Problem 1. Solve a Recurrence Relation

Find an explicit (closed) form for the sequence satisfying the:
$d_{k}=4 d_{k-2}, \forall k \in \mathbb{Z}, k \geq 2$.
$d_{0}=1, d_{1}=-1$.

Problem 2. Solve a Recurrence Relation

Find an explicit (closed) form for the sequence satisfying the:
$r_{k}=2 r_{k-1}-r_{k-2}, \forall k \in \mathbb{Z}, k \geq 2$.
$r_{0}=1, r_{1}=4$.

Solution

Problem 3. Guess and Check

Guess the formula for the sequence $a_{k}=k a_{k-1}, \forall k \in \mathbb{Z} \geq 1, a_{0}=1$ by writing out the first few elements in the sequence.
Prove your guess with mathematical induction.

Problem 4. Guess and Check

Guess the formula for the sequence $b_{k}=b_{k-1}+2 k, \forall k \in \mathbb{Z} \geq 1, b_{0}=3$ by writing out the first few elements in the sequence.
Prove your guess with mathematical induction.

Problem 5. Asymptotic Notation

For each function $f(x)$ below give the slowest growing function $g(x)$ such that $f(x)$ is $O(g(x))$

- $f(x)=7 x^{2}+12 x$
- $f(x)=100 x^{5}-50 x^{3}+12 x$

Suppose a computer takes $1 \mu \mathrm{~s}$ (microsecond) to execute an operation. How long will it take to execute the n_{k} operations. Convert your answer into seconds, minutes, hours, days, weeks, months, years and so on as appropriate. Use $n_{0}=10^{2}, n_{1}=10^{4}, n_{2}=10^{8}$ and $n_{3}=10^{16}$.

- $\log _{2}\left(n_{k}\right), 0 \leq k<4$, i.e. a log-time algorithm.
- $n_{k}, 0 \leq k<4$, i.e. a linear-time algorithm.
- $\left(n_{k}\right)^{2}, 0 \leq k<4$, i.e. an n-squared algorithm.
- $2^{n_{k}}, 0 \leq k<4$, i.e. an exponential algorithm.

Problem 6. Algorithm Running Time

Find the asymptotic running time of the following algorithm:

```
function Alq1
    \(i \leftarrow 1\)
    for \(i<n\) do
        \(j \leftarrow 1\)
        for \(j<2 n\) do
                \(a=2 \cdot n+i \cdot j\)
        end for
    end for
    return a
    end function
```


Problem 7. Algorithm Running Time

Find the asymptotic running time of the following algorithm:

```
function FIB(n)
    if n<2 then
        return 1
    end if
    return Fib(n-1)+Fib(n-2)
end function
```


Problem 8. Algorithm Running Time

Find the asymptotic running time of the following algorithm:

```
function FIB(n)
    \(a=b=1\)
    \(i \leftarrow 0\)
    for \(i<n\) do
        \(a \leftarrow a+b\)
        \(b \leftarrow a\)
        end for
    return a
end function
```


Problem 9. Algorithm Running Time

Find the asymptotic running time of the following algorithm:
: Array[n] fibarray;
function $\operatorname{FiB}(\mathrm{n})$
return FibHelper(n);
end function
function FibHELPER(n)
if $n \leq 2$ then
return 1;
end if
if fibarray $[n-1]=0$ then
fibarray $[\mathrm{n}-1]=$ FibHelper(n-1)
end if
if fibarray $[n-2]=0$ then
fibarray $[\mathrm{n}-2]=$ FibHelper(n-2)
end if
return fibarray $[\mathrm{n}-1]+$ fibarray $[\mathrm{n}-2]$;
end function

Problem 10. Algorithm Running Time

Find the asymptotic running time of the following algorithm:

```
1: function \(\operatorname{FIB}(\mathrm{n})\) :
: \(\quad C \leftarrow \frac{1+\sqrt{5}}{2}\)
    return \(\frac{\left.C^{n}-(-C)^{n}\right)}{2 C}\)
end function
```

