Problem 1. 10 points

Write each of the following sets by listing their elements (Assume the domain of discourse is the integers):

(a) $A = \{x \in \mathbb{Z} \mid 5 \le x \le 8\}.$ (b) $A = \{x \in \mathbb{Z} \mid 6 < x < 10\}.$ (c) $A = \{x \in \mathbb{Z} \mid 6 < x < 10 \land 4 < x < 12\}.$ (d) $A = \{x \in \mathbb{Z} \mid 6 < x < 10 \lor 4 < x < 12\}.$ (e) $A = \{x \in \mathbb{Z} \mid 6 < x < 8 \lor 8 < x < 12\}.$ (f) $A = \{x \in \mathbb{Z} \mid 6 < x < 8 \land 8 < x < 12\}.$ (g) $A = \{x \in \mathbb{Z} \mid 6 < x < 8\} \cup \{x \in \mathbb{Z} \mid 8 < x < 12\}.$ (h) $A = \{x \in \mathbb{Z} \mid 6 < x < 8\} \cap \{x \in \mathbb{Z} \mid 8 < x < 12\}.$ (i) $A = \{x \in \mathbb{Z} \mid 6 \le x \le 8\} \land \{x \in \mathbb{Z} \mid 8 \le x \le 12\}.$ (j) $A = \{z, 3, 4, 5\} \cap \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

Solution

(a)

- (b)
- (c)
- (d)
- (e)
- (f)
- (g)
- (h)
- (i)
- (j)

Problem 2. 10 points

For the universal set $U = \mathbb{Z}$ draw a Venn diagram for three sets A, B and C showing the locations of the elements of $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ when all the following conditions are met.

- (a) $A \cap B \cap C = \{5\}.$
- (b) $\overline{A \cup B \cup C} = \{10\}.$
- (c) $A \setminus (B \cup C) = \{3\}.$
- (d) $B \setminus (A \cup C) = \{4\}.$
- (e) $C \setminus (A \cup B) = \{2\}.$
- (f) $(B \cup C) \setminus A = \{1, 2, 4, 9\}.$
- (g) $(A \cup C) \setminus B = \{2, 3, 7, 8\}.$
- (h) $(A \cup B) \setminus C = \{3, 4, 6\}.$

Solution

Problem 3. 12 points

Let $S = \{a, b, c, d, e, f, g\}$ and $Q = \{1, 2, 3, 4\}$. (Notice $Q \neq \mathbb{Q}$)

- (a) Write $\mathcal{P}(Q)$.
- (b) Give an example of a set $A \subseteq \mathcal{P}(S)$ such that $|\{A\}| = 2$.
- (c) Give an example of a set $B \in \mathcal{P}(S)$ such that |B| = 3.
- (d) Write $C \times D$ where $C = \{x \in Q \mid \text{even}(x)\}$ and $D = \{x \in S \mid \text{vowel}(x)\}$.
- (e) Write $A \times B$ where $A = \{1, \{1\}\}$ and $B = \mathcal{P}(A)$.
- (f) Write $|\mathcal{P}(A)|$ where |A| = 512.

Solution

(a)

(b)

- (c)
- (d)
- (e)
- (f)

Problem 4. 9 points

Draw arrows from the domain A to the codomain B where $A = \{a, b, c, d, e\}$ and $B = \{1, 2, 3, 4, 5\}$ such that (a) is an injective function, (b) is a sujective function and (c) is a bijective function. You may need to erase some values from the domain and codomain to avoid having all the solutions be trivially bijective.

Problem 5. 20 points

Prove that $f : \mathbb{R} \to \mathbb{R}$ where f(x) = 2x + 1 is bijective by:

- (a) Proving that f(x) = 2x + 1 is injective by showing that $f(x) = f(y) \Rightarrow x = y$.
- (b) Proving that f(x) = 2x + 1 is surjective by showing that $y = f(x) \Rightarrow x \in \mathbb{R}$.

Solution

(a)

(b)

Problem 6. 16 points

Write out a_0, a_1, a_2 , and a_3 for the sequence (a_n) :

(a)
$$(a_n) = (-2)^n$$

(b) $(a_n) = 3$

(c)
$$(a_n) = 7 + 4^n$$

(d)
$$(a_n) = 2^n + (-2)^n$$

Solution

(a)

(b)

(d)

Write the values of the following summations:

(e)
$$\sum_{j=0}^{8} (1 + (-1)^j)$$

(f) $\sum_{j=0}^{8} (3^j - 2^j)$
(g) $\sum_{j=0}^{8} (2 \cdot 3^j + 3 \cdot 2^j)$
(h) $\sum_{j=0}^{8} (2^{j+1} - 2^j)$

Solution

(e)

- (f)
- (g)
- (h)

Problem 7. 8 points

Write the values of the following summations:

(a)
$$\sum_{i=1}^{3} \sum_{j=1}^{2} (i-j)$$

(b) $\sum_{i=0}^{3} \sum_{j=0}^{2} (3i+2j)$
(c) $\sum_{i=1}^{3} \sum_{j=0}^{2} (j)$

(d)
$$\sum_{i=0}^{2} \sum_{j=0}^{3} (i^2 j^3)$$

Solution

(a)

(b)

(c)

(d)

Problem 8. 15 points

Use the *formulas* for arithmetic series to answer (a) and (b).

- (a) Find the 15th term of the arithmetic sequence 3, 5, 7, 9, \dots
- (b) Find the sum of the first 20 terms in the sequence $3, 5, 7, 9, \ldots$
- (c) Find the value of the geometric series: $-2, \frac{1}{2}, -\frac{1}{8}, ..., -\frac{1}{32768}$

Solution

(a)

(b)

(c)

Problem 9. 10 points

Mark the congruent expressions:

(a)
$$24 \stackrel{?}{\equiv} 14 \pmod{5}$$

(b) $-7 \stackrel{?}{\equiv} 9 \pmod{8}$
(c) $12 \stackrel{?}{\equiv} 12 \pmod{9}$
(d) $34 \stackrel{?}{\equiv} 16 \pmod{12}$
(e) $24 \stackrel{?}{\equiv} 3 \pmod{7}$
(f) $-17 \stackrel{?}{\equiv} 9 \pmod{8}$
(g) $-5 \stackrel{?}{\equiv} -5 \pmod{4}$
(h) $24 \stackrel{?}{\equiv} -3 \pmod{3}$
(i) $47 \stackrel{?}{\equiv} 23 \pmod{8}$
(j) $18 \stackrel{?}{\equiv} 38 \pmod{5}$

Problem 10. 8 points

Use the Sieve of Eratosthenes to find all the prime numbers less than 30.

Solution

Problem 11. 10 points

Use the Euclidean algorithm to calculate the greatest common divisor: gcd(a,b).

- (a) a = 558, b = 26(b) a = 11, b = 19(c) a = 0, b = -10(d) a = -8, b = 14
- (u) u = -0, v = 14
- (e) a = 17, b = 51

Solution

(a)

(b)

(c)

(d)

(e)

Problem 12. 10 points

Calculate the following where $\Phi(x)$ is Euler's Totient function.

- (a) $\Phi(3)$
- (b) $\Phi(18)$
- (c) $\Phi(27)$
- (d) $\Phi(15)$
- (e) $\Phi(997)$

Solution

(a)

(b)

(c)

(d)

(e)