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Abstract

If a robot controller is able to adapt to the challenges of an unstructured environment,

it will have a major advantage over previous systems that require precise descriptions

of the environment in order to function. One control system could be used for an

array of different use cases without having the need to design and test a controller

for each specific scenario. Designing such a controller is a difficult challenge. The

fine tuning of robot impedance control parameters can be a laborious and time-

consuming process. It is very desirable to develop methods for streamlining the

tuning of impedance control parameters through simulation that insures stability,

desired tracking, and interaction characteristics. Leveraging neural network machine

learning techniques utilizing data collected from simulation, the goal is to develop a

methodology and technique to find an optimal solution for a given impedance control

setup. In addition, by focusing on solving a specific impedance control problem it

may lead to insights in how these techniques can be broadened to other applications.
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Glossary

adaptive impedance/force control

the impedance/force control law is adapted based on measured feed-

back

control law a mathematical formula used by the controller to determine the

outout ”u” that is sent to the plant

damping a decrease in the amplitude of an oscillation as the result of en-

ergy being drained from the system to overcome frictional or other

resistive forces

force a push or pull upon an object resulting from the object’s interaction

with another object

force control output torque is controlled to match the desired force applied by

the end-effector on an external object

impedance control A distinction between impedance control and the more conven-

tional approaches to manipulator control is that the controller at-

tempts to implement a dynamic relation between manipulator vari-

ables such as end-point position and force rather than just control

these variables alone. This change in perspective results in a sim-

plification of several control problems. [1]
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Glossary

instantaneous mechanical work the energy transferred to an object via the appli-

cation of force along a displacement; the product of force and dis-

placement dW = (F )(dX)

iterative learning control scheme A method of tracking control for systems that

work in a repetitive mode.

Jacobian matrix which provides the relation between joint velocities and end

effector velocities of a robot manipulator

kinematics the branch of mechanics concerned with the motion of objects with-

out reference to the forces which cause the motion; the features or

properties of motion in an object

inverse kinematics is the mathematical process of calculating the variable joint pa-

rameters needed to place the end of a kinematic chain (such as a

robot manipulator) in a given position and orientation

manipulation mechanical interaction with the object(s) being moved or interacted

with

motion control a controller which calculates and controls mechanical trajectories,

treating the robot and end effector as an isolated system in the

simplest form

stiffness the extent to which an object resists deformation in response to an

applied force

xiii



Chapter 1

Introduction

The primary motivation for this thesis is to develop a technique to guarantee sta-

bility for robot manipulation in variable environments. This will be achieved using

impedance control and machine learning by dynamically altering impedance control

parameters in response to sensed environmental conditions.

Robot interactions in well structured and known environments is well studied

[2][3]. For example, factory robots have been successfully deployed in numerous

manufacturing roles. All environmental variables are controlled in order to produce

an efficient assembly line. A robotic arm assembling a component or product is

programmed to know precisely where it can and cannot move and does not have to

adapt to any surprising or unexpected circumstances.

However, it is desirable to develop strategies and robust algorithms where robots

can be deployed to perform manipulation tasks in the field. This will open the door

to a host of new and innovative applications. Mobile robots can be deployed in

emergency situations to search for survivors or other resources. Bomb squad robots

may be designed to be more autonomous and versatile requiring little or perhaps no

human manipulation to perform vital tasks. Such applications, as well as many more,
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Chapter 1. Introduction

become possible when a robotic system is able to adapt and adjust to an unknown

environment.

In this chapter, the main problem is introduced as well as a discussion of the

core concepts. This chapter will also present an outline detailing how the rest of the

thesis will be organized.

1.1 Technical Challenges with Robot Interaction

Stable mechanical manipulation is a core problem that has been the center of a vast

body of research and development [4]. Of particular interest to this work is the

ability of a robot manipulator to maintain stability while performing a manipulation

task in uncertain environments.

Early manipulators were directly controlled by human operators. For example,

Goertz developed manipulators to facilitate interactions with dangerous radioactive

material for lab work [4]. These systems maintained stability due to the direct control

of the human operators coupled with sensors in the manipulators that provided force

reflection.

Eventually, control systems were developed for robotic arms that made use of

computers in order to enable automatic control without human intervention. Many

different types of control schemes exist in the literature including position control,

force control, impedance control, hybrid position-force control, and others.

Of primary concern with control schemes such as position control and force control

is that the environment being interacted with needs to be precisely defined and known

in advance of any manipulation task. It is possible to meet this requirement with

some industrial applications in predictable and controlled environments.

2



Chapter 1. Introduction

Passivity analysis can be used to determine if a system interacting with an envi-

ronment is stable. Passivity analysis focuses on interaction through the perspective

of a robot manipulator or end effector [5]. If a system can be guaranteed to be

passive, then it may interact with a wide range of possible environments with little

to no stability problems.

On the other hand, Non-passive systems may produce force feedback instabilities

when coupled with some environments. Due to hardware design or any number

of other possible issues, it may be difficult to ensure passivity in a robot. It is a

challenge then to design algorithms and control systems that can dynamically adjust

an impedance controller to robustly adapt to changes in environment and interaction.

By using a neural network to train on a vast variety of potential impedance control

parameters and environmental feedback, it may be possible to generalize a robust

and adaptive response to fine tuning an impedance controller on the fly.

1.1.1 Impedance Control

Impedance control is an approach for controlling the dynamic interaction between a

manipulator and its environment, and it overcomes many of the limitations of force

control or position control alone [1]. In particular, previous successful robot control

schemes have been based on position control which treats the robot as an isolated

system. This method is undesirable for capturing the dynamic interaction between

a robot and an uncertain environment.

The fine tuning of robot impedance control parameters remains a difficult prob-

lem and a laborious and time-consuming process. In particular, applications where a

robot needs to interact with an uncertain, dynamic environment are difficult to solve

because impedance control requires an accurate model of manipulator and environ-

ment dynamics. Iterative methods exist for learning or selecting impedance control

3



Chapter 1. Introduction

parameters [6][7]. These methods are effective for situations where the environment

to be interacted with is well defined and consistent, but these methods may not

effectively handle situations where the environment to be interacted with may be

dynamically changing over time.

This work presents a method for tuning robot impedance control parameters

quickly by using a supervised machine learning method to develop a trained neural

network model.

This model is trained on a vast array of various impedance control and environ-

ment parameters in order to generate a robust response. This neural network accepts

as input the current impedance control parameters and measured environment dy-

namics and predicts updated impedance control parameters to ensure stability of the

system. This type of system falls under the category of function fitting or regression

problems. In particular, this system is trying to solve a multi-variable input problem

with a single output. By using machine learning to generalize the impedance con-

troller response, this system may not be limited in scope to any one particular task

or environment interaction, and may result in a robust impedance controller that

can be used in mobile robots that need to perform tasks in uncertain environments.

A bespoke controller optimized for a precise and well defined problem may out-

perform this controller in its task of expertise. However, unlike the proposed system

it would be unable to adapt to changes that may be seen when deploying autonomous

robots in varying environments.

1.1.2 Neural Network

The Neural Networks used in this work were developed using the Matlab Deep Learn-

ing Toolbox [8]. Three neural network architectures were used and their performances

compared with each other:

4



Chapter 1. Introduction

1. FITNET – function fitting neural network

This neural network is a standard regression/function fitting neural network

architecture. The size of the hidden layers and the training functions may be

chosen from a suite of options.

2. DLNETWORK – custom deep learning network

This neural network is a deep learning network architecture available in Matlab.

Like Fitnet, many parameters may be adjusted

3. GRNN – generalized regression neural network

This neural network is a function fitting neural network with one hidden layer.

It uses radial basis functions in order to approximate the function fitting solu-

tion.

Figure 1.1: NN Example with 2 hidden layers

5



Chapter 1. Introduction

Other work has also been done in implementing neural networks with impedance

control [9][10][11][12]. These works have focused on using machine learning to deal

with specific tasks and limited or well defined environments, and they have estab-

lished that the use of machine learning with impedance control is a viable and effec-

tive tool.

It is the goal of this thesis to build upon these results by applying machine learning

tools in a broader and more ambitious scope with a simple exemplar problem. Once

a proven foundation is designed, this work can be extended to include more complex

systems.

1.1.3 Stability

A well established measure of stability in dynamic systems is Nyquist stability anal-

ysis. It will be a primary tool used in this work at many stages of development from

generating data sets to verifying results.

The Nyquist plot of a sinusoidal transfer functionG(jω) is a plot of the magnitude

of G(jω) versus the phase angle of G(jω) in polar coordinates as ω is varied from

zero to infinity [13]. The Nyquist plot is often called the polar plot. The polar plot

is the locus of vectors |G(jω)|̸ G(jω) as ω is varied from zero to infinity.

The advantage of using a Nyquist plot is that it depicts the frequency response

characteristics of a system over the entire frequency range in a single plot [13].

It is desirable to ensure stability to help guarantee that any motion planning

or interaction activity the robot performs will execute successfully and to protect

hardware from damage.

6



Chapter 1. Introduction

Figure 1.2: A Nyquist Plot.

1.2 Technical Aims and Methodology

The current literature has detailed useful and powerful techniques for robot control

such as impedance control. Such tools have been used to great effect to produce con-

trol schemes for robots in known and predictable environments. Machine learning

provides additional tools that may prove useful to use in conjunction with these tech-

niques in order to expand the ability of robots to operate in unknown environments

in a robust way.

Manipulation in sanitized environments is well studied; this work intends move

forward to study methods that could be able to deploy autonomous robots in the field,

perhaps in uncertain or unknown environments and to interact with and manipulate

unknown objects.

To begin the discussion of methodology and its orchestration, background re-

search and information will be discussed in Chapter 2. This will include a discussion

7



Chapter 1. Introduction

of control methods and an analysis of the decision to use impedance control in this

work. Several forms of control will be compared including force, position, impedance,

and hybrid control. There will also be discussion on previous work in learning meth-

ods to include iterative techniques and other neural network and machine learning

techniques.

A simple exemplar robot model is designed and implemented in Matlab. This

model will be a 1 DOF robot. This model will be the basis for simulation and

machine learning training. This model will be presented in Chapter 3.

In addition to this model will be an impedance controller that is designed to

work with the robot model and will have several parameters presented in Chapter

4. These parameters can be used as input and output for a function fitting machine

learning algorithm. A neural network designed to work with these parameters can,

given a set of parameters as input, output a desired damping value in order to make

the robot system stable.

Chapter 5 will present the coupled stability analysis method. This is the method

used for determining the stability of the coupled system of the robot model to the

environment. A proposed approach to guaranteeing stability will be presented.

In order to generate a neural network that can perform this task, it must be

designed well and trained on a suitable data set. Chapter 6 will review the neural

network frameworks used in the machine learning experiments with Matlab and the

neural network toolbox. A suitable robot model is first designed in Matlab. The

physical parameters of this simulated robot, along with the parameters defining an

impedance controller, will serve as the input to a neural network. The expected

output will be a damping value for the impedance controller. Metaphorically, this

damping value will serve like the brakes of a motor vehicle, being applied or released

as necessary to achieve the desired movement. This type of machine learning problem

8



Chapter 1. Introduction

is a function fitting or a regression problem.

Experiments will be done with a few types of neural networks so that they can

be tested against each other as well as with varying hidden layer sizes and other

parameters in order to experimentally determine the best performing network for

this type of problem. Chapter 7 will present the results of the work with some

discussion about the networks ability to generalize and provide stable impedance

control parameters with untrained input.

Chapter 8 will discuss these results in further detail and Chapter 9 will present

the conclusions drawn from this work and whether the initial findings for this work

is promising. Also, possible future work and extensions will be discussed.

9



Chapter 2

Background

Robot systems and control is a well established and long running area of research

and development. Initial development began with human operated robot arms with

force reflection and eventually shifted into computer controlled robots [4].

Many of the early successful applications for industrial robotics were restricted to

the case where the robot could be treated as an isolated system with no environment

interaction. Examples of such applications included spray-painting and welding.

However, there was also a need for a more robust control scheme that could handle

the case where a robot needs to interact with the environment in order to handle

such tasks as drilling, bending, grinding, etc. Hogan [1] developed impedance control

to solve these types of problems. However, the development of control schemes for

dealing with undefined or unpredictable environments is an open area of research

and development.

Machine learning techniques such as neural networks are being used increasingly

in robot control applications. The promised advantage of using machine learning in

the context of robot controls is that it will allow better generalization than previous

iterative techniques [12]. Previous work integrating neural networks into impedance

10



Chapter 2. Background

control schemes achieved success in lowering uncertainty and providing stability in

dealing with more specific types of environments and tasks such as deburring [12]

and trajectory planning [11][10][9] when coupled to static environments.

Given an impedance controller with adjustable parameters, robot actuator dy-

namics are known, and that the environment being interacted with can be measured,

this work proposes and tests a general and robust strategy of updating impedance

control parameters to ensure stability.

2.1 Control Methods

2.1.1 Position Control

2.1.2 Force Control

2.1.3 Hybrid Position/Force Control

2.1.4 Impedance Control

2.1.5 Force Feedback

2.1.6 Interaction with Environment

2.2 Non-Machine Learning Techniques

Previous work has been established using non-machine learning methods for learning

impedance control parameters. Kim [14] proposed a recursive least-square filter-
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Chapter 2. Background

based episodic natural actor-critic algorithm in order to find optimal impedance

control parameters. Arimoto [15] presents a physical interpretation of practice-based

learning that steadily learns a desired task by monotonously increasing the grade of

impedance matching pertaining to the dynamics of the robot task with controller

dynamics. Cheah [16] introduces a method for learning impedance control for robot

manipulators. Unlike other approaches, Cheah’s method is implemented without

the need to switch the learning controller from non contact to and from contact

tasks. Wang [7] presents an iterative learning control law for the impedance control

of robotic manipulators. This method does not require a reference trajectory for

training and instead the performance is determined by a target impedance.

This foundational work demonstrates the effectiveness of impedance control and

various novel techniques for learning impedance control parameters. However, most

of these approaches are somewhat brittle in the sense that they focus on teaching

one specific task or interaction to the controller and does not generalize to new

environments without completely retraining the controller for each new scenario. It

is the hope that this work can build off the ideas of these methods and develop a

method that can generalize a method to adapt impedance control parameters for

stability no matter what environment an actuator may interact with.

2.3 Other Machine Learning Approaches

In addition to traditional techniques described previously, there has also been a lot

of work in using machine learning techniques to learn impedance control parame-

ters. Tsuji [10] developed a method to use an array of neural networks to regulate

the impedance parameters of a manipulator’s end-effector while identifying environ-

mental characteristics through on-line learning. Jung [11] proposes a method using

neural networks to compensate for uncertainties in the robot model. A novel error
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Chapter 2. Background

signal is proposed for the neural network training. Katic [12] presents an applica-

tion of connectionist structures for fast and robust online learning of internal robot

dynamic relations used as part of impedance control strategies in the case of robot

contact tasks. Cohen [9] presents an evaluation of the associative search network

(ASN) learning scheme which is a stochastic scheme that uses a single scalar value

as a measure of the system performance.

Previous work using machine learning methods has provided solid evidence that

neural networks can be applied effectively to solve impedance control parameter

learning problems. This work either focuses on using neural networks to train an

actuator on learning specific tasks or focuses on using online learning methods. In

contrast, this work presents an offline learning method that hopes to generalize its

adjustment of impedance control parameters to any environment or task. The goal

is not necessarily to teach an impedance controller any specific task, but to give it a

robust response to any environment to ensure passivity of the system.

13



Chapter 3

System Modeling

Figure 3.1: Model diagram for a 1-DOF Robot Arm Actuator

This section presents a robot actuator model designed in MATLAB/Simulink in

order to test the proposed stability scheme. The actuator model is a 1-DOF robot

14



Chapter 3. System Modeling

drive. The actuator is split into two parts that must be designed and simulated. The

system will be represented with a mathematical model [13].

3.1 Drive Motor and Gear Train Dynamic Model

The first stage in the design of this model is to develop free body diagrams and

model diagrams for all of the components. Figure 3.2 shows the free body diagram

of part 1 of the actuator.

Figure 3.2: Free Body Diagram for Drive Motor and Gear Train

Where J1 is the moment of inertia, which is defined as change in torque
change in angular acceleration

=

Nm
rad/sec2

. b1 is the damping constant for the shaft connecting J1 to the actuator

motor. Tin is the input torque supplied by the actuator motor. T2 is the load torque

from actuator part 2. θ1 is the angular position (in radians) of the shaft connecting

actuator part 1 to the motor. θ2 is the angular position (in radians) of the shaft

connecting the gear train to actuator part 2.

15



Chapter 3. System Modeling

Figure 3.3: Model Diagram for Drive Motor and Gear Train

Next, the model diagram is developed (see Figure 3.3), preserving all of the rela-

tionships defined in the free body diagram with the addition of two new components.

N1 is the number of teeth in the gear attached to J1. N2 is the number of teeth in

the gear attached to the shaft connected to actuator part 2.

It is assumed that the gear train is perfect with no slippage or other complicat-

ing factors. With a schematic of actuator part 1 complete, we can proceed to use

Newton’s Second Law [13] to derive the equation of motion that will represent the

mathematical model of this part of the system.

J1θ̈1 = Tin −
(
N1

N2

)
T2 − b1θ̇1 (3.1)

In Equation 3.1, the torque on the right hand side of the equation is defined to

be the input torque from the motor minus the load torque of the shaft scaled by the

gear train ratio minus the effects of damping in the system. In order to facilitate

implementation of our model in Simulink, it is helpful to make some substitutions in
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Chapter 3. System Modeling

order to solve Equation 3.1 in terms of θ2.

θ1 =

(
N2

N1

)
θ2

therefore:

J1θ̈1 =

(
N2

N1

)
J1θ̈2

b1θ̇1 =

(
N2

N1

)
b1θ̇2

and thus, equation 3.1 becomes:(
N2

N1

)
J1θ̈2 = Tin −

(
N1

N2

)
T2 −

(
N2

N1

)
b1θ̇2

finally, we simplify and solve in terms of θ̈2

θ̈2 =

(
1

J1

)(
N1

N2

)
Tin −

(
1

J1

)(
N1

N2

)2

T2 −
(

1

J1

)
b1θ̇2

(3.2)

Equation 3.2 is the equation of motion for actuator part 1. Using these same

methods, we can now derive the equation of motion (EOM) for actuator part 2.

3.2 Output Link Model

Figure 3.4: Free Body Diagram for Output Link Model

17
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Where J3 is the moment of inertia. b3 is the damping constant for the shaft between

the gear train and J3. k3 is the spring/stiffness constant for the shaft between the

gear train and J3. T2 is the load torque from actuator part 2. Tload is the load torque

from the environment. θ2 is the angular position (in radians) of the shaft connecting

the gear train to actuator part 2. θ3 is the angular position (in radians) of the shaft

connecting to J3.

Figure 3.5: Model Diagram for Output Link Model

As we can see from the model diagram in Figure 3.5, the angles θ2 and θ3 represent

angular positions at opposite ends of the same shaft. Due to the physical properties

of damping and stiffness represented in this model, it is not assumed that these angles

are identical and must be taken into account. We can thus derive the equations of

motion for actuator part 2 as follows:

J3θ̈3 = Tload − b3

(
θ̇3 − θ̇2

)
− k3 (θ3 − θ2)

solve in terms of acceleration:

θ̈3 =

(
1

J3

)
Tload −

(
b3
J3

)(
θ̇3 − θ̇2

)
−
(
k3
J3

)
(θ3 − θ2)

(3.3)
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3.3 System Model

Figure 3.6: Model Diagram for a 1-DOF Robot Arm Actuator

With the equations of motion established for all components of the actuator, we can

now combine everything for a complete model representation (see Figure 3.6).

Recall that:

θ̈2 =

(
1

J1

)(
N1

N2

)
Tin −

(
1

J1

)(
N1

N2

)2

T2 −
(

1

J1

)
b1θ̇2

θ̈3 =

(
1

J3

)
Tload −

(
b3
J3

)(
θ̇3 − θ̇2

)
−
(
k3
J3

)
(θ3 − θ2)

(3.4)

Observing the whole system, we can perform one final simplification, as T2 =

b3(θ̇2 − θ̇3) + k3(θ2 − θ3). Thus, after substituting and simplifying we have:

θ̈2 =

(
1

J1

)(
N1

N2

)
Tin−

(
1

J1

)(
N1

N2

)2 [
b3

(
θ̇2 − θ̇3

)
+ k3 (θ2 − θ3)

]
−
(

1

J1

)
b1θ̇2

(3.5)

θ̈3 =

(
1

J3

)
Tload −

(
b3
J3

)(
θ̇3 − θ̇2

)
−
(
k3
J3

)
(θ3 − θ2) (3.6)
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Impedance Controller Design

Previously, the equations of motion describing the actuator model were derived.

These equations can be used to set up a model in Simulink representing a simulated

robot actuator. This model has one input and one output. u is the input and

represents a torque to be applied to the actuator (Tin). θ3 is the output and represents

the angular position of the inertial element J3

An impedance controller can be created in Simulink to make use of this input

and output and control the simulated robot actuator. In order to formalize and

explain the design of the impedance controller used in this work, we first look at a

spring-mass-damper system:

Figure 4.1: Spring Mass Damper System
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The impedance controller will be based on the design of the spring mass damper

system and it will dynamically control the impedance of the robot actuator through

the adjustment of the impedance control parameters, where those parameters are

analogous to the physical attributes of the mass spring damper system.

Where Fd is the desired force output. Force applied from the environment to

the actuator is subtracted from the desired force. This represents an error term for

the force. Xd is the desired position. The measured actuator position is subtracted

from the desired position. This represents an error term for the position. Je is the

inertial/mass parameter (analogous to M in Figure 4.1). This scaling parameter is

a gain on the acceleration of the impedance controller’s spring mass damper system.

Be is the damping parameter. This scaling parameter is a gain on the velocity of the

impedance controller’s spring mass damper system. Ke is the spring/stiffness param-

eter. This scaling parameter is a gain on the position error term of the impedance

controller’s spring mass damper system. Kp the proportional gain constant. The

”P” from ”PID” control. This final parameter is a proportional gain applied to the

output of the whole impedance control system.

Finally, now that all of the elements are in place we simply need to choose appro-

priate values for the constants defined in both the actuator model and the impedance

control model, and we can then observe the dynamic behaviour of the controlled sys-

tem. For example, with the following settings:

Fenv Fd Xd Je Be Ke Kp

0 0 1 0.05 7 24 50

Table 4.1: Impedance Controller Parameters
L N1 N2 J1 b1 J3 b3 k3
1 1 10 0.005 0.5 0.05 5.0 500

Table 4.2: Robot Actuator Parameters

The observed dynamic behaviour is recorded in Figure 4.2, where the controller

21



Chapter 4. Impedance Controller Design

over time commands the position of the actuator to converge to the desired position

Xd = 1.

Figure 4.2: Step Response of Impedance Controlled Actuator

4.1 Simulink Model

1. discuss implementation of impedance control model in simulink

2. what kinds of visuals might be useful?

(a) diagram of either or both impedance controller model and actuator model?

3. perhaps discuss what kind of data this model produces and how it is used

4. an overview of the Matlab tools used with appropriate citations

4.2 Controller Validation

• parameter selection for impedance control model:

Fd = desired force
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Be = damping term

Ke = spring/stiffness term

Kp = proportional gain on the system

• initial parameter selection for impedance controller?

• testing and validating response functions from actuator model
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Chapter 5

Coupled Stability Analysis

This chapter presents the coupled stability analysis used to determine the stability

of an impedance controlled system when interacting with various simulated environ-

ments.

5.1 Passivity Analysis

1. With the impedance controller in place, we can perform passivity analysis and

curve fitting using Matlab’s Control System Toolbox.

2. In order to verify if our machine learning approach is effective, we need a way

to evaluate the stability of any particular set of impedance control parameters

for a given environment.

3. In order to do this, we need to calculate the transfer functions of both the

system and the environment. The transfer function of a linear, time-invariant

differential-equation system is defined as the ratio of the Laplace transform of

the output (response function) to the Laplace transform of the input (driving
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function) under the assumption that all initial conditions are zero [13].

4. For a given set of impedance controller and robot actuator parameters, we

can run a Simulink simulation and obtain the trajectory data for those values

(see Figure 4.2 for an example). Using this trajectory data, we can curve fit

the data using a nonlinear least squares method to a defined second order

model. The curve-fitted parameters Jsys, Bsys, and Ksys define the differential-

equation system of the controller and actuator system. We can define our

transfer function for our controller as an impedance:

5.

Zsys(s) =
Y (s)

X(s)
=

1

(Jsys s2) + (Bsys s) +Ksys

(5.1)

6. For this work, we will characterize the environment as a mass-spring system

with Jenv and Kenv defining the differential-equation system. We can define our

transfer function for the environment as an admittance:

7.

Yenv(s) =
X(s)

Y (s)
=

(Jenv s
2) +Kenv

s
(5.2)

8. And finally, we can calculate the transfer function of the coupled dynamic

system as the product of the system impedance and the environmental admit-

tance:

9.

G(s) = Zsys Yenv =
(Jenv s) + (Kenv

1
s
)

(Jsys s2) + (Bsys s) +Ksys

(5.3)

10. A Nyquist plot can be generated using this transfer function and analyzed to

determine the stability of the system.
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5.2 Curve Fitting

1. Matlab control system toolbox provides the analysis tools to generate and

operate on transfer functions

2. however, we don’t know the parameters of the transfer function off hand for

any given set of impedance control parameters and coupled environment

3. we must estimate the required transfer functions using a curve fitting technique

(a) first, generate a sweep of values for Ke and Be (two of our impedance

control parameters)

(b) the impedance parameter Je is kept constant at 0.05

(c) second, we run the simulink model of the impedance controlled robot and

obtain the model response to the assigned settings

(d) FIGURE: add an example or two of the step model response to demon-

strate the curve we are curve fitting to

(e) in matlab, we use code for a 2nd order model in order to curve fit a

differential equation to the data plot from simulink

i. (TODO: need to review this code ore closely and parse it so I can

give a proper explanation in this paper)

4. FIGURE: add a figure demonstrating the curve fitted plot to the response from

the model

5. discuss the fact that the curve fit is NOT perfect, it is an approximation

(a) How does the approximation affect overall performance? Is this something

I can measure?
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Chapter 6

Neural Network

This chapter presents the different neural network models, a detailed description of

the data set and how it is set up, and how the models are trained. Different models

are created to find the best performing architecture that is ideal for this problem

space.

This chapter is structured in the following way: (1) a discussion of the problem

setup and the step by step process of how and why the data set was designed, (2)

the three neural network architectures used is then detailed, and (3) a comparison

of the benefits and shortfalls of each architecture is finally discussed.

6.1 Problem Setup

The goal is to develop a neural network that, given system parameters as input, can

predict a stable damping value for the coupled dynamic system. Using Matlab, a

simple model was developed to represent a robot arm as described in Chapter XX. In

chapter XX, a state space model is defined which in turn is used to develop a transfer

function representing the robot arm model and control system and the environment
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with which it interacts. The parameters of the system or the environment can be

adjusted, i.e., inertia and stiffness, and the stability of the system can be observed.

The stability of the system can be analyzed by looking at the closed loop coupled

system which can be described by

<equation 15>

For coupled system analysis, this can be by looking at the open loop component

of the coupled system.

<equation 16>

Using the Nyquist analysis method and varying control system parameters with

the tools available in MATLAB, we can determine whether or not a specific coupled

system conditions are stable and adjust parameters to make the system stable, e.g.,

adjust the damping value of the impedance controller for an already passive system.

6.1.1 Generating A Dataset

One of the primary concerns and most important steps in the development of an

optimal machine learning system is to procure a high quality data set to use for

training. A good data set has a sufficient number of samples that cover a broad

range of inputs that the system is likely to encounter. In addition, it is important

that these inputs are in a numerical format that lends itself to being used in machine

learning methods.

Table 6.1 lists and defines the parameters used in the model for data set creation.

These parameters are used to generate a data set of eleven thousand samples.
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Je The emulated moment of inertia in the impedance controller.
Be The emulated damping in the impedance controller.
Ke The emulated stiffness in the impedance controller.
Menv The emulated mass of the environment.
Benv The emulated damping of the environment.

This value is always set equal to zero.
Kenv The emulated stiffness of the environment.

Table 6.1: The parameters that are adjusted to produce the data set.

Using the transfer function representing our system and environment we can

iterate through a large set of value ranges for the parameters, observe the stability of

the resulting system, and record values that generate stable systems. In order to get

an optimized set of damping values to train with there are several steps of processing

that was performed:

The minimum stable damping value (Be) for each combination of eleven thousand

parameter samples is calculated via the following method:

Be = 1

if coupled system with Be = unstable then

Be = Be ∗ 1.05

else

if coupled system with Be = stable then

stable system has been found

end if

end if

After calculating the minimum stable damping values for the entire data set,

some additional processing is done in order to create a more optimal data set. When

training a neural network on a set of data, the resulting neural network may over

or underestimate its predictions within an acceptable range. Specific to our use

case, we never want these predictions to be underestimated when dealing with the
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minimum stable damping values as any values below this will result in an unstable

system. Moderate to large overestimates may still produce a stable system. While

we want the neural network to predict the smallest stable value possible, there are

many scenarios where a slightly larger value will still be stable thus providing an

incentive to train a neural network that consistently overestimates rather one that

can possible underestimate.

In order to improve the accuracies of neural networks trained on this data the

minimum values were averaged using a nearest neighbors approach, with the rule

that any individual value may not drop below its minimum stable damping value.

This results in a smoother regression curve that is easier to fit to while training a

neural network.

Another processing method was to take the log of the input data and output data

when training the neural networks. The difference in stable damping values can vary

exponentially, and using a log scaling results in a data set that is easier to work with.

More specifically, it simplifies the regression problem the neural network is trying to

solve by eliminating extreme variations in the training data from data point to data

point.

As described in Table 6.1, our system and environment is defined by six variables.

These values themselves could be used as inputs directly into a neural network.

However, through experimentation, it was found that converting these values into

the natural frequency of the impedance controller and the natural frequency of the

environment yielded a data set which trained better and had higher accuracies.

The natural frequency is defined as:

WSY S =

√
Ke

Je
WENV =

√
KENV

MENV

(6.1)

Simplifying our multi-parameter system into these natural frequencies makes the
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mapping of our regression space straightforward. In essence, a four input one output

system is converted into a two input one output system where the inputs are the

natural frequencies of the system and the environment and the output is the stable

damping value..

This application of machine learning is well defined as a regression problem, as

we are attempting to map a specific set of input parameters to a stable damping

output value. This regression problem can be presented as a mapping into a three

dimensional space, where the x and y axis may be defined as the natural frequency

of the system and the environment and the z axis is defined to be the stable damping

value which is the solution.

6.1.2 Data Sweep of Parameters

The parameters used by the impedance controller system and the environment repre-

sent the parameters of spring damping systems. The parameter ranges selected thus

reflect the common conventions of such systems as well as a selection for systems

that behave in a particular manner when given different values for damping in the

impedance controller system.

The following is an example of the range of values selected in Matlab code:

Je = 0.125 * (0.5 : 0.5 : 5);

% The value 0.125 represents the baseline value for the emulated

% moment of inertia of the impedance controller.

Ke = 25 * (0.5 : 0.5 : 5);

% The value 25 represents the baseline value for the emulated

% stiffness of the impedance controller.

M_env = 0.125 * (0.5 : 0.5 : 5);
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% The value 0.125 represents the baseline value for the emulated

% mass of the environment.

B_env = 0;

% The environment is defined as a spring mass system with

% no damping.

K_env = 25 * (0.5 : 0.5 : 5);

% The value 25 represents the baseline value for the emulated

% stiffness of the environment.

6.1.3 Regression Map

6.1.4 Function Approximation

6.1.5 Choosing A Neural Network

Having defined the system and generated a data set as previously described, the next

step in the problem setup is to choose a neural network architecture to use in order

to generate a neural network and train it on the data set. Matlab provides a robust

set of tools for generating and training neural networks.

Three neural network types were chosen in order to compare and contrast per-

formance among different architectures in the pursuit of an optimal result:

1. generalized regression neural network (GRNN)

2. function fitting neural network (fitnet)

3. deep learning network (DL network)
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6.2 Generalized Regression Neural Network

A generalized regression neural network is a radial basis function network. A radial

basis function is a function whose value depends on the distance between the input

and a fixed point. Specifically in terms of this work, the fixed points may be rep-

resented as the training set output (the ideal damping values to produce stability).

Sums of radial basis functions are used to approximate given functions. The approx-

imation process can be interpreted as a kind of neural network called a radial basis

function network.

Radial basis function networks are a type of artificial neural network that uses

radial basis functions as activation functions. The network output is a linear com-

bination of radial basis functions of the inputs and neuron parameters. One of the

primary uses for these networks is for function approximation, which as previously

discussed, is the core operation we are trying to achieve.

A GRNN network is produced in Matlab by defining the inputs and outputs as a

subset of the data set and the desired training results. Also, a value for the spread of

the radial basis functions must be included. Generally speaking, the larger the value

for the spread the more smooth of a function approximation results. Alternatively,

smaller values for the spread produces a tighter fit but may risk over-fitting the

training data if taken too far.

The pros to this approach include the fact that this type of network is very

fast to design and implement and generally produces a good result for the type

of function approximation problem we are trying to solve. By design, this neural

network contains a single hidden layer composed of a number of neurons equal to

the number of inputs used to train. As such, we select a subset of the entire data

set to use to represent this hidden layer. Unfortunately, this presents a con to the

approach in the sense that we simply cannot use an entire data set as input because

33



Chapter 6. Neural Network

it would use too much memory to run and train in Matlab.

6.3 Function Fitting Neural Network

The function fitting neural network (or fitnet) is a standard regression/function fit-

ting neural network architecture available in Matlab. While it is designed to perform

the same function as the GRNN previously discussed, there are some important key

differences. The biggest difference is in the structure of the network. While the

GRNN is designed as a single layer neural network, fitnet allows the user to com-

pletely decide the size and structure of the network. This includes the number of

hidden layers and the number of neurons in each hidden layer. Thus, because we

can define the structure of the network more precisely we are also able to train the

network on the entire data set instead of a subset of the values. Many different

variations in number of neurons per layer and number of layers were tested to see

which configuration produced the best training results.

The benefits of this type of network over both GRNN and the Deep Learning

Network is that the speed of training is generally faster with this system. There is

more control over parameters of the neural network than the GRNN but also less

control than with the Deep Learning Network tool.

6.4 Deep Learning Network

The deep learning network (DL Network) is the third neural network design tool that

was tested in this work. Just as fitnet provided more variables and settings to adjust

than GRNN, the DL Network in turn provides even more flexibility and control than

fitnet. The deep learning network tool allows each individual layer in the network to
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be customized and adjusted. While this feature is available to fitnet, the ability to

do so with the DL network is significantly more streamlined and easier to use.

Each hidden layer was designed to be fully connected and the ReLu activation

function is used between each layer. The same number of layers and neurons per

layer were used as fitnet in order to provide a direct comparison of performance

between the two neural network structures.

While extremely flexible, this comes at the cost of run time. This network on

average takes more time to train than the other networks discussed. However, that

being said, this particular architecture ended up performing with the best accuracy.

6.5 Model

Figure 6.1: Model diagram for function fitting neural network. This network has
three layers: one input layer, one hidden layer, and one output layer. The input and
output layers are of size six and three respectively due to the required input and
output parameters. The hidden layer was chosen to have ten neurons, but can be
set to any arbitrary size and number of hidden layers.
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Number of Number of Neurons Per Number of
Input Neurons Hidden Layers Layer Output Neurons

6 1 2 3
6 1 3 3
6 1 6 3
6 1 9 3
6 1 18 3
6 3 2 3
6 3 3 3
6 3 6 3
6 3 9 3
6 3 18 3
6 6 2 3
6 6 3 3
6 6 6 3
6 6 9 3
6 6 18 3
6 9 2 3
6 9 3 3
6 9 6 3
6 9 9 3
6 9 18 3
6 12 2 3
6 12 3 3
6 12 6 3
6 12 9 3
6 12 18 3

Table 6.2: Different Sizes of Neural Networks Implemented

1. Why choose a neural network approach as opposed to another approach such

as nonlinear regression?

(a) TODO: need to come up with the pros and cons of the NN technique vs a

more straightforward way to simply adjust impedance control on the fly

2. Using the Matlab Deep Learning Toolbox, the Neural Network design used in

this application was the function fitting neural network (fitnet). This network
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was chosen because function fitting is essentially what we want to achieve with

impedance control parameter tuning. We would like to create a generalized

function in the sense that given any set of impedance control parameters and

environment parameters, we will generate a mapping to a new and stable set

of impedance control parameters to use in a control loop. The advantage of

this design is that it is lightweight and easy to integrate such a system into a

simulated or hardware control loop without significant overhead.

3. features of fitnet:

(a) has an input layer (current impedance control parameters and sensed en-

vironment parameters)

(b) has an output layer (new suggested impedance control parameters)

(c) has at least one or more hidden layers; each layer may have any number

of neurons

4. In order to test and verify which type of neural network architecture would

be appropriate for this application, several iterations of neural networks were

created with different numbers and sizes of hidden layers. Each of these fitnet

neural networks was trained on the full data set and performance was compared

in order to determine which architecture produced the most reliable results.

5. One major component of this neural network structure is the training function.

In our neural network we use the Bayesian regularization back propagation

training function. This function updates the weight and bias values of the

neural network according to Levenberg-Marquardt optimization. It minimizes

a combination of squared errors and weights, and then determines the correct

combination to produce a network that generalizes well. Additionally, the

transfer function used in the neural network is the hyperbolic tangent Sigmoid

transfer function.
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6.6 Dataset Design and Collection

In order for a machine learning application to be successful, it requires a large and

high quality data set. The neural network used in this work will have the target

inputs and outputs specified in Table 6.3

Inputs Outputs
Je J ′

e

Be B′
e

Ke K ′
e

Jenv
Benv

Kenv

Table 6.3: The neural network will take six inputs including three impedance control
parameters and three environment parameters and produce three outputs which will
be suggested updates to the impedance control parameters.

In order to build the data set, we first sampled a large range of impedance con-

troller values. The inertial element Je was kept fixed at 0.05. The spring/stiffness

value Ke was sampled in the range of [1, 1000] with a step size of 1. The values for

Be were sampled as a function Ke and Je in order to maintain critical damping of

the system: Be = 2 ×
√
Je ×Ke for each value of Ke. With these samples, we then

run the Simulink model and curve fitting routines on all combinations of parameters

to produce a sample of one thousand unique, critically damped impedance control

parameters.

Next, we built a sample of environment parameters. Kenv was sampled using the

function f(x) = 10x from [0.5, 10] with a step size of 0.5. This results in twenty

unique values for Kenv. Jenv was sampled from [1, 100] with a step size of 2, resulting

in fifty unique values for Jenv. Benv was kept fixed at 0 since the mass-spring model

for the environment has no damping. Using the two samples of Jenv and Kenv with

Benv fixed, we produced a set of one thousand unique environment parameters.
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The final step is to generate every possible combination of impedance control

parameters and environment parameters, resulting in a final data set of one million

entries. In addition, the Nyquist stability analysis was performed on each of these

entries and labeled to show if the critical point in the Nyquist plot was circled

(unstable) or not circled (stable) in order to have a labeled data set for machine

learning training.
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Results

This chapter summarizes the experimental results from the trained neural networks

used for predicting impedance control parameters.

7.1 Neural Network Accuracy

Three different neural network architectures were tested in order to find a solution to

the regression problem presented in this work. Three metrics were calculated during

the training of the neural networks:

1. accuracy — This value represents the accuracy of a neural network to correctly

generate a stable damping value for a system across all eleven thousand sam-

ples in the data set used to train the network. This accuracy is a percentage

indicating the correct number of predictions across the entire data set after

being trained.

2. MSE — This value represents the mean squared error across the predictions for

the entire data set for the damping values generated versus the ideal damping
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values calculated for the training data set. It is both helpful and hurtful that

there are many damping values that may generate a stable system for a given set

of parameters. We can use the MSE to measure the quality of damping values

beyond simply generating a stable system but to indicate if it is generating the

best possible stable system.

3. run time — This value represents the average amount of time in seconds that

a neural network takes to produce a prediction. This value was calculated

by having the neural network generate a prediction for every sample in the

data set. Each prediction was timed and the average prediction time across all

samples was taken.

All three neural network architectures were able to perform well, achieving accu-

racies that could reach or exceed 90%. The least performing neural network archi-

tecture was Fitnet, with a highest accuracy value of 92.9273%.

The Deep Neural Network package performed the best with a highest accuracy

value of 98.1%. However, when comparing MSE values we can see that there is a

trade off for this high accuracy. In general, this particular network overestimates

damping values compared to other neural networks.

Looking at the results for the GRNN, we see that the best accuracy with this

neural network architecture was 95.0091%. This is not as high as the DL Network,

but there is once again a trade off. The MSE for the GRNN is orders of magnitude

lower. This indicates that while the frequency of correct predictions will be lower,

the quality of those predictions will be higher.
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sample size spread accuracy MSE run time (sec)
100 20 83.5182 8.89 e1 7.80 e-3
100 15 82.7455 8.15 e1 7.89 e-3
100 10 81.9182 2.98 e2 7.50 e-3
100 5 86.7455 5.03 e2 7.34 e-3
100 1 86.7455 5.68 e2 7.27 e-3
100 0.1 86.6909 5.68 e2 6.65 e-3
100 0.01 86.6909 5.68 e2 5.93 e-3
100 0.001 86.6909 5.68 e2 6.07 e-3
100 0.0001 86.6909 5.68 e2 6.29 e-3
100 0.00001 86.6909 5.68 e2 6.29 e-3
200 20 87.7273 2.55 e1 7.70 e-3
200 15 88.3091 4.54 e0 7.63 e-3
200 10 88.0818 5.18 e-1 7.48 e-3
200 5 85.7364 3.01 e1 7.46 e-3
200 1 95.0091 3.10 e2 7.54 e-3
200 0.1 95.0091 3.10 e2 7.67 e-3
200 0.01 95.0091 3.10 e2 7.63 e-3
200 0.001 95.0091 3.10 e2 7.55 e-3
200 0.0001 95.0091 3.10 e2 7.68 e-3
200 0.00001 95.0091 3.10 e2 7.37 e-3
500 20 90.0636 2.38 e2 6.31 e-3
500 15 90.8636 6.64 e2 6.46 e-3
500 10 91.6727 4.58 e2 6.31 e-3
500 5 91.6727 1.58 e1 6.26 e-3
500 1 93.9909 1.83 e2 7.94 e-3
500 0.1 93.9818 1.82 e2 9.57 e-3
500 0.01 93.9818 1.82 e2 6.16 e-3
500 0.001 93.9818 1.82 e2 6.62 e-3
500 0.0001 93.9818 1.82 e2 5.49 e-3
500 0.00001 93.9818 1.82 e2 5.87 e-3
1000 20 90.8273 3.88 e0 8.54 e-3
1000 15 90.6727 1.92 e0 5.40 e-3
1000 10 90.7364 3.09 e-2 5.37 e-3
1000 5 91.6545 7.91 e-1 5.35 e-3
1000 1 92.2636 4.26 e1 6.10 e-3
1000 0.1 92.2636 4.35 e1 7.02 e-3
1000 0.01 92.2636 4.35 e1 6.61 e-3
1000 0.001 92.2636 4.35 e1 6.28 e-3
1000 0.0001 92.2636 4.35 e1 6.33 e-3
1000 0.00001 92.2636 4.35 e1 6.87 e-3

Table 7.1: (prediction accuracy) results for GRNN
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Table 7.2: FITNET Results

Layers Neurons % Stable MSE Run Time [ms]
1 1 94.62% 1.82E+02 6.37
1 10 90.05% 2.83E+02 6.41
1 100 88.59% 7.44E+01 6.51
1 500 89.54% 2.56E+01 6.56
1 1000 88.20% 6.74E+02 6.64
2 1 94.74% 1.69E+02 6.97
2 10 88.89% 4.20E+02 7.06
2 100 88.98% 3.23E+02 7.41
2 500 88.39% 3.63E+02 13.87
2 1000 87.05% 1.14E+03 34.30
4 1 94.66% 4.26E+02 8.01
4 10 90.62% 1.17E+01 8.12
4 100 90.67% 1.32E+02 8.68
4 500 88.13% 9.44E+02 28.13
4 1000 88.25% 6.55E+00 73.67
8 1 94.29% 3.32E+01 10.14
8 10 92.13% 7.31E+02 10.28
8 100 89.45% 4.82E+01 11.39
8 500 89.77% 3.54E+01 52.54
8 1000 88.82% 5.16E+01 172.31
12 1 94.87% 1.58E+02 12.46
12 10 91.21% 9.23E+02 12.60
12 100 90.33% 1.29E+02 14.31
12 500 89.42% 4.45E+02 82.10
12 1000 89.20% 1.66E+03 298.95
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Table 7.3: DL Network Results

Layers Neurons % Stable MSE Run Time [ms]
1 1 96.15% 6.74E+04 3.52
1 10 97.15% 3.13E+04 3.07
1 100 90.76% 1.66E+06 3.16
1 500 89.76% 1.22E+06 3.18
1 1000 86.19% 2.46E+06 3.45
2 1 96.00% 7.92E+04 3.02
2 10 97.71% 3.17E+03 2.99
2 100 89.20% 1.83E+06 3.16
2 500 84.58% 4.32E+05 3.75
2 1000 92.23% 3.54E+05 3.10
4 1 41.80% 4.94E+07 3.24
4 10 95.93% 1.95E+05 3.17
4 100 97.11% 1.74E+06 3.09
4 500 95.05% 3.16E+05 5.20
4 1000 94.81% 9.23E+05 3.66
8 1 41.92% 4.94E+07 3.06
8 10 93.72% 2.99E+05 3.19
8 100 96.54% 7.53E+05 3.00
8 500 95.31% 1.55E+06 4.13
8 1000 88.58% 3.16E+06 3.76
12 1 41.73% 4.94E+07 3.23
12 10 96.73% 3.77E+05 3.21
12 100 93.07% 6.51E+04 3.16
12 500 88.46% 1.33E+05 4.37
12 1000 93.06% 2.98E+05 4.42
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Discussion

1. Initial results show that this method may be useful for generating impedance

control parameters for ensuring stability.

(a) some networks didn’t train very well, the lowest accuracy network was

approximately 28%

(b) the best performing networks were able to predict stable impedance con-

trol parameters for all 100% of the one million samples in the data set

2. the mse (mean squared normalized error) performance measure function was

used during the training of the neural networks

(a) the error for any particular network trained was always a very large value

(need to look back at data in matlab to grab specific figures)

(b) even with that being the case, what we want to measure is the prediction

stability, which is NOT specifically trained for with the neural network

(c) something of note: for any given prediction, there is a RANGE of possible

stable values. In its current form, the analysis done here does not check

for the optimal solution, only a sane and stable one. This is why the
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prediction accuracy in these results is much better than the MSE measure

would indicate

3. After training and testing several different networks of different sizes, some

apparent optimal configurations emerge from the results.

(a) the fastest neural networks had the fewest layers, but with the trade off

in accuracy this indicates that a network with 6 to 9 layers may be best

(b) the number of neurons per layer didn’t affect the run speed meaningfully,

therefore the only consideration for the number of neurons is the prediction

accuracy and 2 to 6 neurons per hidden layer yielded the best stable

prediction accuracies

4. Future work will include implementing a trained neural network into a robot

control loop (both simulated and real hardware), to verify the efficacy of the

method in hardware.

(a) because of the necessity to integrate the neural network into a REAL

TIME control loop, it needs to be as fast as possible or at least as fast as

is necessary for a control loop to remain stable
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Conclusion

1. A robot actuator model was designed and developed along with an impedance

controller in Matlab/Simulink. This model was used as the basis to test a

neural network method for choosing impedance control parameters to ensure

stability.

2. Experimental results show that this method is viable for use in a robot control

system for maintaining stability

(a) discuss the accuracy of the models

(b) discuss the run speed of the models

(c) perhaps an additional experiment to test on additional input outside of

the original data set?

(d) figure or picture to help?

3. some other ideas for future work may include:

(a) doing additional experiments with different types of training functions
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(b) there are many settings for these neural networks, perhaps working with

these settings to test aditional configurations

(c) taking the existing trained networks and implementing them into a simu-

lated or hardware control loop and analyze its effectiveness
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Appendix A

Data Set Generation Code

There are four Matlab scripts used to generate the data set:

1. Param Sweep 1.m

Generates all of the Ke and Be values used to generate the data set. Je is kept

to a constant value.

2. Param Sweep 2.m

Generates all of the Kenv and Jenv values used to generate the data set. Benv

is kept to a constant value.

3. Param Sweep 3.m

This script builds on data generated in the first two scripts by combining the

two sets of variables into every permutation of values possible and recording

the resulting stability.

4. Param Sweep 4.m

This script completes the data set by calculating a stable set of impedance

control parameters to give as an ”answer” for each sample when training.
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A.1 Param Sweep 1.m

clear;

close all;

setup;

% 1. sweep a selection of Ke values ranging from 1 to 1000

% 2. solve for Be using the critical damping ratio formula

% 3. keep Je at a fixed value for all experiments

% Select a set of values to sweep for Ke

Ke_sweep = 1:1000;

% Based on the Ke values, use the critical damping formula

% to solve for the critical damping value for Be

Be_sweep = 2 * sqrt(Je * Ke_sweep);

% Store the curve fitted impedance control values in this matrix

Bs = zeros(3, size(Ke_sweep, 2));

global io bo ko tscale theta3 Fapplied

% Keep the inertia element value fixed

Je = 0.05;

io = Je;

% Sample every "delta"-th point of model output in order to make

% the curve fitting process more efficient
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delta = 10;

% options for lscurvefit():

% don’t display output on each iteration

opts = optimset(’Display’, ’off’);

for i = 1:size(Ke_sweep, 2)

fprintf("Model sim %d of %d\n", i, size(Ke_sweep, 2));

% Update the impedance controller settings:

Be = Be_sweep(i);

Ke = Ke_sweep(i);

% Run the model with updated Be, Ke, values

model = sim(’actuator_model.slx’);

% Update curve fit parameters:

bo = Be;

ko = Ke;

tscale = model.tout(1:delta:size(model.tout, 1));

theta3 = ...

model.theta3.Data(1:delta:size(model.theta3.Data, 1));

Fapplied = model.F_env.Data;

% Curve fit with a second order model

B = ...

lsqcurvefit(@eom_uscf,[bo io ko],tscale,theta3,[],[],opts);
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% Store the curve-fitted impedance control parameters

Bs(1, i) = B(1, 2); % io

Bs(2, i) = B(1, 1); % bo

Bs(3, i) = B(1, 3); % ko

end

% Write the curve fit data out to a file:

save(’Dataset.mat’, ’Bs’);

A.2 Param Sweep 2.m

clear;

close all;

load(’Dataset.mat’);

% sample K_env values exponentially with these formulas

f = @(x) 10 .^ x;

% Sweep every combination of a selection of

% Ke and Je values for a Mass-Spring system

% K_env_sweep = [1:99, 100:1e5:(1e5-1) 1e5:1e6:(1e7-1) 1e7:1e7:1e9];

K_env_sweep = f(0.5:0.5:10);

J_env_sweep = 1:2:100;

Es = zeros(3, size(K_env_sweep, 2) * size(J_env_sweep, 2));
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j = 1;

for i = 1:size(J_env_sweep, 2)

for k = 1:size(K_env_sweep, 2)

fprintf("Environment sim %d of %d\n", j, size(J_env_sweep, 2) * size(K_env_sweep, 2));

Es(1, j) = J_env_sweep(i); % io

Es(2, j) = 0; % bo

Es(3, j) = K_env_sweep(k); % ko

j = j + 1;

end

end

save(’Dataset.mat’, ’Bs’, ’Es’);

A.3 Param Sweep 3.m

clear;

close all;

load(’Dataset.mat’);

deltaB = 1;

deltaE = 1;

count = 1;

circled_count = 0;

max_count = size(1:deltaB:size(Bs, 2), 2) * size(1:deltaE:size(Es, 2), 2);

BEs = zeros(7, max_count);
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for i = 1:deltaE:size(Es, 2)

for j = 1:deltaB:size(Bs, 2)

fprintf("Param sweep %d of %d\n", count, max_count);

% generate the transfer function for the given impedance

% control parameters and environment parameters

Z_sys = tf(1, Bs(:, j)’);

Y_env = 1 / tf([1, 0] , Es(:, i)’);

G = Z_sys * Y_env;

% produce nyquist plot data from the transfer function

[re, im] = nyquist(G);

re = floor(reshape(re, [], 1));

im = floor(reshape(im, [], 1));

% 1) calculate the angles of each re point from the

% critical point

% 2) sample all points in 45 degree increments to test if the

% nyquist plot line circles the critical point

deg = floor(abs(rad2deg(atan2(im, re + 1.0))));

points = (sum(ismember(0:45, deg)) > 0 && ...

sum(ismember(136:180, deg))) > 0 ...

&& ...

(sum(ismember(46:90, deg)) > 0 || ...

sum(ismember(91:135, deg))) > 0;

% In order to catch some edge cases, also ensure that the
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% nyquist plot line will cross the imaginary (X) axis at

% least once on each side of the critical point.

left = false;

right = false;

for k = 2:size(im, 1)

if ( im(k) <= 0 && im(k - 1) >= 0 ...

|| im(k) >= 0 && im(k - 1) <= 0) ...

&& (re(k) < -1 || re(k - 1) < -1)

left = true;

end

if ( im(k) <= 0 && im(k - 1) >= 0 ...

|| im(k) >= 0 && im(k - 1) <= 0) ...

&& (re(k) > -1 || re(k - 1) > -1)

right = true;

end

end

circled = left && right && points;

if circled

circled_count = circled_count + 1;

end

BEs(1:3, count) = Bs(:, j);

BEs(4:6, count) = Es(:, i);

BEs(7, count) = circled;
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count = count + 1;

end

end

fprintf("%d of %d critical points circled (unstable)\n", ...

circled_count, max_count);

save(’Dataset.mat’, ’Bs’, ’Es’, ’BEs’);

A.4 Param Sweep 4.m

clear;

close all;

load(’Dataset.mat’);

one = sum(BEs(7, :));

zero = size(BEs, 2) - one;

all = one + zero;

BE_0 = zeros(10, zero);

BE_1 = zeros(10, one);

j = 1;

k = 1;

for i = 1:all
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% For all known stable systems, simply keep the original

% impedance control settings

if BEs(7, i) == 0

BE_0(1:7, j) = BEs(1:7, i);

BE_0(8:10, j) = BEs(1:3, i);

j = j + 1;

% For all known unstable systems, leave the prediction

% blank for now, the next loop will calculate a new

% stable output based on the unstable input by adjusting

% the damping of the unstable impedance control settings

elseif BEs(7, i) == 1

BE_1(1:7, k) = BEs(1:7, i);

% BE_1(8:10, k) = calculated down below

k = k + 1;

end

end

tic;

damping_scalar = 10;

for i = 1:one

% error(1:zero) = sum(abs(BE_0(4:6, 1:zero) - BE_1(4:6, i)));

% [~, newBE_index] = min(error);

% BE_1(8:10, i) = BE_0(1:3, newBE_index);

% disp([i one]);

new = BE_1(1:3, i);

env = BE_1(4:6, i);
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circled = true;

attempts = 0;

damping_delta = damping_scalar ^ attempts;

% systematically find a stable configuration by increasing the

% damping value of the impedance controller, scaling it up

% exponentially with each attempt: f(n) = damping_scalar ^ n

while circled % && attempts <= 1000

new(2) = new(2) + damping_delta;

% generate the transfer function for the given impedance

% control parameters and environment parameters

Z_sys = tf(1, new’);

Y_env = 1 / tf([1, 0] , env’);

G = Z_sys * Y_env;

% produce nyquist plot data from the transfer function

[re, im] = nyquist(G);

re = floor(reshape(re, [], 1));

im = floor(reshape(im, [], 1));

% 1) calculate the angles of each re point from the critical

% point

% 2) sample all points in 45 degree increments to test if the

% nyquist plot line circles the critical point

deg = floor(abs(rad2deg(atan2(im, re + 1.0))));

points = (sum(ismember(0:45, deg)) > 0 && ...

sum(ismember(136:180, deg))) > 0 ...
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&& ...

(sum(ismember(46:90, deg)) > 0 || ...

% this "or" is on purpose

sum(ismember(91:135, deg))) > 0;

% In order to catch some edge cases, also ensure that the

% nyquist plot line will cross the imaginary (X) axis at

% least once on each side of the critical point.

left = false;

right = false;

for k = 2:size(im, 1)

if ( im(k) <= 0 && im(k - 1) >= 0 ...

|| im(k) >= 0 && im(k - 1) <= 0) ...

&& (re(k) < -1 || re(k - 1) < -1)

left = true;

end

if ( im(k) <= 0 && im(k - 1) >= 0 ...

|| im(k) >= 0 && im(k - 1) <= 0) ...

&& (re(k) > -1 || re(k - 1) > -1)

right = true;

end

end

circled = left && right && points;

attempts = attempts + 1;

damping_delta = damping_scalar ^ attempts;
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end

disp([i one circled attempts]);

disp(100 * i / one);

BE_1(8:10, i) = new;

toc;

end

Dataset = [BE_0 BE_1];

save(’Dataset.mat’, ’BEs’, ’Bs’, ’Es’, ’Dataset’);
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