LOCUS: A Multi-Robot Loss-Tolerant Algorithm
for Surveying Volcanic Plumes

John Ericksen*!, Abhinav Aggarwal', G. Matthew Fricke? and Melanie E. Moses!>*4
!Department of Computer Science, 2Center for Advanced Research Computing, 3 Department of Biology,
University of New Mexico, Albuquerque, NM, USA, 4Santa Fe Institute, Santa Fe, NM, USA
Email: *johncarl@unm.edu

Abstract—Measurement of volcanic CO, flux by a drone
swarm poses special challenges. Drones must be able to follow
gas concentration gradients while tolerating frequent drone loss.
We present the LoCUS algorithm as a solution to this problem
and prove its robustness. LoCUS relies on swarm coordination
and self-healing to solve the task. As a point of contrast we
also implement the MoBS algorithm, derived from previously
published work, which allows drones to solve the task indepen-
dently. We compare the effectiveness of these algorithms using
drone simulations, and find that LoCUS provides a reliable and
efficient solution to the volcano survey problem. Further, the
novel data-structures and algorithms underpinning LoCUS have
application in other areas of fault-tolerant algorithm research.

Index Terms—Autonomous Drones, Fault-Tolerance, Survey-
ing, Self-Stabilizing Systems, Consensus

I. INTRODUCTION

More than 10% of the world’s population live in the
destructive zone of volcanoes, and a quarter of a million
people have perished in volcanic eruptions in the last 500
years [1]]. Volcanoes emit unknown amounts of CO, and other
climate changing gasses, but only 10 of the approximately
300 currently active volcanoes are characterised by long-
term datasets that enable any assessment of temporal CO,
variability [2]. Measuring volcanic CO, flux would enable
predictions of eruptions, minimizing loss of life and economic
impact, as well as informing our understanding of greenhouse
gas-driven climate change.

Satellite remote sensing of CO, is infeasible, so sampling
is currently performed by ground based sensors or aerial
surveys with piloted aircraft [3]]. These techniques are costly,
dangerous, and produce temporally and spatially coarse mea-
surements. Unoccupied aerial vehicles (UAVs) present an
emerging solution [4] that reduces risk to volcanologists and
has the potential to markedly increase sampling resolution
within volcano plumes.

An international team of research universities recently
demonstrated that UAVs can feasibly sample CO, from an
active volcano in Papua New Guinea [5]. We developed the
dragonfly drone for this task. The dragonfly is capable of
measuring CO, in real time and has a flight duration of 1h.
However, drone loss was very common. Sudden and violent
thermal updraughts, acidic plumes, and rugged cliffs were
some of the many conditions that destroyed UAVs. Further, the
remoteness of many survey sites and battery life restrictions
necessitate brief missions with small swarms. These hazardous

and difficult conditions motivate the need for reliable perfor-
mance and surveillance algorithms that maximize the chance
of completing the CO, surveillance task even with the loss of
drones, short flight times, and small swarm sizes.

A key task for volcano surveillance is to locate the max-
imum CO, flux (max flux) in a dynamic gas plume. We
propose the Loss-tolerant Cohesive UAV Swarm (LoCUS) al-
gorithm to maintain a spatially dispersed swarm of drones that
can simultaneously measure CO, concentrations at different
locations and communicate those measurements across the
entire swarm. We use deductive arguments to prove the loss-
tolerance properties of LoCUS, and we test its performance
and fault tolerance in simulations. In particular we show
LoCUS guarantees that failed drones are replaced within
flight-time proportional to the square root of swarm size, while
preserving the swarm symmetry essential to efficient gradient
following.

We hypothesise that maintaining a dispersed team of robots
that can simultaneously measure CO, at different spatial loca-
tions will provide a better estimate of the CO, gradient, allow-
ing fast navigation to the CO, source. We further hypothesise
that the benefit of spatially dispersed measurements outweighs
the increased complexity resulting from coordination and self-
healing. To test these hypotheses, we develop an alternative
approach which allows multiple UAVs to independently search
for the maximum CO, flux. We compare LoCUS to Moth Bal-
listic Swarm (MoBS), an algorithm that combines a ballistic
search algorithm for multiple agents without communication
[6] [7] and a gas gradient following algorithm for robots
inspired by Moth pheromone tracking [_8] [9].

II. RELATED WORK

An algorithm for reliably locating max flux using a remote-
sampling robotic-platform requires the following:

1) Search: A search pattern to explore an area to make
initial contact with the plume.

2) Plume Gradient Following: After plume contact is made,
the platform follows the gas plume to the source.

3) Failure Resistance: The collection of robots needs to
respond to failures to maintain a cohesive structure.

Schleich et. al. [10] proposes searching an area using a
fully-connected swarm of drones and compares this against
a random and pheromone-following approach. They find that

Fig. 1: MoBS simulation with 16 drones and a smooth plume.
The red lines trace each drone’s independent search for the
plume using golden ratio spokes from the center of the arena.
After each drone contacts the plume, it switches to a Moth
pheromone inspired search algorithm to find the max flux.

a fully-connected swarm satisfies base-station connectivity re-
quirements while achieving slightly better survey performance
for larger swarm sizes. This motivates LoCUS, as keeping the
swarm in contact provides benefits that outweigh the overhead
of maintaining swarm connectivity.

Neumann et. al. [11] compares 3 algorithms for plume
gradient following: the surge-cast algorithm, the Dung Beetle
(zig-zag) algorithm, and the pseudo-gradient algorithm using
a single robot agent. Through the author’s experiments, in
both simulation and physical robots, they validate all three
algorithms promising for micro UAVs each under different
ciricumstances. Our approach uses multiple robots for plume
gradient following, with MoBS closely resembling the surge-
cast algorithm and LoCUS resempling pseudo-gradient algo-
rithm across the swarm formation.

Chen et. al. [12]] apply a Particle Swarm Optimization
algorithm to follow a gas plume gradient in an indoor en-
vironment. This approach requires full swarm connectivity to
communicate global arena information throughout the swarm.
This motivates keeping the swarm connected with coordinated
movement for gradient descent.

In [13]], Cabrita et. al. investigate locating the max flux
using Gaussian parameter estimation leveraging a simulated
annealing error minimisation approach. They test this algo-
rithm successfully on a swarm of 5 robots. We implement a
similar model in MoBS and LoCUS, but we only use the local
gradient to navigate the plume in the case of MoBS, and the
gradient that spans the swarm’s full extent in LoCUS. We use
their simple linear fit to determine the direction of the CO,
gradient.

Flocking algorithms are effective at coordinating movement
while being failure resistant. Souissi et. al. [[14] and Yang
et. al. [[15] propose leader based approaches for moving a
swarm flock while maintaining a given shape and detecting
and recovering from failures. Their algorithms keep the swarm

Fig. 2: LoCUS simulation with 16 drones and a perturbed
plume. The red lines trace the swarm’s Archimedes Spiral
search for the plume. After contacting the plume, the swarm
follows leverages its simultaneous spatially dispersed measure-
ments to descend the gradient to the max flux.

together during movement. LoCUS, on the other hand, makes
theoretical guarantees about swarm symmetry as drones are
lost, given a small collection of drones in close enough
proximity that all drones can maintain communication with
each other. Our approach could be applied to heal traditional
flocking algorithms like the one presented in [16].

Paliotta et. al. [[17] present a plume gradient following
agent based model for three fully networked agents [1§]]
[19] [20]. We extend this structured plume gradient following
approach with LoCUS by increasing the swarm size, tuning
agent capabilities to mimic our dragonfly robotic platform, and
adding a fault recovery mechanism.

III. DERIVATION AND ANALYSIS OF LOCUS

The LoCUS algorithm ensures a fully connected swarm with
efficient recovery from drone failures. A LoCUS swarm is able
to be controlled as a single unit, by directing all members
of the swarm at once. We first discuss the basic algorithm
assuming no failures, and then discuss how the swarm recovers
from drone failures and resumes its mission.

Let N be the total number of autonomous drones in the
system. Each drone has a unique ID in {1,...,N} and a
communication radius Ryax and a safety radius Rpyjn. Each
drone can communicate with any drone within Ryay distance,
but requires a minimum distance between any two drones in
the swarm to be Ry, to avoid collisions.

A. Balanced Range-Limited Trees

Definition 1. Given R,,;n, Rinar > 0 and an integer n > 0,
an (Rpin, Rmaz)-Range-Limited Tree on n nodes is a rooted
tree, where the distance between any two nodes is at least
Rynin and at most s. In particular, a maximal (Rpin, Rmaz)-
Range-Limited Tree is one in which the distance between the
parent node and any of its children is R,,q.. The ratio p =
Rinaz/Rmin is the spread of this tree.

10 5
N 13
21 2 3 =
= o N B A 14
20 = 1 =5 o
= 8 = 5
= = 15
19 7 e o
= @ B 16
18 17 =)
v
n,(p) nodes at
level 1
Ds:| 1 | 2.(ny(p)+2) | na(p)+2 ... (n1(2p) - ny(P) +1) [+=---
(— :
Root Node n,(2p) nodes
at level 2

Fig. 3: Assignment of nodes to levels based on their IDs. Since
the number of nodes at each level is fixed, the assignment
is deterministic and can be computed locally to determine
placement in the swarm (see Section [[lI-AT). The blue regions
denote parent/child communication links.

As with standard k-ary trees, we can define the height of
a Range-Limited Tree 7 node in terms of the heights of
its children. We define the height of the root node as zero
and then, recursively, the height of 7, denoted height (7), as
height (7)) = 1+ max; {height (7;)}, where the maximum is
over the height of all children 7; of 7. Similarly, we define
the level of a node as level(7;) = 1+ level(7;.parent), where
T;.parent is the parent node of 7;. For this recurrence, the root
node is defined to be level zero. Thus, the root node has the
largest height in the tree but is located at the lowest level.

Definition 2. Let T be a Range-Limited Tree. We say that T
is Balanced if for every node in T, the difference in the heights
between any two of its children is at most one, i.e., for every
node T; € T with children 7;(1), e ,7;(7”), it must hold that
|height (T;) — height (T;)| < 1 for all i # j.

Each node maintains a pointer to its heir in the tree. This is
crucial to achieve fault tolerance in LoCUS. We define the heir
of a node as its successor, if it exists, or its predecessor, other-
wise. If neither a successor or predecessor exists, the node is a
leaf node and the heir is null. To define a successor node, we
first define an inorder traversal of the tree, denoted in(7). Let
T@ ..., 7™ be the children of the root node for 7. Then,
the inorder traversal of 7 prints the IDs of these nodes in the
following order (here, - represents the concatenation operator):
in(7M).-in(T 2]y - D7) - in(T LB i om),
Note that the inorder traversal is unique for a given tree. We
can now define the successor and predecessor of a node.

Definition 3. Node T; is a successor of the node T; in the
tree T if ID(T;) immediately follows ID(T;) in the inorder
traversal of T. Similarly, we say that T; is a predecessor of
T; if ID(T;) immediately comes before ID(T;) in the inorder
traversal of T. In all cases, a node is either a leaf, or either
its successor or predecessor is a leaf node of tree T.

1) Formation Algorithm: The LoCUS algorithm swarm
takes the shape of an (Rmin, Rmax)-Balanced Range-Limited
Tree. A balanced Range-Limited Tree layout obtains maximal
spatial coverage while maintaining a minimum separation
between drones to avoid collisions, and keeps drones within
communication range.

Lemma 1 (Number of Nodes at a Given Level). Let T be a
maximal balanced (r, s)-Range-Limited Tree on N nodes with
p = s/r. Then, the number of nodes at level zero is given as
no(p) = 1, and for each k > 0, the number of nodes at level

k is ng(p) = lbmff(k) . This is the calculation of the whole
P

number of no
by distance r.

es that fit on a circle at radius s X k separated

Drones deterministically compute their location in the
swarm with respect to tree layout. This computation is local
to the drones and can be calculated purely by the drone IDs
(see Figure [3). From Lemma [T} we know that the number of
drones at level k is ny(p). Thus, the space of drone IDs can
be partitioned based the levels in which the drones belong.
For example, the drone with ID 1 is the root node and has
level zero, whereas the drones with IDs from 2 to ni(p) + 1
all belong to level one.

Each node (besides the root) in the LoCUS tree structure
holds a parent reference and list of children. This facilitates
bidirectional communication throughout the swarm, as re-
quired by the LoCUS algorithm. Parent nodes are calculated
by the closest node in the previous layer.

Lemma 2 (Number of Levels). The number of levels in a
maximal balanced (r, s)-Range-Limited Tree on N nodes with

p=s/risO (\/N/p).

This is also a bound on the maximum height of the tree
and hence, the maximum number of communication hops
required for any node in the tree to transmit a message to
any other node in the tree. In particular, when p is low (i.e.
when the communication radius is not too large compared to
the safety radius), then the diameter of the tree is O(\/N),
however, when the communication radius is large, say with
p = ey
O(log N), which is similar to that of a tree with constant
arity. Communication is highly efficient in this case and the
latency for transmitting messages is low.

then the diameter of this tree becomes

2) Insertion of Nodes: Always insert at the first available
leaf node so that insertion cost is O(1). Insertions do not affect
the balance of the tree, since no new levels are created unless
the previous level is completely full.

3) Deletion of Nodes: Replace the deleted node by its
heir. If the deleted node is a leaf node, then there is no heir
replacement for this node and hence, there is no deletion cost.
However, when a node at height h > 1 fails, then its heir is
located at a communication hop distance of O (\/N /p— h)

from this failed node. Hence, although only O(1) link changes
happen upon this replacement, the total number of messages

Remainder of

Remainder of

Node x the Swarm the Swarm
Parent(x) o= Parent(x)

Signal to stop
the swarm from

moving

Predecessor(x) -

Successor(x)
Heir(x)

Signal to Iocatel- i
the heir and

Signal to update the
node connections and
information about

new heirs f X_ x«—gr(x)

The heir L

Heir(x) replaces the

failed node

Fig. 4: A schematic of single failure recovery in the LoCUS algorithm. When a node fails, a signal is sent to its parent and
children to stop the swarm movement and inform the heir. The heir node then travels to the location of the failed node and

the neighboring nodes update their local information.

sent is O(N/p—h).

B. Handling Drone Failures

The use of the Balanced Range Limited Trees data structure
offers the swarm resilience against arbitrarily many crash
failures, even when all but one drone remains in the system.
We achieve this robustness as follows (see Figure) — When
a node fails, a signal is sent to its parent and children to stop
the swarm movement and inform the heir. This signal can
be sent out when the node believes it is about to fail, for
example when its battery is critically low, or by its parent and
children when it fails to respond to a heartbeat. Upon receiving
this signal, the heir node travels to the location of the failed
node and replaces it in the swarm. Finally, because the tree
structure changed, heirs are recalculated on ancestor nodes of
the replacement heir node’s original leaf location.

Since each drone stores its heir information, it can directly
inform the heir drone when it believes a failure is inevitable.
For the case when the failure happens without any signal being
sent out, the child drones use their parentHeir field to contact
the heir drone in the swarm for recovery. If there are no child
drones, then the failed drone does not require any recovery
mechanism since it is already in the last layer of the swarm.

To ensure that drones do not collide with other drones
while the swarm is rearranged, the heir drone descends to
a distance of Ry, and travels at this height to its destination
(see Figure [3), at which point it climbs back up to the given
elevation. The swarm must stop moving during this recovery
phase to avoid complicating communications and movement
when the swarm is disconnected.

This heir-based recovery scheme achieves a reformation

cost of O (\/N/p) — the bound on height (7)) — by only
inducing local adjustment in the swarm, without disturbing
other drones. Note that moving one drone to replace its heir

Failed Node Heir Node

(EALED)}

A

Fig. 5: The heir replaces the failed node by flying under the
swarm at a safe distance to prevent collisions.

Rimin

would be approximately equal to drones between the heir and
the failing drone shifting up in the tree.

C. Handling Simultaneous Drone Failures

If both a drone and its heir drone fail at the same time,
and the swarm uses the algorithm above to simultaneously
recover from both, then it will enter a deadlock scenario. We
introduce the following algorithm for handling simultaneous
failures with the caveat that it requires global knowledge of the
swarm state to execute. A more advanced distributed version
of this algorithm that executes without global knowledge is
possible, but we leave this analysis and implementation for
future work.

Outer-Level First (OLF): In this scheme, we use the fact
the failures in outer levels of the swarm cost less to recover
than failures on the inner levels. This is because the distance
to the heir node is smaller in outer levels. For example,
leaf nodes may be removed from the swarm outright without
replacement, a node at height (7°) /2 would require its heir to
move Rmax height (77) /2 distance, and the root node would
require its heir to move Rmax height (77) distance to replace.
Thus, whenever a node gets a failure signal, it first checks
to see if there is any existing failure recovery that is active
in any of its children. If yes, it waits for those to finish, then
proceeds to process the signal from its parent. Concretely, this
is implemented by gathering a set of failures across the swarm,
and processing them in descending order by height (7).

IV. THE MOBS ALGORITHM AND ITS IMPLEMENTATION

The MoBS algorithm takes a different approach to the max
flux problem by allowing each UAV to navigate independently.
Each UAV starts at the center of the arena and picks a
uniformly random angle between 0° and 360° and sets 100
waypoints in 1 m increments from the center in that direction
to produce spokes to search the arena. At each waypoint the
UAVs collects a gas plume sample and reacts accordingly. The
UAV continues to follow the spoke waypoints if a reading
of less than 0.005. Otherwise, the UAV changes strategies
into the moth-pheromone chemotaxis algorithm inspired by
[8]. Subsequent spokes are build by adding 27/¢ rad to the
previous spoke angle where ¢ is the golden ratio 1.618 that has
been shown to search best given no communication amongst
members of the swarm [6]].

The moth-pheromone chemotaxis algorithm compares the
gas reading at the current time step against the previous time
step and determines if the signal has increased or decreased.
If the signal increased then the drone continues moving in
the same direction. If the signal stays the same or decreases
then the drone moves in a new uniformly random direction. A
zero signal detected for greater than 4 time steps reverts the
drone back to continue the golden ratio driven spoke search
algorithm. Because there is never any communication among
UAV in MoBS, failed UAV stop collecting samples but have
no impact on other UAV.

V. EXPERIMENTAL METHODS

We measure performance of both algorithms for a range
of swarm sizes and failure scenarios in simulation. Given the
practical limitation of battery life on flight time, our primarily
interest is minimizing the time to find the max CO, flux.
We halt the simulation when the max flux is found (a drone
samples within 1m of the max flux location), if the entire
swarm is in a failed state, or when 17.3h of simulation time
has passed (10% time steps).

We implement the LoCUS and MoBS algorithms in Au-
tonomous Robots Go Swarming (ARGoS) [21]E] Autonomous
Robots Go Swarming (ARGoS) [21] is a C++ and Lua based
physics multi-robot simulator and is suitable for proof-of-
concept simulations, while preserving realistic physical dy-
namics with the DYN3D physics engine. We use ARGoS
to simulate Spiri UAVs (Pleiades Robotics Inc) including
3 dimensional locality (GPS) inputs and go-to coordinate
capabilities. Additionally, we are able to command N drones
in the simulation. These capabilities make ARGoS a natural
fit for experimental investigation of LoCUS and MoBS.

The gas plume is modeled in ARGoS as a simple two
dimensional slice of a Gaussian plume [22]] with a source max
flux location (x and y), stack height (H = 10 m), wind speed
(u = 50m/s), emission rate () = 2kg/s), and diffusion rate
(K =1kg/s):

Implementation source code can be found at |https:/tinyurl.com/tne7tzu

UNPERTURBED(z,y) =

Q u(y® + H?)
2rKx exp <_ 4Kz) 0

The source of the plume is located at a uniformly random
location in the simulation within 100 m of the UAV take-off
location. Each UAV may detect the gas concentration at its
given coordinate as a floating point value between 0 (low) and
1 (high) gas concentration signals. To limit the experimental
variance, we only vary the location of the plume and not
the shape, intensity, or rotation of the plume. We test the
algorithms against the smooth plume described in (I) and a
perturbed version of the plume designed to make following
the gradient more realistic and challenging:

PERTURBED(z, y) = (0.8 + 0.2 sin(4x)) UNPERTURBED(z, y)
2

Our two failure models in these experiments are motivated
by flying a swarm of UAVs to gather volcano gas CO,
emission data.

Generic Failures: To represent a UAV battery failure,
crashes, or other miscellaneous failures that increase in like-
lihood as flight time increases, we use a uniform failure
probability per drone per time step given by p; > 0, which
depends on the number of drones existing in the system at
time .

In-Plume Failures: We use the gas plume emissions reading
r at time ¢ to drive the probability of failure on each drone
given by pyr > 0. This models the higher probability of
failure as corrosive gases or temperatures associated with more
concentrated volcano gas emissions are encountered.

Drone failure is represented by a boolean flag on the drone
controller that, if enabled, stops the drone from moving or
receiving further waypoints from its parent. Once a drone fails,
it is never recovered.

A. Implementation of LoCUS

The LoCUS algorithm arranges members of the swarm by
distributing each drone through space using specified R and
Rmax- The unique ID of each member of the swarm allows
a unique 2D location offset from the central root node to
be calculated. The drones are distributed in a plane by each
offset using a constant height of 10 m. Each drone’s parent is
assigned by finding the closest drone in the previous shell of
the swarm. This parent/child relationship constructs the data
structure pivotal to maintaining communication throughout the
swarm.

We implement a recursive algorithm to distribute navigation
waypoints by communicating them from the root drone down
through its children, to its children’s children, and so on.
When waypoints are distributed, the swarm offset location for
each drone is added to the waypoint to ensure that the swarm
maintains Rpyin and Rmax.

At takeoff, the root LoCUS drone is given the initial starting
position. Using the recursive waypoint distribution, this initial

https://tinyurl.com/tne7tzu

starting position waypoint directs the swarm to assemble the
shell structure exhibited by Figure

To make initial contact with the plume, the swarm is
directed from the root to follow the Archimedes’ spiral. For
coordinated swarm search, the Archimedes’ spiral has been
shown to find targets faster than a spoke algorithm [23]. This
search pattern is created by building waypoints along the
spiral. Each waypoint is calculated to space the arms of the
spiral by the radius of the largest full swarm shell and an
incremented angle. Using the radius of the swarm ensures that
we have full coverage of the simulation arena.

After a waypoint is reached, a plume gas reading is sampled
from each drone and communicated via the tree structure up
to the root drone where the readings (val) and associated
gps coordinates (x, y) are aggregated into the uav array. The
aggregated data is input into matrix and vector form and fit
with a slope (b) using linear regression in the form Ab+¢ =y
by minimizing e through least squares approximation provided
by the Eigen C++ library [24]:

1 wav[l].z uav[l]y b[0] €[0] uav([l].val
1 wav[2].z uav(2].y b[1]| + e[1]| = |uav[2].val
: : b[2] : :
——
A b €
3)

The slope of this linear fit (b[1],[2]) is used to provide
a normal vector to direct the swarm to perform a gradient
descent in the direction of the highest plume signal. If a zero
magnitude linear slope is found, then the swarm continues to
follow the Archimedes spiral.

Failures are handled as follows. First, once a waypoint is
reached, failures in the swarm are queried for from the root.
This is a recursive call, similar to the waypoint distribution, to
gather a set of the failed status of the entire connected swarm.
For these experiments and for simplicity, we implement the
Outer-Level First (OLF) scheme failure recovery model. This
scheme requires global knowledge of the swarm as it uses
failed drones to determine the status of their children. We
then proceed to heal the swarm as outlined in Handling
Failures remove each of the failed drones and replace them
by their heir in order, waiting for each heir to take the place
of the failed drone before proceeding to the next failed drone.
After the replacement, heirs of all ancestors up to the root are
recalculated to take into account the change in the swarm. Of
course, if a failed drone is found to have no heir (a leaf drone)
then they are removed from the swarm without replacement.

Once all failures are processed a swarm re-balance is
executed to ensure a consistent minimum radius to the swarm.
This iteratively removes leaf drones from the deepest branches
of the tree and inserts them into the shallowest branches
of the tree. The root node executes this operation until
height, ... — height,_ . < 1. Once there are no more failures
in the swarm and the swarm is re-balanced, then the next
waypoint is calculated and the swarm movement continues.

We observed corner-case scenarios where the swarm oscil-

lated between two points, never moving towards the max flux
location. To resolve this, we added both a 0.1 m random offset
and a uniformly random rotation to the swarm between 0° and
45° at each waypoint. This randomization strategy allowed to
swarm to exit these oscillating corner cases.

B. Experimental Setup

The experimental factors we explore in simulation are
swarm size, whether the plume gradient is smooth or per-
turbed, the failure rate, and whether the failure rate increases
with gas concentration. For the LoCUS algorithm, we set
Rmin = 3m and Rpax = 3m. The response variables are
whether the max flux was found, the elapsed time before
encountering the plume, and the total time taken to find the
max flux.

To compare LoCUS and MoBS we perform the following
four experiments. In experiment 1, we compare the time to
find max flux of the smooth plume for LoCUS and MoBS in
100 trials with both failure probabilities set to 0 by varying
the swarm size from 2 to 20 UAVs. In experiment 2, we
duplicate experiment 1 using the perturbed plume. These
first two experiments are designed to compare the times to
encounter the plume and navigate to the maximum flux of
LoCUS and MoBS without failures. In experiment 3, we vary
the generic failure probability from 107! to 107°, set the
in-plume failure probability to O (so that the probability of
failure is the same inside and outside of the plume), and
use the smooth plume over 100 trials with a swarm size
of 20. In experiment 4, we duplicate experiment 3 but vary
the in-plume failure probability from 107! to 107% and set
the generic failure probability to 0. The last two experiments
measure the impact of failures on LoCUS and MoBS. In each
of these experiments we compare the performance of LoCUS
with healing enabled and disabled. This enables us to assess
whether maintaining symmetry though healing is worth the
time taken to repair the swarm.

VI. EXPERIMENTAL RESULTS
A. Experiment 1: Unperturbed Navigation

Experiment 1 compares the time to reach max flux of the
unperturbed in swarms of 5 to 20 UAV for LoCUS and MoBS
depicted in Figure [6] with the unhashed bars. We find that, for
smaller swarm sizes (up to the 5 UAV shown), the average
time and standard deviation to plume contact and max flux for
LoCUS is significantly smaller than MoBS. For larger swarm
sizes (10, 20), MoBS reaches plume contact on average faster.
LoCUS navigates from plume contact to max flux in about the
same time as MoBS, but LoCUS has less variance in time to
achieve both plume contact and max flux.

B. Experiment 2: Perturbed Navigation

Experiment 2 extends experiment 1 using the perturbed
plume depicted in Figure [6] with the hashed bars. We find
that the difference in plume dynamics significantly increases
the average time to max flux for the MoBS algorithm, but
the LoCUS time to max flux remains short. This increases the

Initial Plume Contact and Max Flux

80:00J:

l Unperturbed

[Plume Contact
40:00 - = Max Flux
35:00 Perturbed
= Plume Contact
g 30:00 N Max Flux
% 25:00 * Max Flux Median |
£
"= 20:00
S
2 15:00} N |
£
“ 10:00}) 1
05:00 - §§ % ,
* SN[amlsSET
00:00 . .

LoCUS 10 MoBS 10 LoCUS 20 MoBS 20
Swarm Size

LoCUS5 MoBS 5

Fig. 6: Time to find the max flux (top, purple) and initial
plume contact (bottom, orange) for LoCUS and MoBS for
swarm sizes 5, 10, and 20 in the unperturbed and perturbed
plumes. Stars show the median time to max flux and error bars
are one standard deviation centered at the mean.

average time to max flux for MoBS so that is slower than
LoCUS for all swarm sizes tested. Additionally, the standard
deviation for MoBS is much larger than that of LoCUS which
is partly driven by several outliers that lasted up to 344, 124,
and 31 minutes for 5, 10 and 20 UAVs respectively. These
times risk failure for the drones to return given the UAV battery
capacity.

C. Experiment 3: Generic Failure Effects

Experiment 3 includes generic failure probabilities from
107! to 107° including a specialized version of LoCUS
that does not heal from failures as depicted in Figure
We find that, with generic failures, LoCUS and MoBS both
respond similarly to the failure probability by beginning to
unsuccessfully complete the max flux location task between
the probability of failures of 10~* and 10~3. This is contrasted
against the LoCUS without healing that responds much earlier
to the probability of failure at about 1072,

D. Experiment 4: In-Plume Failure Effects

Experiment 4 extends experiment 3 using the in-plume
failure model. With in-plume failures, LoCUS and MoBS both
begin to fail to complete the max flux location task at failure
rates of 1072, This is contrasted against the LoCUS without
healing that fails to complete the task with much lower UAV
failure probabilities of about 10~%.

VII. DISCUSSION

LoCUS provides a failure-tolerant structure for exploring
and pinpointing the max flux location of a CO, plume. LoCUS
guarantees that a group of drones can communicate to each
other simultaneous spatially dispersed measurements which

100 Count of Swarms to Find Max Flux over Failure Probability

80

60 -

Generic Failures
LoCUS 20
401 LoCUS 20 w/o healing
MoBS 20

Successfully Found Max Flux

In-Plume Failures
20+

LoCUS 20
LoCUS 20 w/o healing
“““ MoBS 20
?0'5 10° 07 10° 107 10"

Failure Probability (ps)

Fig. 7: Success rates in 100 trials with generic and in-plume
failures with 20 drones. The left thin solid lines are LoCUS
with healing disabled and the right thick solid lines are LoCUS
with healing enabled. The two left orange thin and thick
solid lines are LoCUS with generic failures, while the green
right solid lines are LoCUS with in-plume failures. MoBS
success counts are graphed using dashed and dotted lines —
the left dashed line is MoBS with generic failures and the
right dotted line is MoBS with in-plume failures. This shows
how significant healing is to LoCUS successfully completing
the max flux location task.

can be used to calculate a gas gradient better than an individual
drone. This is particularly useful for finding the location of
maximum flux in a perturbed plume such as those produced
by volcanos in dynamic environments. LoCUS provides a
way re-form the swarm given the inevitable failure of drones
in hazardous conditions present when monitoring gas efflux
from volcanoes. We compare LoCUS with the fully dispersed
MoBS algorithm and show in experiments 1 and 2 that the
LoCUS algorithm is able to find the max flux of a plume, both
smooth and perturbed, at least as fast as the MoBS algorithm
in expectation, but with substantially smaller variation. The
better worst-case performance of LoCUS is important given
time limits imposed by battery life. Additionally, the LoCUS
algorithm is able to find the max flux faster than MoBS
after initial plume contact, particularly in a perturbed plume
simulations.

For large swarms, the MoBS algorithm makes initial contact
with the plume faster than LoCUS on average. The superior
performance of MoBS at finding the plume, and LoCUS of
finding the source once in a plume, suggests an approach
that combines the best of both algorithms. For large swarms,
we may perform the initial search for the plume using the
more dispersed golden spoke algorithm used in MoBS. Then,
when contact is made, a LoCUS structured formation can
leverage nearby drones to perform gradient descent informed
by communication among drones. Future work can explore
the benefits of a fully dispersed set of spokes, with the first

drone that contacts the plume calling nearby UAV to join
together once the plume is found. Alternatively, sufficiently
many UAV could be divided into multiple small LoCUS sub-
swarms to use spoke search to contact the plume and LoCUS
enabled gradient descent by each independent sub-swarm once
it contacts the plume.

LoCUS relies heavily on its loss recovery model in order to
maintain communication between spatially dispersed drones
to perform a more robust gradient descent once a plume has
been found (see the red lines within the plume in Figure 2).
The loss recovery model allows the swarm to reorganise once a
failure has been detected and continue to rely on receiving CO,
measurements from multiple locations. In practice, we ob-
served LoCUS successfully locating max flux with failures in a
majority of the swarm, even down to a single remaining drone.
We also observed that the loss recovery time is so fast that
it is dominated by the time to encounter the plume and time
to max flux. Thus, the time to recover the swarm formation
is worth the superior gradient following performance provided
by having spatially dispersed measurements. In experiments 3
and 4 we show that self-healing is critical to the success of
LoCUS gradient following.

In comparison to MoBS, LoCUS is especially vulnerable
to the in-plume failures. This is (ironically) because LoCUS
brings the entire swarm into the plume and quickly closer to
the source, putting swarm members in jeopardy due to more
in-plume failures as the source is approached near the source
of volcano efflux. In contrast, some of the UAV in MoBS spend
more time out of the plume, making them less susceptible
to in-plume failures. The results in experiment 4 show that
even in the worst case for LoCUS, it can leverage the healing
algorithm to mitigate this problem to complete the max flux
task nearly as often as MoBS.

Being able to reliably and quickly determine the max CO,
flux with drones that are limited to a maximum 1 h flight time,
with practical swarm sizes for transportation to remote and
hazardous regions, and are tolerant of drone loss is critical
to the study of volcano behaviour. With LoCUS, we have
demonstrated an algorithm that solves the CO, max flux task
faster than, and approximately as reliably as a more dispersed
approach.

VIII. ACKNOWLEDGEMENTS

We thank the UNM Vice President for Research, the De-
partment of Energy’s Kansas City National Security Campus,
operated by Honeywell Federal Manufacturing & Technolo-
gies, LLC under contract number DE-NA0002839, a James S.
McDonnell Foundation Complex Systems Scholar Award and
DARPA award FA8650-18-C-6898 for funding. We thank the
UNM Center for Advanced Research Computing, supported
in part by the National Science Foundation, for providing the
high performance computing resources used in this work.

REFERENCES

[1]1 S. K. Brown, S. E. Jenkins, R. S. J. Sparks, H. Odbert, and M. R. Auker,
“Volcanic fatalities database: analysis of volcanic threat with distance
and victim classification,” Journal of Applied Volcanology, 2017.

[4]

[5]
[6]
[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Aiuppa, T. P. Fischer, T. Plank, and P. Bani, “CO 2 flux emissions
from the Earth’s most actively degassing volcanoes, 2005-2015,” Sci-
entific Reports, 2019.

J. A. Diaz et al., “Utilization of in situ airborne MS-based instru-
mentation for the study of gaseous emissions at active volcanoes,”
International Journal of Mass Spectrometry, vol. 295, no. 3, pp. 105—
112, 2010.

E.J. Liu et al., “Dynamics of Outgassing and Plume Transport Revealed
by Proximal Unmanned Aerial System (UAS) Measurements at Volcdn
Villarrica, Chile,” Geochemistry, Geophysics, Geosystems, 2019.

E. J. Liu et al., “Multi-species volatile fluxes from manam, papua new
guinea,” in prep.

A. Aggarwal, W. F. Vining, D. Gupta, J. Saia, and M. E. Moses, “A
most irrational foraging algorithm,” 2019.

A. Aggarwal, Thwarting Adversaries with Randomness and Irrationality.
PhD thesis, University of New Mexico, 2019.

W. Li, J. A. Farrell, S. Pang, and R. M. Arrieta, “Moth-inspired
chemical plume tracing on an autonomous underwater vehicle,” IEEE
Transactions on Robotics, 2006.

J. H. Belanger and M. A. Willis, “Biologically-inspired search algo-
rithms for locating unseen odor sources,” in Proceedings of the 1998
IEEE International Symposium on Intelligent Control (ISIC) held jointly
with IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA) Intell, pp. 265-270, IEEE, 1998.

J. Schleich, A. Panchapakesan, G. Danoy, and P. Bouvry, “UAV fleet
area coverage with network connectivity constraint,” in MobiWac 2013
- Proceedings of the 11th ACM International Symposium on Mobility
Management and Wireless Access, Co-located with ACM MSWiM 2013,
2013.

P. P. Neumann, V. H. Bennetts, A. J. Lilienthal, and M. Bartholmai,
“From insects to micro air vehicles—a comparison of reactive plume
tracking strategies,” in Advances in Intelligent Systems and Computing,
2015.

Y. Chen, H. Cai, Z. Chen, and Q. Feng, “Using multi-robot active
olfaction method to locate time-varying contaminant source in indoor
environment,” Building and Environment, vol. 118, pp. 101-112, 2017.
G. Cabrita and L. Marques, “Estimation of Gaussian plume model
parameters using the simulated annealing algorithm,” in Advances in
Intelligent Systems and Computing, 2014.

S. Souissi, T. Izumi, and K. Wada, “Oracle-based flocking of mo-
bile robots in crash-recovery model,” Theoretical Computer Science,
vol. 412, no. 33, pp. 43504360, 2011.

Y. Yang, S. Souissi, X. Défago, and M. Takizawa, “Fault-tolerant
flocking for a group of autonomous mobile robots,” Journal of systems
and Software, vol. 84, no. 1, pp. 29-36, 2011.

C. Viragh, G. Visarhelyi, N. Tarcai, T. Szorényi, G. Somorjai, T. Nepusz,
and T. Vicsek, “Flocking algorithm for autonomous flying robots,”
Bioinspiration & biomimetics, vol. 9, no. 2, p. 025012, 2014.

C. Paliotta, D. J. Belleter, and K. Y. Pettersen, “Adaptive source seeking
with leader-follower formation control,” IFAC-PapersOnLine, vol. 48,
no. 16, pp. 285-290, 2015.

M. Breivik, V. E. Hovstein, and T. I. Fossen, “Ship formation control: A
guided leader-follower approach,” IFAC Proceedings Volumes, vol. 41,
no. 2, pp. 16008-16014, 2008.

E. Biyik and M. Arcak, “Gradient climbing in formation via extremum
seeking and passivity-based coordination rules,” in 2007 46th IEEE
Conference on Decision and Control, pp. 3133-3138, IEEE, 2007.

R. Bachmayer and N. E. Leonard, “Vehicle networks for gradient descent
in a sampled environment,” in Proceedings of the 41st IEEE Conference
on Decision and Control, 2002., vol. 1, pp. 112-117, IEEE, 2002.

C. Pinciroli et al., “Argos: a modular, multi-engine simulator for hetero-
geneous swarm robotics,” in 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 5027-5034, IEEE, 2011.

J. M. Stockie, “The mathematics of atmospheric dispersion modeling,”
Siam Review, vol. 53, no. 2, pp. 349-372, 2011.

A. Aggarwal, D. Gupta, W. F. Vining*, G. M. Fricke, and M. E.
Moses, “Ignorance is not bliss: An analysis of central-place foraging
algorithms,” in Proceedings of the Conference on Intelligent Robots
and Systems (IROS) IEEE/RSJ. Accepted and available at https://bit.
y/2QcPaX8, 2019.

B. Jacob and G. Guennebaud, “Eigen is a c++ template library for linear
algebra: matrices, vectors, numerical solvers, and related algorithms,”
2012.

	Introduction
	Related Work
	Derivation and Analysis of LoCUS
	Balanced Range-Limited Trees
	Formation Algorithm
	Insertion of Nodes
	Deletion of Nodes

	Handling Drone Failures
	Handling Simultaneous Drone Failures

	The MoBS Algorithm and its Implementation
	Experimental Methods
	Implementation of LoCUS
	Experimental Setup

	Experimental Results
	Experiment 1: Unperturbed Navigation
	Experiment 2: Perturbed Navigation
	Experiment 3: Generic Failure Effects
	Experiment 4: In-Plume Failure Effects

	Discussion
	Acknowledgements
	References

