Problem 1. Logic

True or false? Support your answer with an example or counter example:
(a) $\exists x \in \mathbb{Z} \ni \forall y \in \mathbb{Z}, x+y=0$.
(b) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \ni x+y=0$.
(c) Give an example of inference using Modus ponens.

Problem 2. Set Theory

Let A, B, and C be sets. Prove that $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$.

Problem 3. Sums and Sequences

Given the sequence $\left\{\frac{2}{5}, \frac{2}{25}, \frac{2}{125}, \frac{2}{625} \ldots\right\}$:
(a) Find the formula for the nth term .
(b) Give the formula for the sum of the first m terms.

Problem 4. Direct Proof

Prove that $a|b \wedge a| c \Longrightarrow a \mid(b+c)$.

Problem 5. Proof by Contradiction

Prove using contradiction that the sum of a rational number and an irrational number is irrational.

Problem 6. Number Theory

(a) Decide whether $175 \equiv 22(\bmod 17)$.
(b) Decide whether $3 \equiv 7(\bmod 4)$.
(c) Decide whether $89 \equiv 7(\bmod 4)$.
(d) Calculate the Euler Totient: $\Phi(15)$.
(e) Calculate the Euler Totient: $\Phi(77)$.

Problem 7. Encryption

Given $p=3, q=23$ and $e=3$ show how RSA encryption would be used to encrypt and decrypt the numeric message 32 .
The decrypted value is 32 and the encrypted value is 62 . Those are the only value that you would not be able to compute by hand.

Problem 8. Recursion

Give a recursive algorithm for computing $n a$ using addition, where n is a positive integer and a is a real number.

Problem 9. Proof by Mathematical Induction

Use mathematical induction to show that $\sum_{j=0}^{n}(j+1)=\frac{(n+1)(n+2)}{2}$.

Problem 10. Combinatorics

Assume a standard 52 card deck for this problem, i.e. 13 distinct card values divided among 4 suits.
(a) How many 5 card combinations can be dealt?
(b) How many 5 card permutations are there?
(c) What is the probability of the first four cards dealt all being aces?

