to predict how quickly the

first of many searchers finds its first target, given that searchers and targets

are distributed randomly in a volume. Simulations validate the key tfin

assumption that search times are exponentially distributed (Figure 4.3) and

the key prediction that initial first contacts scale as 1
N

(Figure 4.4) for case 0

with a uniform random distribution of searchers and targets that are kept

at constant density as volume increases. In order to compare tfin to another

model of initial first contact times (t∞), we conduct a set of simulations where

all searchers start at the same location and search for a single target. We

find, for case 1 (where the distance between searchers and target is fixed),

the tfin
1
N

prediction is consistent with simulations for small N , and the t∞

1
ln(N)

prediction is close to simulations for large N (Figure 4.5). In cases 2

and 3, we systematically increase the distance between the initial placement

of searchers and the target. The initial first contact times are close to t∞

predictions and quite far from tfin predictions (Figure 4.6 and Figure 4.7).

Our analysis of tfin in case 0 suggests that the fastest searcher is one that is

lucky in two respects: it happens to be placed near a target, and it takes a

relatively direct path to the target. Because tfin predictions do not hold in

cases 2 and 3 when distance increases, this suggests that 1/N scaling only
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holds when distances between searchers and targets are fixed. We suggest

that the existence of lucky first searchers is an important benefit of collective

search, particularly when the success of the first searcher causes important

downstream events.

4.6.2 Interpretation of scenarios

In this paper we simulated idealized searches that correspond to the volume

of lymph nodes across mammal sizes with estimates of the numbers of T

cell searchers and dendritic cell targets within those lymph nodes, where the

first T cell that find a dendritic cell presenting cognate antigen initiates the

adaptive immune response motivated by ongoing work [49]. However, we

suggest that the initial first contact times are relevant to a broader range of

biological phenomena.

To better characterize the circumstances under which tfin makes valid

predictions, we compare our analytical predictions, to the similar Extreme

First Passage Time models developed by physicists to describe the time for a

population of searchers to find a single target. That theory (that we call t∞)

employs the useful simplifying assumptions of an infinite number of searchers

diffusing in one dimension to find a single target. Specifically, we compare

the tfin predictions to t∞ predictions extended by Lawley [91] to predict the

initial first contact times in three dimensions. While tfin predicts that larger

populations of searchers find their targets proportionally faster, t∞ predicts a

much slower logarithmic speedup in search times as N increases.
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We compared t∞ predictions to those of tfin under three experimental

cases. In case 1, when we hold the size of the search volume constant (and

consequently the distance between the initial location of the searchers and

the target are held constant), we find that simulated initial first contact times

are consistent with the linear decrease with N predicted by tfin when N is less

than 1000; for N > 1000 simulations are consistent with the t∞ logarithmic

prediction Figure 4.5). This result suggests that when the only variation

across experiments is N , the tfin predictions are reasonable approximations

for biologically relevant numbers of searchers. We note that in this case the

key assumption holds that search times are exponentially distributed among

the searchers within each simulation. However, there is a crossover, such that

t∞ applies when N approaches infinity. Once N is sufficiently large there is

only a logarithmic benefit to increasing N . We expect that the values of N

for which the 1
N

scaling regime holds depends on the details of how far apart

the searchers are placed from the target, the behavior of searchers at the

boundaries, and the dimension of the system (i.e. whether searchers are in 2D

or 3D). Some of these issues are explored in [131] which also found a transition

from 1
N

to 1
ln(N)

scaling although the presented the transition in more general

dimensionless terms rather than for a particular number of searchers. We

leave additional analysis to future work and suggest that interdisciplinary

approaches among physicists, biologists, and computer scientists are needed

to further understand which factors most influence initial first contact times

in different scenarios with biologically relevant numbers of searchers.
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In cases 2 and 3 when we simulate increasing distances between the target

and initial searcher placements, tfin predictions are not close to simulated

results (Figure 4.6 and Figure 4.7). We predict that tfin doesn’t not hold

in these cases because the most important factor in these cases is that the

distance between searchers and targets increases across simulations. This

sheds light on an important feature of case 0, where searchers and targets

are distributed at random and with constant density. In case 0, the distances

between the initial placement of searchers and targets are determined by a

random process, and therefore, when there are more searchers and targets

in a larger volume, the closest distance between a searcher and the nearest

target will decrease. Thus, the lucky first searcher will be one that happens

to be very close to its target as well as one that happens to take a relatively

direct path to that nearby target. The t∞ predictions developed by physicists

only consider the directness of the path because that approach assumes a

fixed distance.

The 1
N

scaling of initial first contact times suggests a substantial and

underappreciated advantage of collective search. Case 0 suggests that in a

bigger lymph node with 100 times more T cell searchers and dendritic cell

targets, T cell activation would occur 100 times faster. Case 1 suggests that

a bee colony (or in 2D, an ant colony) with 100 more searchers starting in a

single nest and foraging independently in a fixed-size territory, would find a

single resource (e.g. a rare patch of flowers or food) 100 times faster. These

advantages would not directly accrue to the average searcher, which would not
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find a target any faster if it continued to search independently. It is only the

lucky first searcher that finds a target faster in a larger population. However,

if there is any signal (e.g., waggle dance or pheromone communication) or

structural change (T cell replication or changes in influx and efflux to and from

lymph nodes) following the first target discovery, then subsequent searchers

could modify their search to take advantage of that information. This is

consistent with findings from [40] that larger bee colonies found resources

faster and overall foraging rates were greater in larger colonies. Similarly,

the first lucky mutation in a population or the lucky first receptor to bind

in a cellular interaction, means that larger populations of individual agents

have a lucky first encounter faster and the whole system can benefit from

that lucky first encounter. Thus, the 1
N

initial first contact time confers

a significant advantage to a large population size. However, we note a

caveat that real biological systems may deviate in important ways from the

simple simulations we used here. For example, the density of cognate T

cells may not be constant in lymph nodes, and forager territory may scale

non-linearly with the forager number. The transition from search times

that scale as 1
N

, to search times that scale with 1
ln(N)

is also important

for analyzing the costs and benefits of increased population size. In many

realistic scenarios, more searchers can lead to a proportionally faster search,

but as size increases that benefit may diminish. This suggests that, combined

with other tradeoffs, initial first contact times may contribute to an optimal

colony size under different conditions. Our findings are relevant not only for
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understanding collective search in biology but also for engineering collective

searchers in swarm robotics, a field that takes inspiration from collective

search in biology [41, 96, 58, 69, 152]. Understanding the transition from

linear to logarithmic dependence on the number of searchers and the shift

from cubic to squared initial distance between the searchers and the target

dependence with increasing search volume points to important constraints

on scalability, a key concern in swarm robotics. We suggest that swarm

robotic systems can both benefit from an understanding of initial first contact

times, and serve as real-world testbeds that can help to develop and refine

biologically relevant theories about how initial first contact times depend

on numbers, search areas, or volumes and the distribution of searchers and

targets in space. Direct biological data to test the initial first contact time

predictions are scarce. In other work [49] we show that tfin predictions are

consistent with the time to initiate adaptive immunity, but the details of how

quickly each individual T cell finds its target are poorly understood. We hope

that this paper will encourage biologists to report initial first contact times

in empirical studies.
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Chapter 5

An Analysis of Scaling of

Extreme First Passage Time for

Large-Scale Searcher Models

5.1 Abstract

In various fields, such as immunology, chemical kinetics, collective behavior,

and complex systems, estimating the first time a searcher among a group of

searchers locates a target, popularly known as Extreme First Passage Time

(EFPT), is important as it often triggers the series of actions. Motivated by

our previous work on T cell-antigen interaction, here we investigate the EFPT

in a more generic context for various numbers of searchers ranging from 1

to infinity, starting from the same location in a bounded, three-dimensional
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domain. We analyze the scaling behavior of EFPT with varying initial

distances between the searchers and the target for a large-scale model. We

implement an analytical framework based on extreme value theory and the

short-time asymptotics of the single-searcher survival probability and show

how the analytical results match our simulation data. We demonstrate that

for a small number of searchers, EFPT decreases linearly with an exponent

whereas for a large number of searchers, it transitions to a logarithmic decrease.

We identify the critical transition point betwen linear and logarithmic decrease,

for varying initial distance and show the scaling of the transition point with

the initial distance between searchers and target. This generalizable EFPT

model offers estimators for the optimal deployment of searchers for various

distance ensembles in biological, chemical, and engineered systems.

5.2 Introduction

In Biology, chemistry, and other complex systems, a key question is how to

estimate the contact time between searchers and targets, known as the first

passage time (FPT). Most studies focus on either a single searcher [112] or an

idealized scenario with an infinite number of diffusive searchers [91], mostly

highlighting the mean of the contact times [120]. However, it often is the

very first contact time by the first searcher, primarily known as EFPT, that

triggers subsequent courses of action. For example, in the immune system, an

immune response is initiated when the very first T cell encounters an antigen

115



[30]; in chemical reactions, the initial collision between reactant molecules

can determine the reaction pathway [94]; and in complex systems such as ant

colonies, other foragers can be recruited once the first ant finds a food source

[102].

Weiss, in his 1983 paper [159], introduced the concept of EFPT, which

describes the fastest search time among a pool of searchers [129, 128, 133].

However, analytically finding the EFPT is quite challenging because of its

dependency on very rare events. While typical searchers tend to wander in

search of a target, the fastest searcher will happen to follow a more direct

path, typically the shortest geodesic path to the target [61, 64, 88].

Grebenkov et al. [62, 63] talked about the FPT (the paper referred to

it as First Reaction Time (FRT)) in the context of the diffusion process,

focusing on the distribution of FPT. The authors argued that the probability

distribution of FPT can be divided into multiple regions, with each region

being influenced by factors such as the diffusion coefficient, target size, search

space radius, and system geometry. However, the authors suggested that

their framework may not be applicable in an unbounded or extremely large

search space, where the dynamics of FPTs could behave differently from those

observed in confined systems.

However, none of these studies tend to find the EFPT covering the full

range of possible numbers of searchers, from 1 to infinity. In our previous

work [51], we provided a solution for EFPT in the context of immunology

where we demonstrated that for a fixed, bounded, reflective search volume,
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EFPT scales with tfin ∝ 1/N for a limited value of N(< 103), and the scaling

transitions to t∞ ∝ 1
log(N)

as N becomes extremely large Figure 5.1. Here

N = the number of searchers.

In [51], we studied the search process for a single absorbing target located

at the center of a three-dimensional search space with a complete reflecting

boundary. Multiple searchers, initially placed at a distance L from the target,

move within the search space following Brownian motion, which is used to

model the movement of T cells in the immune system. In this work, we first
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Figure 5.1: EFPT vs number of searchers within a small lymph
node-sized search space. The searchers mimic random T cell movement,
recreated from chapter 4, Figure 4.5. Each red circle represents the time for
the first searcher, in a population of N searchers, to contact its target, where
N is varied along the x-axis. 30 simulations were run for each value of N, and
the first contact in each simulation is shown. The pink dotted line connects
the medians of the simulated data. The green line shows the tfin prediction
(∝ 1

N
) and the blue line shows the t∞ prediction (∝ 1

log(N)
), both fitted to the

simulated data. Prediction lines are shown with scaling constants set to fit
the median of either the smallest (for tfin) or largest (for t∞) simulated data.
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investigate whether this transition observed in our previous study remains

valid for larger initial distances L between the searchers and the target. We

extend the findings from an immunological context to a more general model

where searchers take one unit step at each time. We confirm the existence of

the transition and then aim to identify the critical point at which EFPT shifts

between the two scaling behaviors. Given the computational challenges of

determining EFPT for very large N within a large search space in simulation,

we develop an analytical approach to identify the transition point. While

several previous studies have proposed analytical methods to compute EFPT,

many have focused on small initial distances or small target-to-search space

radius ratios [88, 62]. We adopt the approach outlined by Lawley in [88] to

develop the analytical model for large-scale models.

In this paper, we apply extreme value theory to find an EFPT approxima-

tion E(τ) for any number of searchers in a specific initial distance between

searchers and target. This approximation can be easily applied in many

diverse scenarios, as it depends on only a few properties of the survival

probability of a single FPT. Survival probability is the probability that the

searcher, starting at L >= 0 distance from the target, hasn’t reached the

target up to time τ1.
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Figure 5.2: EFPT over the number of searchers N for varying initial
distance L between searchers and target. Both axes are in logarithmic
scale. (a) shows the analytical result of EFPT for varying numbers of searchers
N and distance L. For any given N, EFPT increases with L. For each fixed
L, EFPT is highest when N is very small. EFPT decreases sharply as N
increases and almost saturates for large N. (b) shows the fitted curve of the
two hypotheses (shadowed: 1

Nα and dotted: 1
logN

) and their transition points

(ΓN ,ΓEFPT ). (c) shows the predicted minimum EFPT when the searchers
follow the Brownian motion with 1 unit step at each time step.
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5.3 Results

Figure 5.2 panel (a) shows how EFPT scales over N for various initial

distances L. As L increases, the EFPT for any fixed N also increases. Within

each curve (fixed L), EFPT is largest when N is very small but decreases

substantially as N grows. Eventually, beyond a threshold in N , the EFPT

levels off, indicating that the system has reached a saturation point once N is

sufficiently large (Figure 5.2 panel (b)). This saturation indicates that adding

additional searchers does not significantly lower the EFPT.

However, upon analyzing the data, we observed that for small values of

N , the scaling is better described by a modified power-law relationship.

E[τ ] =
1

Nα
(5.1)

where the exponent α is not exactly equal to 1. Our initial hypothesis was

that EFPT scales inversely with N for small values of N ,

E[τ ] =
1

N

A linear regression shows that α increases with L, implying a steeper decrease

in EFPT as N grows when L is large (Figure 5.2 panel (b), shaded solid line).

This suggests the benefit of adding additional searchers when the number

of searchers is limited is more pronounced at greater distances. When N

becomes very large, the EFPT scales asymptotically as 1
log(N)

(Figure 5.2,
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panel (b) dotted line). This analytical result is consistent with our previously

published simulation results. Figure 5.2 panel (b) also shows the transition

points ΓN ,ΓEFPT from 1
Nα hypothesis to 1

logN
one.

Figure 5.2 panel (c) shows the minimum cutoff EFPT for searchers that

are following the Brownian motion with 1 unit step at each time step.
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Figure 5.3: Transition points of the number of searchers ΓN and the
ΓEFPT over initial distance L. Both axes are displayed on a logarithmic
scale. The blue points represent the numerical data, and the red line is a
best-fit curve. Panel (a) shows how ΓN scales with L. The linear best-fit curve
suggests that ΓN increases with L. That is ΓN increases about 3-fold when
L doubles. Panel (b) shows how ΓEFPT scales with L. The best-fit curve
indicates that the transition in ΓEFPT grows with L; that is, when L doubles,
ΓEFPT also doubles.

We find the transition point (ΓN ,ΓEFPT ) between these two hypotheses

( 1
Nα and 1

log(N)
) (See Figure 5.2, panel (b), large dots). Our analysis suggests

that the transition point ΓN scales as linearly positive with L, meaning that

with the increase of L, the transition point ΓN will occur for larger number

of searchers (Figure 5.3, panel (a)). In other words, the saturation of EFPT
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will occur for a large number of searchers in larger L. The transition point

for EFPT ΓEFPT scales linearly positive with L, meaning as L increases, the

transition point for EFPT of these two hypotheses increases as well (Figure 5.3,

panel(b)). These two scaling figures suggest that in larger initial distance,

the saturation occurs late and for a relatively larger value of N . That is, as

we increase the initial distance, the saturation of EFPT (that is, it can not

be any significantly faster) will occur slowly, and to reach that point N will

be relatively larger than for a smaller initial distance. Therefore for a smaller

initial distance L1, if transition occurs at EFPTL1 at the number of searchers

N1, then in larger initial distance L2(L1 < L2), the transition at EFPTL2

will occur slower (EFPTL1 < EFPTL2) at the number of searchers N2 where

N2 > N1.

For a constant one unit step length motion ∆s, one would expect that the

minimum EFPT would be the same as L,

Tmin =
L

∆s

shown in Figure 5.2 panel (c) (dotted line). But our analytical result keeps

dropping with the increasing number of searchers; it can even predict times

below Tmin.

In classical first passage time theory, each searcher follows a Brownian

motion with no hard speed limit, so that its motion is characterized solely by

a diffusion coefficient D.
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Figure 5.4: Simulation and analytical EFPT for initial distance L =
100 unit over range of number of searchers N. Both axes are displayed
on a logarithmic scale. The maroon circles connected by the thin line show
the analytic EFPT prediction. The red line shows the median of the 15 Monte
Carlo simulations for hard speed cap ∆s = 1 unit for each N and the green
line shows 15 Monte Carlo simulations for diffusion coefficient D = 1 for each
N . The red and green circles represent the simulation data illustrating the
run-to-run variability. The dotted red line shows the theoretical expected
minimum EFPT for hard cap step size ∆s.

Because true Brownian paths have infinite propagation speed, the diffusion

model EFPT prediction continues to decrease for larger N and eventually

falls below the ballistic lower limit Tmin, the time required for a searcher to
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traverse distance L in a straight line at maximum speed ∆s.

To establish this speed-limit effect, we have simulated two cases for our

agent-based model in EFPT. In case one, we enforce a fixed step length

∆s = 1 per time step, so no searcher can arrive in fewer than L steps.

In the second case, we remove the hard speed cap ∆s = 1 by endowing

each searcher with pure diffusive motion with diffusion coefficient D = 1.

As shown in Figure 5.4 for L = 100, when speed is capped by the ballistic

limit (∆s = 1 unit), the simulated EFPT (red line) goes slower than the

analytic result (maroon line). For large N, the analytic EFPT prediction

curve continues its ∝ 1
logN

decline and eventually undercuts the ballistic

limit L, whereas our simulated EFPT with speed cap ∆s = 1 per time

step asymptotes to L. On the other hand, the Lévy walk diffusion model

shows that the simulation result can find the target quicker compared to

single step simulation, aligning closely to the predicted analytical result. The

rare, arbitrarily long displacements of the Lévy walk model allow at least

one searcher to traverse the full distance in far fewer than L steps, thereby

undercutting the ballistic limit. As N increases, these extreme sampling events

become almost certain, driving the EFPT down by orders of magnitude below

the deterministic speed-cap case.

In sum, the divergence between speed cap and Lévy walk curves reflects

the contrast between (a) a constant-speed model, in which the maximum

propagation speed enforces a hard lower bound on first-passage times, and

(b) an unconstrained diffusive model, in which variability in step size grows
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with N . Future work will extend this comparison to larger values of L, in

order to map out more precisely the transition from the ballistic regime to

the diffusive asymptote.

5.4 Methods

To understand how the number of searchers N affects the EFPT, consider

N ≥ 1 independent and identical diffusive searchers. Let τ1, τ2, . . . , τN be

their independent and identically distributed (iid) first passage times (FPTs)

to reach some target. The first time one of these searchers finds the target is

defined as

TN := min{τ1, τ2, . . . , τN}. (5.2)

The survival probability for a single searcher is computed as,

S(t) = P(τ > t) = 1 − 2

√
L2

πD t

∞∑
j=1

exp− (j+0.5)2 L2

D t (5.3)

Assume that S(t) has the short-time behavior,

1 − S(t) ∼ A tp exp

(
−C

t

)
, as t → 0+. (5.4)

for some constants A > 0, C > 0, and p ∈ R.
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The distribution converges to a Gumbel distribution X as follows,

TN − bN
aN

d−→ X, as N → ∞, (5.5)

where,


aN =

bN

ln
(
AN

) , bN =
C

ln
(
AN

) , if p = 0,

aN =
bN

p (1 + W )
, bN =

C

pW
, if p ̸= 0.

where W0(z) denotes the principal branch of the Lambert W function and

W−1(z) denotes the lower branch of the Lambert W function [33].

Following [88] EFPT is given by

E[TN ] = bN − γaN + o(aN) (5.6)

where γ = 0.5772 is the Euler–Mascheroni constant. Here f(N) = o(aN)

means limN→∞ aNf(N) = 0.

We account for discretization effects in our agent-based simulation by

approximating the higher-order term o(aN) as

o(aN) =
L

∆s
× aN (5.7)

where ∆s is fixed step size per unit time. The resulting expression maintains

consistent time units.
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In the constant speed brownian walk simulation, we consider ∆s = 1 unit

per step. In the Lévy walk simulation, each cell draws the step length δ at

every time step from a power-law distribution [163, 156] as follows:

p(δ) = (µ− 1)lµ−1
minδ

−µ δ ≥ lmin (5.8)

Here lmin sets the minimum step length and µ controls the heaviness of

the tail. In our implementation, we choose lmin = 0.1 unit and µ = 3 so that

⟨δ2⟩ = 6 which yield the diffusion coefficientD = ⟨δ2⟩
6

= 1 in three dimensions.

5.5 Discussion

In this work, we have developed a unified analytical framework for the

Extreme First Passage Time (EFPT) of N independent diffusive searchers in

a bounded three-dimensional domain. By combining extreme-value theory

with the short-time asymptotics of the single-searcher survival probability,

we derived closed-form approximations that capture three distinct regimes of

EFPT scaling:

• a modified power-law: E[τ ] ∝ 1
Nα for small to moderate N

• a logarithmic decay E[τ ] ∝ 1
log(N)

for N → ∞ in the continuum limit,

and

• an absolute saturation of EFPT for larger values of N based on two

different motions:
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– Under fixed-step Brownian motion (∆s = 1 unit), EFPT cannot

fall below the ballistic traversal time and hence E[τ ]
N→∞−−−→ L

– In contrast, in the Lévy walk simulation, each searcher’s step length

is drawn from a heavy-tailed distribution. This allows at least

one searcher to have a rare, extremely long jump in a single step.

Therefore, for large values of N , the EFPT continues to decrease

and can even fall below the ballistic limit (∝ L).

We identified the transition point ΓN at which EFPT shifts from the N−α

regime to the saturation (or logarithmic) regime and showed that ΓN decreases

with increasing initial distance L, whereas the EFPT at that transition, ΓEFPT ,

grows linearly with L. These counter-intuitive scalings arise because a finite

step length imposes a hard lower bound L on the fastest-searcher time. To

confirm and calibrate these analytical predictions, it is essential to carry out

targeted simulations:

• Validation for range of N and L: Run Monte Carlo agent-based simula-

tions for a range of N and L to verify the exponent α and the onset of

saturation.

• Robustness to Simulation Parameters: Test sensitivity to time-step

size ∆s dimensionality, and domain geometry, along with Lévy walk

variability.

Looking ahead, several directions can extend this work:
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• Heterogeneous Environments: Incorporate spatial obstacles or variable

diffusivity to model more realistic search landscapes.

• Multiple Targets & Cooperative Search: Generalize to scenarios with

multiple absorbing targets or interacting searchers.

• Immune-System Applications: Integrate EFPT theory into detailed

agent-based immune models to predict how lymph node architecture

and cell motility shape early antigen detection times.

By coupling our analytical insights with comprehensive simulation valida-

tion and by broadening the theoretical scope, this research lays the groundwork

for optimizing search strategies across physics, chemistry, biology, and com-

plex systems.
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Chapter 6

Investigating Vaccine Efficacy

Against SARS-CoV-2 Variants:

A Model-Based Analysis

6.1 Publication Notes

Authors: Jannatul Ferdous, Jasmine Kreig, Ruian Ke, Ruy Ribeiro

6.2 Abstract

Affinity maturation—the process by which produced antibodies increase in

affinity for antigen—occurs during the course of an immune response. Re-
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peated exposures to the same antigen will produce antibodies of successively

greater affinities. However, as antigen move away in antigenic distance from

the initial strain (antigenic drift), the ability of the body to cross-reactively

neutralize the antigen decreases. This issue has been well documented in cases

of influenza and there is a concern it is occurring in SARS-CoV-2 given succes-

sive variants of concern (VOC). Such VOCs would be less susceptible to any

immune protection gained from vaccination and prior infection. We modeled

adaptive immunity using an agent-based model (ABM) that considers B cells

(na¨ ıve, plasma, memory), antibodies, and antigens to investigate the varying

efficacy of vaccines against SARS-CoV-2 variants. We represent receptor (B

cells, antibodies) and epitope (antigens) proteins in Euclidean shape space,

simulating binding between these agents based on Hamming distance. We

also consider the formation of immune complexes—free antibodies bound to

antigen which limits the antigen’s ability to infect more cells. Our findings

aim to elucidate observed differences in vaccine efficacy between first-time and

repeated SARS-CoV-2 variants, providing insights into vaccination strategies

for antigenically variable pathogens necessitating repeated vaccination efforts.

6.3 Introduction

SARS-CoV-2 has gained significant attention since its occurrence in late 2019.

According to CDC [55] approximately 1.2 million deaths have been reported in

the United States. Although researchers continuous quest for information on
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SARS-CoV-2 has been tireless and consummate, the comprehensive modeling

of SARS-CoV-2 remains challenging due in part to its high mutation nature.

The virus’s rapid mutation often leads to the emergence of new variants,

rendering the existing vaccine less effective against the new variant.

On top of that, the complex behavior of the humoral immune response

makes it even more complicated to model, especially covering all the variants

of SARS-CoV-2. More specifically, the ability of somatic hypermutation to

increase antibody affinity over time [47, 48, 105] in response to repeated

exposure to SARS-CoV-2 is nonetheless insufficient to neutralize all emerging

variants, given the virus’s rapid mutation rate.

[17] has discussed a basic and generic computational model based on

clonal selection theory in adult animals. The study shows how a population

of lymphocytes can expand in response to antigenic stimulation, predicting

dose–response curves under various generic conditions—but without specifying

a particular antigen or detailing how parameter values were chosen. In contrast,

our model focuses explicitly on SARS-CoV-2 epitopes, grounding parameter

selection in experimentally measured binding affinities and mutation rates to

capture realistic antigen-antibody dynamics.

Hybrid immunity refers to the combined immunity from a prior infection

and vaccination and has been shown to cause highly effective B cell and

T cell responses capable of neutralizing diverse SARS-CoV-2 variants [132].

However, the study doesn’t define the extent of the diverse SARS-CoV-2

variants that the hybrid immunity can neutralize. The experiments were
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also relatively short-term (3–18 months), making us wonder how the immune

imprinting evolves over a longer period of time. The also doesn’t talk about

how the immunity adapts to the SARS-CoV-2 mutations that escaped the

previously imprinted responses. By embedding successive antigen exposures

into our agent-based simulation, we quantify the durability of hybrid-imprinted

responses over long time and map the evolving neutralization landscape across

emerging variants.

Kepler et al.’s optimal-control analysis of somatic hypermutation rates

revealed that, in a simplified single-compartment setting, B cells may em-

ploy phasic mutation schedules—periodically re-entering germinal-center–like

compartments to maximize affinity maturation [83]. Park and colleagues

found that although hybrid immunity confers the highest neutralization titers

against a broad panel of SARS-CoV-2 variants, highly divergent strains (e.g.,

Omicron BA.1) still partially escape, and cross-reactivity wanes over months

[117]. Our work bridges this gap by explicitly modeling antigenic distance

and variant mutational trajectories: we simulate how successive exposure

to evolving spike proteins reshapes the EFPT of high-affinity B-cell clones,

thereby predicting which future variants might evade existing imprinting and

when booster strategies will be most effective.

In this paper, we investigate the population dynamics governing B cells,

antibodies, and antigens within an immunological context for different variants

of SARS-CoV-2 using a computational model. This model is motivated by

Derek Smith et. al. [147] on antigenic distance on the influenza virus where
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the authors considered a string of 20 symbols representing the receptors of B

cells, antibodies, and antigens. The antigenic distance between two antigens

is measured by the Hamming distance of their strings. The same concept

calculates the antigenic distance between an antibody (or B cell) and an

antigen. 0 antigenic distance means the best match or the highest affinity,

and the higher the distance the less the affinity.

Our model addresses the concept of immune imprinting of SARS-CoV-2,

where the immune system prioritizes responding with antibodies specific to

the first antigen. It also investigates how the pre-existing antibodies effectively

react to neutralize the repeated exposures to different variants of the antigens

of high and low affinity.

The main application of our model is to understand the immune imprinting

in SARS-CoV-2 variants of different antigenic distances. The model shows

the effect of immune imprinting on the immune response to the changing

variant of SARS-CoV-2. It studies why different variants may have different

degrees of protection due to pre-existing immunity. The model can predict

the cross-reactivity of antibodies from primary SARS-CoV-2 infection to

different SARS-CoV-2 variants by integrating antigenic distance. Our model

studies the immune response trends as antigenic variation scales up, providing

insights into vaccine design and immune resilience against evolving pathogens.

The model can be used to design vaccines through antigenic combinations

that promote long-term immune protection by targeting a large number of

SARS-CoV-2 variants.
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6.4 Results

In this paper, we evaluate three cases based on the antigenic distance or

affinity between a primary antigen (SARS-CoV-2 614G) and a secondary

variant. We consider a ball of stimulation around the antigen in an antigenic

map to show the extent of affinity for B cells and antibodies that can bind

to the antigen. In each case, we depict the extent of overlap of their balls

of stimulation in an antigenic space Figure 6.1 and discuss the resulting

cross-reactivity of B cells, antibodies and antigens.

• Case 1: The antigenic distance between the two variants is small,

resulting in an overlap between the balls of stimulation (Figure 6.1a).

We choose SARS-CoV-2 variant 614G as the primary antigen and Alpha

as the secondary antigen for this case. The antigenic distance between

these two variants is 0.81 Antigenic Unit (AU). The overlap allows

the high cross-reactivity of the B cells and antibody from the primary

antigen towards the secondary antigen Alpha.

• Case 2: We consider 614G (primary) and Delta AY.4.2 for SARS-CoV-2

variants with antigenic distance 1.56 AU between them for Case 2. The

antigenic distance between the two variants is larger compared to case

1, but the ball of stimulation still overlaps (Figure 6.1b). The reduced

overlap leads to lower cross-reactivity. As a result, secondary exposure

to Delta AY.4.2 elicits a weaker recall response from memory clones
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Primary infection: 614G

Secondary infection: Alpha

Ball of stimulation for Alpha

Ball of stimulation for 614G

(a)

Primary infection: 614G

Secondary infection: Delta AY.4.2

Ball of stimulation for Delta AY.4.2

Ball of stimulation for 614G

(b)

Primary infection: 614G

Secondary infection: Omicron B.A.2

Ball of stimulation for Omicron B.A.2

Ball of stimulation for 614G

(c)

Figure 6.1: Antigenic distance and balls of stimulation between different
SARS-CoV-2 variants in a shape space diagram. (a) represents the smaller
antigenic distance between 614G and Alpha, resulting in a high degree of
overlap between their balls of stimulation. (b) represents a larger antigenic
distance compared to panel (a) between 614G and Delta AY.4.2 variants with
their slight overlapping ball of stimulation. (c) represents a larger antigenic
distance between 614G and Omicron B.A.1 variants with no overlapping of
their balls of stimulation. Although the figures show the antigens together,
in the model the secondary antigen is introduced at day 40
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originally generated against 614G.

• Case 3: The antigenic distance between the two variants is significantly

larger resulting in no overlapping between their balls of stimulation

(Figure 6.1c). We consider 614G and Omicron B.A.2 for SARS-CoV-2

variants with an antigenic distance of 4.58 AU. In this scenario, pre-

existing B cells and antibodies specific to 614G exhibit no binding to

Omicron B.A.2 because of the large antigenic distance.

6.4.1 Case 1: Small Antigenic Distance, High Degree

of Overlap between Balls of Stimulation

When the antigenic distance between the two variants is small, resulting in an

overlap between the balls of stimulation (Figure 6.1a). We choose SARS-CoV-

2 variant 614G as the primary antigen and Alpha as the secondary antigen

for this case. The antigenic distance between these two variants is 0.81 AU.

This overlap enables high cross-reactivity: antibodies and memory B cells

elicited by 614G bind effectively to Alpha.

After the primary antigen, 614G, is removed from the system through

the formation of immune complexes and clearance of immune complexes

and infected cells, the secondary antigen, Alpha, is introduced at day 40.

Figure 6.2a shows that alpha is cleared almost immediately. Because Alpha is

antigenically not very distant from 614G, the existing antibodies from 614G

have a higher affinity with Alpha and effectively neutralize the Alpha variant
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Figure 6.2: Population dynamics for Case 1 where antigenic distance
between primary antigen 614G, and secondary antigen Alpha is
0.81 AU. This figure shows the simulation time courses following secondary
challenge with the Alpha variant at day 40. (a) shows antigen concentration
over time, with the secondary antigen (Alpha) introduced at day 40. (b)
shows B-cell populations, showing naive, stimulated, plasma, and memory
subsets. (c) shows viral load , antibody titer, and immune-complex (IC)
formation following 614G and Alpha exposure.

immediately.

In Figure 6.2b, the population of naive B cell doesn’t seem to change.

That is because out of 40000 naive B cells, only 314 can be activated by the

antigens as they are within the ball of stimulation. The remaining naive B cells
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stays as they are for being outside of the ball of stimulation, meaning lower

affinity towards the antigen. Even among these, stimulation probability scales

with individual affinity, so only the highest-affinity clones expand modestly.

The stimulated B cells initially increase as the primary antigen grows. Once

the antigen is cleared, the stimulated B cells decay based on their age limit.

Because Alpha is removed so rapidly, stimulated B cells peak briefly for Alpha

and then decay according to their programmed lifespan, yielding negligible

net expansion.

Stimulated B cells undergo differentiation after a four day maturation

delay, generating long-lived plasma cells, short-lived plasma cells, and memory

B cells. Plasma long-lived (Plasma L) cells and memory B cells have a very

high longevity; therefore, they persist at steady levels for a long time and

again increase after the introduction of the secondary antigen. Plasma short-

lived (Plasma S) cells, on the other hand, have comparably lower longevity,

resulting in a transient population. Consequently, antibody titers rise sharply

following Plasma S and Plasma L production and remain elevated, ensuring

a rapid secondary response to an antigenically similar variant Figure 6.2c.

The Immune Complex (IC) start forming once the plasma B cells start

producing the antibodies at day 4 and decline as the antigens start to decay.

Although the IC for secondary antigen Alpha is showing almost 0, it is because

the duration is captured after each day and the IC are rapidly generated and

diminish as the pre-existing antibodies react rapidly to the antigens.
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6.4.2 Case 2: Moderate Antigenic Distance, Partial

Overlap between Balls of Stimulation
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Figure 6.3: Population dynamics for Case 2 where antigenic distance
between primary antigen 614G, and secondary antigen Delta AY.4.2
is 1.73 AU. This figure shows the simulation time courses following secondary
challenge with the Delta AY.4.2 variant at day 40. (a) shows antigen concen-
tration over time, with the secondary antigen (Delta AY.4.2) introduced at
day 40. (b) shows B-cell populations, showing naive, stimulated, plasma, and
memory subsets. (c) shows viral load , antibody titer, and immune-complex
(IC) formation following 614G and Delta AY.4.2 exposure.

The antigenic distance between the two variants is larger compared to case
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1, but the ball of stimulation still overlaps (Figure 6.1b). This overlap reduces

the cross-reactivity of the existing B cells and antibodies with the secondary

antigen. We consider 614G (primary) and Delta AY.4.2 for SARS-CoV-2

variants with an antigenic distance of 1.73 AU between them. Figure 6.3a

shows that the secondary antigen Delta follows similar trajectory as the

primary antigen 614G, but starts to decline shortly because of the affinity of

the pre-existing antibodies from the primary antigen with Delta. Additionally,

because of having a moderate affinity, the memory B cells recognizes the

secondary antigen and start producing plasma cells in higher rate, resulting

in a rapid antibody production.

The stimulated B cell population shows a small, transient peak immediately

after the introduction of the primary. However, this peak is significantly

smaller than during the primary response to the secondary antigen, but larger

than what we see in case 1. This indicates minimal activation of naive B cells

or memory B cells that briefly proliferate before differentiating into plasma

cells, because of the clearance of antigens by the pre-existing antibodies and

rapid production of antibodies from plasma cells because of the memory B

cells.
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6.4.3 Case 3: Larger Antigenic Distance, No Overlap

between Balls of Stimulation

In this case, the antigenic distance between two variants (614G and Omicron

B.A.2) are too large that there is no overlap between the ball of stimulations,

resulting in no cross-reactivity of B cells and antibodies from primary antigen

614G towards the secondary antigen (Omicron B.A.2).

In Case 3 (∆d = 4.58AU), the antigenic distance between the primary

614G and secondary Omicron BA.2 exceeds the 2 AU radius of ball of

stimulation, resulting in no cross-reactivity by pre-existing 614G specific B

cells and antibodies.

Upon Omicron BA.2 challenge at day 40, the antigen concentration rises

rapidly to a pronounced peak—reflecting unaffected viral replication by

the pre-existing B cells and antibodies from 614G shown in Figure 6.4a.

Figure 6.4b shows that the memory B cells specific to 614G remain flat,

confirming zero reactivation for Omicron B.A.2. Stimulated B cells begin to

appear after a brief lag as Omicron B.A.2.-specific B cells get activated; they

peak and then decay according to their programmed lifespan. Plasma cells

(short- and long-lived) and new memory B cells emerge only after the four-day

maturation delay, leading to a gradual buildup rather than the abrupt spike

seen when cross-reactivity is present.

Figure 6.4c shows the viral load which mirrors the antigen curve, peaking

well before any antibody-mediated control. Antibody titers remain at the low
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Figure 6.4: Population dynamics of 614G and Omicron B.A.2.

Figure 6.5: Population dynamics for Case 3 where antigenic distance
between primary antigen 614G, and secondary antigen Omicron
B.A.2. is 4.58 AU. This figure shows the simulation time courses following
secondary challenge with the Omicron B.A.2. variant at day 40. (a) shows
antigen concentration over time, with the secondary antigen (Omicron B.A.2.)
introduced at day 40. (b) shows B-cell populations, showing naive, stimu-
lated, plasma, and memory subsets. (c) shows viral load , antibody titer,
and immune-complex (IC) formation following 614G and Omicron B.A.2.
exposure.
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baseline of residual anti-614G IgG until Omicron-specific plasma cells begin

secreting new antibodies, at which point titers climb. Immune complexes

(IC) are essentially zero during the initial replication phase (no binding

by pre-existing antibodies) and rise only once the Omicron B.A.2.-specific

antibodies reach sufficient concentration, driving antigen clearance. Together,

these panels demonstrate that when antigenic distance places the secondary

variant outside the original stimulation radius, hybrid immunity confers no

immediate protection: the system must launch a wholly new B-cell response,

resulting in a delayed antibody surge, belated immune-complex formation,

and a correspondingly later decline in viral load.

6.5 Methods

6.5.1 Computational Model

We initialize a 40 by 40 2D grid, called shape space, to represent antigenic

distances between different variants of antigens. Shape space diagram provides

a visual representation of the affinities between multiple B cells/antibodies

and antigens through the antigenic distance, where each point represents

a unique B cell and antigen phenotype. Antigenic distance, indicating the

affinity between antigens and B cells, was calculated as the hamming distance

between points in this space. Stochastic agent-based model simulates the B

cells in the shape space.
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We created an initial concentration of a specific SARS-CoV-2 variant

antigen (NAg) in the shape space. The position of the SARS-CoV-2 variant in

the shape space diagram is calculated from [111]. The model then generates

an initial number of B cells NBC and uniformly distribute them in groups

within the same 2D grid. Each group contains up to 100 B cells of similar

phenotype meaning each group corresponds to specific coordinates within the

grid and all cells of a group share identical coordinates in the shape space.

We considered 6 hours as one time-step. Each B cell is initially considered

a naive B cell. During each time step, they can shift to activated B cells,

stimulated B cells, plasma L cells, plasma S cells, memory cells, and mutated

cells in the simulation. Figure 6.6 shows the framework of our model.

• Activation: The activation mechanism involves identifying B cell

neighbors within a specified distance from the antigens. We assume B

cells within the specified distance have enough affinity with the antigen

to get activated. In our model, we consider this activation distance

r = 2 AU and we call this region ball of stimulation. We compute

the affinity αi between B cell/antibody of phenotype i and the antigen

following this equation:

αi = 10−di (6.1)

Here di is the antigenic distance from the B cell/antibody of phenotype

i to the antigens. This equation indicates that B cell/antibody with

lower di has higher affinity. Maximum binding affinity is 1 when the
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Figure 6.6: Our simulation starts with initializing B cells and antigens in
the shape space. Each point in the shape space represents a phenotype
and each phenotype has multiple B cells. The phenotype groups containing
multiple B cells are distributed uniformly in the shape space and antigens
with a specific phenotype are plotted on the specific coordinate. The distance
between the antigens and the B cells represents their antigenic distance.
The model proceeds through submodels for stimulation, binding, mutation,
differentiation, antibody secretion, antigen dynamics, and immune complex
formation. The model keeps running until it reaches the specified time-step.

distance is zero.

• Stimulation: Not all the activated B cells can bind to the antigen and get

stimulated. Activated B cells can get stimulated based on their affinity.

The model employs a stimulation mechanism at each time step to govern

the interactions between B cells of phenotype i and antigens, where it

computes the probability of binding (P (binding)i) to the antigen based

on affinity. If the B cell is within the ball of stimulation, it is assigned
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a binding probability as follows:

P (binding)i = Cb × αi (6.2)

Here Cb is the binding co-efficient. We assume Cb = 0.1.

This formula ensures that not every stimulated B cell binds with the

antigen. Stimulation depends on the distance between B cells and

antigens. B cells with lower affinity or whom are in close proximity to

the antigen, have a higher probability of getting bound to the antigen.

• Mutation: Once stimulated, B cells can mutate leading to a diverse

repertoire of B cells with a varying affinity for the antigen. During the

mutation phase, the B cell changes its phenotype by choosing a random

angle from a uniform distribution and a distance from an exponential

distribution. Suppose the newly changed phenotype coordinate is within

the specified radius r from the antigen. In that case, its affinity is

updated based on its distance from the antigens and it can get stimulated

in the next time step. Otherwise, it stays in the shape space but doesn’t

participate in any further simulation. We assume the probability of

mutation P (mutation) is 1% indicating a lower occurrence of mutation.

• Proliferation and Differentiation: Each stimulated B cell undergoes

rapid clonal expansion, generating rclones 2 more daughter cells at each

time step expressing the same B cell phenotype. We assume each B
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cell has a mean lifetime of 108 hr. Therefore, each stimulated B cell

can produce a maximum of 36 daughter B cells. Each daughter cell

has a 5% probability P (memory) of being a memory B cell and 5% of

being a plasma cell P (plasma). Among those plasma cells, 75% are

short-lived plasma cells P (S) and 25% are long-lived plasma cells P (L).

All other cells remain stimulated cells and get the same probability

in the next time step until they die. The mother cell dies (removed

from the system) after each proliferation. After the 8th generation of

proliferation, the new daughter cell becomes a plasma cell with a 50%

chance of a plasma cell and 50% of a memory cell.

– Plasma Cell: At each time step, the plasma cells can secrete

antibodies at a constant rate sAb with a certain probability. Short-

lived plasma cells secrete sSAb = 2000 antibodies per sec [150]

and long-lived plasma cells secrete sLAb = 2000 antibodies per

hour. The high secretion rate of short-lived plasma cells ensures

an immediate large production of antibodies to neutralize the

pathogen quickly. The long-lived plasma cell sustains low levels of

antibody production over extended periods. Their slower secretion

rate reflects their role in maintaining baseline immunity rather

than responding to active infection.

– Memory B Cell: Memory B cell undergoes rapid proliferation to

produce antibodies for a repeated antigen if the memory B cell
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falls within the ball of activation to the new variant of antigen. It

proliferated rclonem = 4 daughter cells with a 75% probability of

differentiating into plasma cells and a 25% probability to memory

cells. Memory cells act as first responders in subsequent infections

and they live for a long time in the system.

• Antibody: The antibody grows at a constant rate from plasma cells

and decays following an exponential decay. The decay method iterates

through each antibody phenotype, considering the current count of

antibodies associated with that phenotype as follows:

dAbi(t)

dt
= −rAb · Abi(t) (6.3)

Here rAb is the antibody decay rate (per time step) and Abi(t) the

antibody count of phenotype i at time t. We compute rAb from the

half-life (hAb) of antibodies as follow:

rAb =
ln(2)

hAb

(6.4)

The half-life of the antibody is 21 days ****Cite Ruy’s paper****.

• Antigen Dynamics: Antigen level changes over time through clearance

and replication dynamics. Antigen follows an exponential growth until

it reaches the peak and follows an exponential decay afterward:
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Ag(t + 1) = Ag(t) × e−rAgt (6.5)

Here rAg is the growth and decay rate, and Ag(t) is the antigen count at

time t. rAg is 5 per day for the growth and 0.5 per day as the decay rate.

The formula of exponential growth or decay arises from the solution to

a first-order ordinary differential equation (ODE).

Ag(t)

dt
= rAg · Ag(t) (6.6)

[56] mentioned that SARS-CoV-2 reaches its peak around day 4. Hence

the decay rate is activated after day 4. The binding with antibodies

also affects the decay of antigens.

• Lifespan: Each B cell, except naive B cells, has a certain lifespan

and undergoes apostosis after reaching that lifespan. Because of rapid

turnover of naive b cells from bone marrow, they are considered to have

an inifinite lifespan for the purpose of this study. At different stages, the

B cell is assigned a random lifetime from an exponential distribution,

where their half-life mentioned in Table 6.2 corresponds to the mean

value of the distribution. At each time step, if the B cell exceeds its

assigned lifespan, a the cell death is simulated by removing it from the

system.

• Immune Complex (IC): At each time step, if antibodies are present,
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antigens bind to these antibodies and create an IC structure (ICi)

for each antibody phenotype i. In our model, we assume only one

antigen type is present at a specific time. ICi formation follows a

quasi-equilibrium equation:

Ag + Abi <=> [K+][K−]ICi (6.7)

Here Ag represents the free antigens and Abi represents the free anti-

bodiess of phenotype i.

The quasi-equilibrium equation, representing the equilibrium state of

ICs, is solved following a first order differential equation:

dICi

dt
= K+[Abi][Ag] −K−[ICi] (6.8)

The free antigen Ag and the free antibodies Abi can be computed from

the total antigens TAg and total antibodies TAbi of certain phenotypes i

as follows:

TAg = Ag +
N∑
i=1

ICi (6.9)

TAbi = Abi + ICi (6.10)

We assume the formation of ICs is a two step process involving TAg and

TAbi of certain phenotypes i:

– We assume no initial ICs when the system first reaches equilibrium.
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Therefore, the total antigen TAg is equal to the free antigen, Agi

and the total antibody TAbi is equal to the free antibody Abi of

phenotype i. ICs formation is initiated by antibodies with the

highest affinity for antigens.

– Once the system reaches equilibrium and there is ICs, we assume

dICi

dt
= 0. From Equations (6.8) to (6.10), the equilibrium condition

can be written as,

K+[Abi][Ag] −K−[ICi] = 0 (6.11)

⇔K+[TAbi − ICi][TAg − ICi] −K−[ICi] = 0

⇔K+[TAbi − ICi][TAg − ICi] = K−[ICi]

⇔[TAbi − ICi][TAg − ICi] =
K−[ICi]

K+

⇔TAbiTAg − ICiTAg − TAbiICi + IC2
i = Kdi [ICi]

⇔IC2
i − ICiTAg − TAbiICi −Kdi [ICi] + TAbiTAg = 0

⇔IC2
i − ICi(TAg + TAbi + Kdi) + TAbiTAg = 0

⇔ICi =
(TAg + TAbi + Kdi) −

√
(TAg + TAbi + Kdi)

2 − 4TAgTAbi

2

Here Kdi = K−

K+ is the dissociation constant and computed as:

Kdi =
1

10−8 × αi

(6.12)
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The equilibrium concentrations of ICs are adjusted to ensure consistency

with the total antigens. If necessary, normalization is performed to

maintain the balance.

The clearance of IC is modeled using an exponential decay, where the

ICi at time t + 1 is given by,

ICi(t + 1) = ICi(t) × e−rIC (6.13)

Here, rIC = IC decay rate per time step. We consider that ICs decay

rate is 23 per day [25].

6.6 Discussion

In this study, we developed an agent-based model of SARS-CoV-2 specific

adaptive immunity that explicitly represents B-cell, antibody, and antigen

populations in a two-dimensional shape space. By embedding successive

exposures to variant antigens (614G → Alpha, Delta AY.4.2, Omicron BA.2),

we showed how antigenic distance governs the degree of cross-reactivity,

shaping the speed and magnitude of immune responses. When antigenic

distance is small (Case 1, 0.81 AU), pre-existing antibodies and memory

B cells rapidly neutralize the challenge, yielding minimal viral replication

and negligible de novo clonal expansion. At moderate distances (Case 2,

1.73 AU), a partial overlap of stimulation radius produces an intermediate
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Table 6.1: Parameters and Notations

Parameter Description Value Unit

r Radius of the ball of stimulation 2 AU

di Antigenic distance between a B cell/antibody of phenotype i AU

αi Affinity between a B cell/antibody of phenotype i with the antigen

P (binding)i Probability of binding of phenotype i with antigens

Cb B cell binding co-efficient towards an antigen 0.1

P (mutation) Probability of mutation 0.01

P (memory) 2 Probability of daughter B cells to be the memory B cell 0.05

P (plasma) 2 Probability of daughter B cells to be the plasma B cell 0.05

P (S) 2 Probability of plasma B cells to be the short-lived 0.75

P (L) 2 Probability of plasma B cells to be the long-lived 0.25

sSAb Short-lived plasma cell antibody secretion rate 2000 sec−1

sLAb Long-lived plasma cell antibody secretion rate 2000 hr−1

rclones Production rate of each stimulated B cell 2 timestep−1

rclonem Production rate of each memory B cell after recognizing the new variant 4 timestep−1

rAb antibody decay rate timestep−1

Abi(t) antibody count of phenotype i at time t timestep−1

hAb half-life of antibodies 21 day [?]

rAg growth and decay rate 5 & 0.5 day−1

Ag(t) antigen count at time t

rIC IC decay rate 23 day−1
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Table 6.2: Mean age of B cells, and antibodies. The age is randomly assigned
following an exponential distribution with mean age

Value (days) Unit

Activated & Stimulated B cell 4.5 days

Plasma L cell 200 days

Plasma S cell 3 days

Memory Cell 126 days

Antibody 21 days

phenotype: attenuated but still accelerated antibody kinetics relative to

the primary response. When distance exceeds the stimulation radius (Case

3, 4.58 AU), hybrid immunity confers no immediate protection, and the

system must re-launch a response, delaying peak antibody titers and viral

clearance. These results quantitatively recapitulate empirical observations of

variant-dependent vaccine efficacy and underscore the importance of antigenic

mapping in anticipating immune escape.

Future Work

• Model Calibration through Data Fitting: We plan to fit our model out-

puts to longitudinal viral-load and antibody-titer datasets from clinical

cohorts for SARS-CoV-2. By employing nonlinear least-squares and the

Approximate Bayesian Computation method for parameter estimation,

we are adjusting key parameters—such as antigen growth/decay rates, B

cell death rates, antibody secretion/decay rates, and binding coefficients
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to minimize discrepancies between simulated and observed trajectories.

• Computation of half-maximal effective concentration (EC50): We will

leverage our agent-based model to generate in silico dose-response curves.

We will take antibodies raised against a primary SARS-CoV-2 variant

and perform serial dilutions. For each dilution level, we will measure the

fraction of viral inhibition (or antigen neutralization) in vitro against

a panel of variant antigens. By plotting inhibition probability versus

dilution factor, we will identify the dilution at which 50 % inhibition

occurs, defined as the EC50, for each variant.
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