Problem 1. 50 points

Here are a couple of useful websites:
Use this one to check your hand calculation of the multiplicative modular inverse: e^{-1} : Link here.

Use this on to perform modular exponentiation. We are dealing with big numbers even for these toy examples and a regular calculator may give the wrong answer. Link here.
(a) Given the public key $e=13, n=77$ encrypt the message "HACKED" one letter at a time using ASCII to represent each letter. (Capitalization matters in ASCII)
(b) Decrypt the cyphertext you created in part (a) using the private key: $e^{-1}=37$.
(c) Given primes $\mathrm{p}=11$ and $\mathrm{q}=7$, and $e=13$ run through the RSA algorithm showing the encryption and decryption of the message "ACE" one letter at a time. Show the setup, encryption and decryption steps.

Solution

Problem 2. 50 points

Prove using mathematical induction the following claims:
(a) Let $\mathrm{P}(\mathrm{n})$ be the property " $\mathrm{n} \phi$ can be obtained using 2Φ and $5 ¢$ coins". Use weak mathematical induction to prove that $\mathrm{P}(\mathrm{n})$ is true for all integers $n \geq 4$.
(b) Use weak mathematical induction to prove that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$.
(c) Use weak mathematical induction to prove that $\forall n \geq 1,3 \mid 2^{2 n}-1$.
(d) Use strong mathematical induction to prove that any integer greater than 1 is divisible by a prime number.
(e) Use strong mathematical induction to prove that $\forall n \in \mathbb{Z}, d \in \mathbb{Z}^{+}, \exists q, r \ni n=d \cdot q+$ $r \wedge 0 \leq r<d$. You will need to use the Well-Ordering Principle P. 620 of Rosen.

Solution

