Problem 1. 50 points

Here are a couple of useful websites:
Use this one to check your hand calculation of the multiplicative modular inverse: e^{-1} : Link here.

Use this on to perform modular exponentiation. We are dealing with big numbers even for these toy examples and a regular calculator may give the wrong answer. Link here.
(a) Given the public key $e=13, n=77$ encrypt the message "HACKED" one letter at a time using ASCII to represent each letter. (Capitalization matters in ASCII)
(b) Decrypt the cyphertext you created in part (a) using the private key: $e^{-1}=37$.
(c) Given primes $\mathrm{p}=11$ and $\mathrm{q}=7$, and $e=13$ run through the RSA algorithm showing the encryption and decryption of the message "ACE" one letter at a time. Show the setup, encryption and decryption steps.

Solution

(a)

- ASCII representation of "HACKED" is 726567756968 .
- Formula for generating the cyphertext is $C=M^{e}(\bmod 77)$
- $51=72^{13} \bmod 77$
- $65=65^{13} \bmod 77$
- $67=67^{13} \bmod 77$
- $47=75^{13} \bmod 77$
- $27=69^{13} \bmod 77$
- $19=68^{13} \bmod 77$
- The cyphertext is 516567472719
(b)
- The cyphertext is 516567472719 .
- Formula for generating the decrypted message is $M=C^{e^{-1}}(\bmod 77)$
- $72=51^{37} \bmod 77$
- $65=65^{37} \bmod 77$
- $67=67^{37} \bmod 77$
- $75=47^{37} \bmod 77$
- $69=27^{37} \bmod 77$
- $68=19^{37} \bmod 77$
- The message is $726567756968=$ "HACKED"
(c)

Bob sets up RSA:

- $n=p \cdot q=11 \cdot 7=77$
- $\Phi(n)=\Phi(p) \Phi(q)=(p-1)(q-1)=60)$
- Calculate e^{-1} using the extended Euclidean algorithm.
$p_{0}=0, p_{1}=1, p_{n}=p_{n-2}-p_{n-1} q_{i-2}(\bmod \Phi(n))$

Each row in the following table is $n, t=q \cdot s+r, p_{n}$

n	t	q_{n}	s	r	p_{n}
0	60	13	4	8	$\mathbf{0}$
1	13	8	1	5	$\mathbf{1}$
2	8	5	1	3	-4
3	5	3	1	2	5
4	3	2	1	1	-9
5	2	1	2	0	14
6					-23

$-23 \equiv 37(\bmod 60)$ since $-23 \bmod 60=37 \bmod 60$, or $60-23=37$. $e^{-1}=37$.

- Bob makes e and n public.

Alice encrypts the message "ACE" and sends it to Bob:

- ACE in ASCII is 656769
- $M^{e}(\bmod n) \equiv C$
- $655^{13}(\bmod 77) \equiv 65$
- $67^{13}(\bmod 77) \equiv 67$
- $69^{13}(\bmod 77) \equiv 27$
- Alice sends Bob 656727

Bob decrypts the cyphertext he received from Alice:

- $C^{e^{-1}}(\bmod n) \equiv M$
- $65{ }^{37}(\bmod 77) \equiv 65$
- $67^{37}(\bmod 77) \equiv 67$
- $27^{37}(\bmod 77) \equiv 69$
- 656769 in ASCII is "A" "C" "E".

Problem 2. 50 points

Prove using mathematical induction the following claims:
(a) Let $\mathrm{P}(\mathrm{n})$ be the property " $\mathrm{n} \phi$ can be obtained using 2ϕ and 5ϕ coins". Use weak mathematical induction to prove that $\mathrm{P}(\mathrm{n})$ is true for all integers $n \geq 4$.
(a)

Claim: $\forall n \in \mathbb{Z}^{+} \wedge n \geq 4, \exists s, t \in \mathbb{Z}^{+} \ni n=2 s+5 t$. (This statement is equivalent to P(n))

Proof. by induction on n.
The idea here is to show that whenever we have a combination of 2 and 5 cent coins that equal k cents we can always replace some of the existing coins with 5 or 2 cents coins in such a way that we get one more cent.
Base case: $n=4$.
$4=2 \cdot 2+0 \cdot 5$. (Choose s to be 2)
QED for the base case.
Inductive step: $\exists s, t \in \mathbb{Z}^{+} \ni k=2 s+5 t \Longrightarrow \exists p, q \in \mathbb{Z}^{+} \ni k+1=2 p+5 q$
There are three cases: k is odd or k is even; if k is even s is even otherwise t is even.
Case: k is odd:
$\operatorname{odd}(k) \Longrightarrow \operatorname{odd}(t)$ (Since only an odd times an odd is odd)
Replacing one 5 with three 2 s , i.e. increasing s by three ($\mathrm{s}+3=\mathrm{p}$) and decreasing $\mathrm{t}(\mathrm{t}-1=\mathrm{q})$
by one results in $k+1=2 p+5 q$.
$\therefore \exists p, q \in \mathbb{N} \ni 2 p+5 q=k+1$
QED for the odd case
Case: k is even:
$\operatorname{even}(s) \Longrightarrow \operatorname{even}(s) \vee \operatorname{even}(t)$. (Since an even times an even or an odd times an even is even) if s even, and not zero, then make: $p=s-2$ and $q=t+1$.
(i.e. replace two 2ϕ coins with one $5 ¢$ coin)
otherwise t is even and not zero so make: $p=s+3$ and $q=t-1$.
(i.e. replace one 5ϕ coin with three 2ϕ coins)
$\therefore \exists p, q \in \mathbb{N} \ni 2 p+5 q=k+1$
QED for the cases where k is even
(b) Use weak mathematical induction to prove that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$.

Proof. by induction on n.
Base case: $\mathrm{n}=0$
$0=\frac{0(0+1)}{2}$
QED for the base case
Inductive step:

$$
\begin{aligned}
& 1+2+3+\ldots+k=\frac{k(k+1)}{2} \\
& \Longrightarrow 1+2+3+\ldots+k+(k+1)=\frac{(k+1)((k+1)+1)}{2}
\end{aligned}
$$

Proof

$$
\begin{array}{lr}
1+2+3+\ldots+k=\frac{k(k+1)}{2} & \text { (Inductive Hypothesis) } \\
\therefore 1+2+3+\ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1) & \text { (Substitution) } \\
=\frac{k(k+1)+2(k+1)}{2} & \text { (Addition of fractions) } \\
=\frac{\left.k^{2}+k+2 k+2\right)}{2} & \text { (Multiplication) } \\
=\frac{\left.k^{2}+3 k+2\right)}{2} & \text { (Addition) } \\
=\frac{(k+1)(k+2))}{2} & \text { (Addition) }
\end{array}
$$

QED
(c) Use weak mathematical induction to prove that $\forall n \geq 1,3 \mid 2^{2 n}-1$.

Proof. (by induction on n).
Base case: $\mathrm{n}=1$
$3\left|2^{2(1)}-1 \Longrightarrow 3\right| 4-1=3 . \quad$ (Definition of divides)
QED for the base case
Inductive step:
$3\left|2^{2 k}-1 \Longrightarrow 3\right| 2^{2(k+1)}-1$
Proof
$2^{2(k+1)}-1=2^{2 k+2}-1=2^{2} \cdot 2^{2 k}-1 \quad$ (Rules of exponents)
$3 \mid 2^{2 k}-1$ (Inductive Hypothesis)
$3 \mid 2^{2 k}-1 \Longrightarrow \exists m \in \mathbb{N} \ni 2^{2 k}-1=3 m \quad$ (Definition of divisibility)
$\therefore 2^{2} \cdot 2^{2 k}-1=4 \cdot 3 m$
$3 \mid 4 \cdot 3 m$
$\therefore 3 \mid 2^{2} \cdot 2^{2 k}-1$
$\therefore 3 \mid 2^{2(k+1)}-1$
QED
(d) Use strong mathematical induction to prove that any integer greater than 1 is divisible by a prime number.

Proof. (by strong induction on n).
Base case: $\mathrm{n}=2$
$2 \mid 2 \wedge 2 \in$ Primes
QED for the base case
Inductive step:
$\forall m \in \mathbb{Z}, m<k, \exists p \in \operatorname{Primes} \ni p|m \Longrightarrow \exists p \in \operatorname{Primes} \ni p| k$
Proof
There are two cases. Either k is prime or k is composite.
k is prime:
$k \mid k \wedge k \in$ Primes
QED for k prime
k is composite:
$\exists S \subset \mathbb{N} \ni k=S_{0} \cdot S_{|S|-1} \wedge S_{0} \ldots S_{|S|-1}<k$
(Definition of composite)
$\forall s \in S \ni \exists p \in$ Primes $\ni p \mid s$. (Strong Inductive Hypothesis)
(If p is a factor of one of k 's factors it is a factor of k)
$p\left|S_{0} \cdot S_{|S|-1}=k \Longrightarrow p\right| k$.
QED for k composite
(e) Use strong mathematical induction to prove that $\forall n \in \mathbb{Z}, d \in \mathbb{Z}^{+}, \exists q, r \in \mathbb{N} \ni n=$ $d \cdot q+r \wedge 0 \leq r<d$. You will need to use the Well-Ordering Principle P. 620 of Rosen.

Solution

Proof. (By the well-ordering principle).
Let S be the set $\left\{s \in \mathbb{Z}^{+} \mid s=n-d \cdot k, k \in \mathbb{Z}\right\}$
Lemma 1: $|S|>0$
Proof that S is not empty:
Two cases: $n \geq 0$ and $n<0$
$n \geq 0$:
$n-0 \cdot d=n \wedge n \geq 0$
$\therefore n-0 \cdot d \in S$
QED for $n \geq 0$
$n<0$:
$n-n \cdot d=n(1-d) \wedge n \geq 0 \wedge 1-d \geq 0$
(Since d is a positive integer by assumption)
$\therefore n-n \cdot d \in S$
QED for Lemma 1
$\therefore \mathrm{S}$ has a least element
(By the well-ordering principle and S not empty)
Let r be the least element in S
$\therefore \exists q \in \mathbb{Z} \ni n-d \cdot q=r$
(By definition of S)
$\therefore n-d \cdot q=r \Longrightarrow n=d \cdot q+r$
Lemma 2: $r<d$
Proof that $r<d$ by contradiction
Assume $r \geq d$
$\therefore n-d(q+1)=n-d \cdot q-d=r-d \geq 0$
(Algebra)
$\therefore n-d(q+1) \in S \wedge n-d(q+1)<r$
$\therefore n-d(q+1)$ is in S and
is less than the smallest element in S
$\Rightarrow \Leftarrow$
QED for Lemma 2
$\therefore n=d \cdot q+r, 0 \leq r<d$

