





Change size, speed, #, to match robots

Compare simulations to real robots

Change simulation so GA evolves good parameters for real robots

How much do error & noise matter?



**~20** Ants



# Scalability





# Competition

"The foreign policy of ants can be summed up as follows: restless aggression, territorial conquest, and genocidal annihilation of neighboring colonies whenever possible.

If ants had nuclear weapons, they would probably end the

world in a week."

-Bert Holldobler & Edward O. Wilson, Journey to the Ants





# Cooperation







# Multiple cooperative nests in invasive Argentine ants





\*Search Location is specified by a direction and probability of stopping In ants. In robots it's an x,y location (the nest is 0,0)

The decision to lay pheromone, return via site fidelity or search in a new location on the next trip depends on Local Resource Density

## Memory vs. Communication

private vs. public information

#### **Site Fidelity**

There and back again



#### **Pheromone Communication**

Recruit nestmates



$$p_{ij}^{k}(t) = \frac{\left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}\right]^{\beta}}{\sum_{l \in N_{i}^{k}} \left[\tau_{ij}(t)\right]^{\alpha} \cdot \left[\eta_{ij}\right]^{\beta}} \quad if \ j \in N_{i}^{k}$$





# **Key Model Parameters**

 Ants leave nest, walk in a random direction and begin to search

#### with probability $\alpha$

 Searching ants move in a correlated random walk, turns draw from a normal distribution

mean 
$$heta_t = heta_{t-1}$$
 
$$ext{SD} = \omega + \gamma / t_s^{\delta}$$

#### $\omega$ , $\gamma$ , $\delta$ : control degree of turning

• Ants decide to recruit on the return trip depending on local resource concentration, *C*.

pheromone laid with 
$$p_r = \lambda_r + C/\mu_r$$
 site fidelity with  $p_s = \lambda_s + C/\mu_s$  pheromone followed with  $p_t = \lambda_t - C/\mu_t$ 

truncated [0,1]



#### Pheromone evaporation

$$\Pi_{x,y,t} = \Pi_{x,y,t-1} * (1-\eta)$$

| Parameter                        |                 | <u>Function</u>                                                      |                                                |
|----------------------------------|-----------------|----------------------------------------------------------------------|------------------------------------------------|
|                                  |                 | Probability each time step that an ant                               |                                                |
|                                  |                 | walking from the nest will stop walking and                          |                                                |
| walk_drop_rate                   | α               | begin to search.                                                     |                                                |
|                                  |                 | probability of giving up search and                                  |                                                |
| search_giveup_rate               | _               | returning to nest during the random walk.                            |                                                |
| searen_gweup_race                |                 | For searching ants moving in a correlated                            | $SD = c_0 + u/t^{\delta}$                      |
|                                  |                 | random walk. $\omega$ determines the baseline                        | $SD = \omega + \gamma / t_s^{\delta} $ (1)     |
|                                  |                 | degree of deviation in the direction an ant                          |                                                |
|                                  |                 | will move from one time step to the next.                            |                                                |
| dir dev const                    | ω               | See equation 1.                                                      |                                                |
| dir_dev_coeff2                   |                 | Determines the additional degree of                                  |                                                |
|                                  |                 | deviation in turning early on in an ant's                            |                                                |
|                                  | γ               | search. See equation 1.                                              |                                                |
| dir_time_pow2                    |                 | Exponent determines how quickly turning                              |                                                |
|                                  |                 | behavior approaches the baseline turning                             |                                                |
|                                  |                 | behavior as time spent searching $(t_s)$                             |                                                |
|                                  | δ               | increases. See equation 1.                                           |                                                |
|                                  |                 | For ants following a pheromone trail,                                |                                                |
|                                  |                 | determines the probability each time step                            |                                                |
|                                  |                 | that an ant will abandon the trail and begin                         |                                                |
| trail_drop_rate                  | ε               | searching before reaching its end.                                   |                                                |
| dense_thresh                     |                 | Determines ants' constant probability of                             | $p_r = \lambda_r + C / \mu_r \tag{2}$          |
| _                                | $\lambda_r$     | recruiting to a site when picking up food.                           | P' $N$ $C$ $P'$ $(2)$                          |
|                                  |                 | See equation 2.                                                      |                                                |
| dense_const                      |                 | Determines how ants' probability of                                  |                                                |
| _                                |                 | recruiting to a site responds to the count C                         |                                                |
|                                  | $\mu_r$         | of additional food in neighboring cells. See                         |                                                |
|                                  |                 | equation 2.                                                          |                                                |
| dense_thresh_patch               |                 | Determines ants constant probability of                              | $p_s = \lambda_s + C / \mu_s \tag{3}$          |
|                                  |                 | returning to a site when picking up food.                            | (3)                                            |
|                                  | $\lambda_s$     | See equation 3.                                                      |                                                |
| dense_const_patch                |                 | Determines how ants' probability of                                  |                                                |
|                                  | $\mu_s$         | returning to a site responds to the count C if                       |                                                |
|                                  | pt <sub>s</sub> | additional food in neighboring cells. See                            |                                                |
|                                  |                 | equation 3.                                                          |                                                |
| dense_thresh_influence           | $\mu_t$         | Determines ants constant probability of                              | $p_t = \lambda_t - C / \mu_t$                  |
|                                  |                 | following trails when departing the nest.                            | (4)                                            |
|                                  |                 | See equation 4.                                                      |                                                |
|                                  | $\lambda_t$     | Determines how ants' probability of                                  |                                                |
|                                  |                 | following trails when departing the nest                             |                                                |
|                                  |                 | responds to additional food in neighboring                           |                                                |
| d : 61                           |                 | cells at the last location it picked up food.                        |                                                |
| dense_const_influence            |                 | See equation 4.  Determines the rate at which pheromones             | H - H * (1)                                    |
| decay_rate                       | η               | 1                                                                    | $\Pi_{x,y,t} = \Pi_{x,y,t-1} * (1 - \eta)$ (6) |
|                                  |                 | evaporate. See equation 6.                                           |                                                |
| dir_dev_coeff1                   |                 | unused                                                               |                                                |
| dir_dev_coeff1                   |                 | unused                                                               |                                                |
| dense_sens                       |                 | unused                                                               |                                                |
| dense_sens                       |                 | The following parameters have no effect                              |                                                |
|                                  |                 | in the posted code, but can be used to                               |                                                |
|                                  |                 | adjust the proportion of ants that forage                            |                                                |
|                                  |                 | Proportion of ants that forage at the start of                       |                                                |
|                                  |                 |                                                                      |                                                |
| prop active                      |                 | the simulation–set to 1                                              |                                                |
| prop_active                      |                 |                                                                      |                                                |
| • •-                             |                 | the simulation—set to 1 Likelihood an ant leaves the nest based on # |                                                |
| prop_active activate_sensitivity |                 | the simulation-set to 1                                              |                                                |

## 3 behaviors determine collective foraging rate

Search via travel + random walk, increasingly biased over time Balance site fidelity & pheromones

Decision dependent on local seed density





# Genetic Algorithms select parameters to maximize seeds collected in fixed time Group Selection Experiments *in silico*

Each model run requires a set of input parameters  $[\alpha, \omega, \gamma, \delta, \lambda, \mu, \eta, \varepsilon, ...]$ 

Each individual in a colony is identical

"Simulated Evolution" (group selection)

G0: 
$$[\alpha, \omega, \gamma, \delta, \lambda, \mu, \eta, \varepsilon] \times [\alpha, \omega, \gamma, \delta, \lambda, \mu, \eta, \varepsilon]$$

G1:  $[\alpha', \omega, \gamma, \delta, \lambda, \mu, \eta, \varepsilon]$ 



100 runs with different parameter sets (individuals) for 100 Generations
Each colony, each generation evaluated on 8 grids for 20,000 time steps
Colonies with highest 'fitness' (seeds collected) replicate into next generation
Crossover & Mutation rates = 10%
Run for colony sizes 10, 100, 1000, 10,000 foragers

**RESULT: A simulated colony 'evolved' to maximize foraging rate** 

#### Model maximizes seed collection by balancing site fidelity & pheromone use

Foraging rates vs pile size, indistinguishable from field data

Territory area, indistinguishable from field data Seeds collected per ant declines size with a -¼ power





#### Value of memory and communication changes with food distribution



#### Power law evolved colonies are most versatile



Some species may have evolved strategies to exploit a particular food distribution Seed harvesters are likely adapted to variable distributions

Resolves existing biological debate: Frequency of pheromone use depends on food distribution, longevity, competition...

Rare pheromones substantially improve foraging in some environments

## Project 2

- Normally, randomization seeds should be stored, but because replicability is difficult given the way code is threaded, it's not needed for this assignment
- Table 2, Part 1: Wide standard deviations are OK
- Try runs with small # of generations & interactions to initially test parameters
- Cooperative Fitness is sum of seeds collected by both colonies
- Part 2.2: you decide how to best demonstrate how and why your changes to xover, mut & selection were or were not effective
- Flexibility in 2.3—These are examples of changes you can try
  - Alter fitness to equal time to collect all seeds
  - Evolve colonies to cooperate or compete with themselves (2 colonies have identical genomes) or to compute against a a fixed strategy
  - Evolve mutation & xover rates over time
  - Evolve where colonies are placed on the field
  - .... Be creative, but focus on evolving strategies to improve cooperation & competition
  - You decide how to best display your results
- Check your results by running parameters through visrun (see visrun 1.1 posted)
- Review Assignment Information on webpage for turnin & readme
- You will turn in code that
  - demonstrates your evolutionary runs over only a few generations
  - Calls visrun to demonstrate your best parameter sets