Problem 1. Solve a Recurrence Relation

Find an explicit (closed) form for the sequence satisfying the: $d_k = 4d_{k-2}, \forall k \in \mathbb{Z}, k \ge 2.$ $d_0 = 1, d_1 = -1.$

Problem 2. Solve a Recurrence Relation

Find an explicit (closed) form for the sequence satisfying the: $r_k = 2r_{k-1} - r_{k-2}, \forall k \in \mathbb{Z}, k \ge 2.$ $r_0 = 1, r_1 = 4.$

Solution

Problem 3. Guess and Check

Guess the formula for the sequence $a_k = ka_{k-1}, \forall k \in \mathbb{Z} \ge 1, a_0 = 1$ by writing out the first few elements in the sequence.

Prove your guess with mathematical induction.

Problem 4. Guess and Check

Guess the formula for the sequence $b_k = b_{k-1} + 2k, \forall k \in \mathbb{Z} \ge 1, b_0 = 3$ by writing out the first few elements in the sequence.

Prove your guess with mathematical induction.

Problem 5. Asymptotic Notation

For each function f(x) below give the slowest growing function g(x) such that f(x) is O(g(x))

• $f(x) = 7x^2 + 12x$

•
$$f(x) = 100x^5 - 50x^3 + 12x$$

Suppose a computer takes 1 µs (microsecond) to execute an operation. How long will it take to execute the n_k operations. Convert your answer into seconds, minutes, hours, days, weeks, months, years and so on as appropriate. Use $n_0 = 10^2$, $n_1 = 10^4$, $n_2 = 10^8$ and $n_3 = 10^{16}$.

- $\log_2(n_k), 0 \le k < 4$, i.e. a log-time algorithm.
- $n_k, 0 \le k < 4$, i.e. a linear-time algorithm.
- $(n_k)^2, 0 \le k < 4$, i.e. an n-squared algorithm.
- $2^{n_k}, 0 \le k < 4$, i.e. an exponential algorithm.

Problem 6. Algorithm Running Time

```
1: function ALG1
 2:
        i \leftarrow 1
 3:
        for i < n do
 4:
            j \leftarrow 1
            for j < 2n do
 5:
                a = 2 \cdot n + i \cdot j
 6:
            end for
 7:
        end for
 8:
        return a
 9:
10: end function
```

Problem 7. Algorithm Running Time

```
1: function FIB(n)2: if n < 2 then3: return 14: end if5: return Fib(n-1)+Fib(n-2)6: end function
```

Problem 8. Algorithm Running Time

```
1: function FIB(n)
       a = b = 1
2:
       i \leftarrow 0
3:
       for i < n do
4:
           a \leftarrow a + b
5:
6:
           b \leftarrow a
       end for
7:
8:
       return a
9: end function
```

Problem 9. Algorithm Running Time

```
1: Array[n] fibarray;
2: function FIB(n)
      return FibHelper(n);
3:
4: end function
5: function FIBHELPER(n)
      if n \leq 2 then
6:
          return 1;
7:
8:
      end if
      if fibarray[n-1]=0 then
9:
          fibarray[n-1] = FibHelper(n-1)
10:
      end if
11:
12:
      if fibarray[n-2]=0 then
          fibarray[n-2] = FibHelper(n-2)
13:
      end if
14:
      return fibarray[n-1]+fibarray[n-2];
15:
16: end function
```

Problem 10. Algorithm Running Time

Find the asymptotic running time of the following algorithm:

1: function FIB(n): 2: $C \leftarrow \frac{1+\sqrt{5}}{2}$ 3: return $\frac{C^n-(-C)^n}{2C}$ 4: end function