
Emergent Representation in a

Robot Control Architecture
Andy Claiborne, Matthew Fricke, Len Lopes,

Joseph Lewis and George Luger
{carcare, mfricke, lenlopes, jalewis, luger}

@cs.unm.edu
Department of Computer Science; FEC 323 University

of New Mexico
Albuquerque, NM 87131

February 8, 2000

Abstract
We offer a definition of representation based in dynamical
systems. Then we present Madcat, a robotic control
architecture that uses emergent representation to develop an
internal model coupled to the environment through its behavior.
The design is inspired by the Copycat program (Mitchell
1993). We present details of the Madcat architecture, the
interface and development tool, and some results. A robot
control architecture with these features will behave more
robustly and autonomously in changing environments. Further
research on vision and motivation will rely on the same design.

Introduction

We present a cognitive model adhering to the
constructivist insight that representation occurs as a
product of the active construction of experience from
perception. This model exists as a control program for a
robot whose task is to generate a model of its environment
which abstracts sequences of sensory data into perceived
objects, allowing the robot to behave more robustly than it
could without the object model. Robots with greater
flexibility, adaptibility, and robustness are possible using
such an architecture. These would be useful in situations
where a robot must autonomously adapt to its changing
surroundings, for instance in unmanned space landings.

Our work builds on research from several disciplines.
These include: work on behavior-based robotics (Brooks
and Stein 1994); work on the dynamical nature of
representation and intelligence (Steels 1995 and 1996); work
on the organization of living systems and their coupling
with an environment (Maturana and Varela 1980, Clark
1997); and work on fluid representation in the unique
architectures of the Copycat family from Mitchell and
Hofstadter (Mitchell 1993).

The active synthesis of representations from a
perceptual stream derived from embodiment in the
environment creates the experience of objects. This active
construction results in (sometimes temporarily) persistent
structures in the mind--the knowledge-embodying model.
Traditionally, it is these structures, rather than the
processes of which they are a product, whose nature has

been the focus of the cognitive tradition. However, the
peculiar fluid quality of these structures has resisted
explanation. A shift of focus in recent years, generated in
part from the study of complex adaptive systems, has
motivated research into the dynamic processes underlying
these structures. Models built on the insight that
representation is implicit in behavior and dynamics have
begun to appear. Such models also provide a test-bed for
the expectation of embodied cognition research that
representations only have meaning in the context of
embedded experience.

Most early approaches to robotics subscribe to an
implicit sense-model-plan-act framework (Brooks 1991b). In
the 1980s, concern arose about the performance and
complexity entailed by this framework when applied to
adaptive autonomous agents functioning in real-world
environments. This concern motivated a shift in thinking
about the organization of intelligence.

The subsumption architecture (Brooks 1991a) marked the
beginning of behavior-based robotics. Behavior-based
robotics emphasizes layers which produce behaviors
directly from input rather than contributing to a stage of the
sense-model-plan-act framework. The focus is on
interaction with the environment as a trigger for behavior
rather than use of explicit representation. The abilities to
react to dynamic features of an unpredictable environment
and to generate robust behavior despite sensor uncertainty
are signatures of the behavior-based approach. Testing
physically constructed robots interacting with complex
worlds bears much weight in this new paradigm of robotics
research.

The behavior-based approach is a useful framework for
organizing our understanding intelligence. However, too
little emphasis has been placed on the role of
representation. Much research remains to be done on the
role of emergent structure in a dynamical model of
representation. This new conception of representation
should accompany the new framework for robotics. We
believe that embodiment is so important in this endeavor
that building robots is a necessity.

Fluid Representation and Copycat

Our research builds upon Copycat, one of the first
computer programs to model the dynamical processes from
which symbolic or representational behavior emerges.
Copycat solves letter-string analogy problems, for instance
if "abc" becomes "abd" what does "ijk" become? Such
seemingly simple analogies involve processes that are at
the core of intelligent behavior. Copycat's most crucial
feature is the slipnet. The slipnet is a semantic network
with spreading activation and multiple kinds of links among
its nodes, some of which are variable in length. The
dynamical processes which develop representational
structures also impact the topology of the slipnet, making
the program's own behavior part of the adaptive control.
For example, if several interacting processes have

successfully built structures about 'opposite' relationships
among the input, the node for 'opposite' in the slipnet
becomes more active, 'opposite' links become shorter and
more likely to be traversed, and further processes to explore
'opposite' are generated. Copycat is a unique hybrid
between serial and parallel execution, between goal-driven
and data-driven search, and in particular between the
symbolic and connectionist paradigms. The Copycat
architecture models the fluid representation of concepts
and their adaptive application to the active construction of
features from data.

The Madcat Architecture

Although the Copycat architecture has great merit as a
starting point for a general model of embodied intelligence,
one of its limitations is its singular point of interaction with
its environment (the letter-string analogy problem). The
Madcat project explores how a similar architecture can be
used to produce the experience of persistent features of the
environment through an ongoing dialog with sensory data
from that environment. The emergence of structures
coupled to the environment through behavior is a defining
feature of intelligence, which we call behaviorally coupled
representation. We believe a dynamical system like
Copycat will support behaviorally coupled representation.
The behavior-based robotics paradigm serves as a
beginning framework for the model.

To create an embodied architecture capable of ongoing
interaction with a dynamic environment we embed an
architecture similar to Copycat in the control systems of a
robot. The robot we use is a Nomad Super Scout II capable
of translational and rotational motion with 6 bump sensors,
16 sonar sensors, and a color vision camera. This
combination of the ideas from Copycat and the Nomad
robot produced the project name Madcat. The ultimate goal
is a robot which, from its emergent exploratory behavior,
builds a flexible representation of its environment to
improve its real-time behavior.

The architecture will be implemented in two main stages
which are responsible for the reflex behavior and the
cognitive behavior of the robot. By cognitive behavior we
mean the use of the emerging world model to guide the
robot's choices. The control functions for the robot are
made available as C functions that can be linked into
developed software. The Madcat architecture itself is
implemented in C++. Besides the C-based interface of the
robot, the choice of C++ was dictated by the need for real-
time behavior. We are using Java to build an interface to
the architecture that will be used as a development and
testing tool.

Reflex Behavior

The behavior of the first stage is analogous to a biological
system's reflex actions. It allows the robot to receive

information and respond to its environment, but does not
incorporate any representations of its environment. Our
goals were to get familiar with the robot, to establish that
the architecture is sufficiently fast to interact with its
environment in real time, to get familiar with writing
emergent software, and to develop base-level behavior that
can be used by more complex cognitive machinery later. In
particular, we want the robot to follow walls and avoid
obstacles.

Our robot has 6 bump sensors and 16 sonar sensors
around its perimeter. Most of the robot's behavior will be
determined by its sonar. We can imagine the sonar sensors
as being divided into 6 sections by the long lines in Figure
1. Each pair of lines frames a sonar sensor; the rectangles
are the robot's wheels.

If the closest sonar reading comes from the sensors in
section 3 or section 4, then the robot is positioned parallel
to a wall and all it has to do is move forward. If the closest
sonar reading is in section 1 or section 6 then the robot has
to turn right to move into a position to follow a wall. If the
closest sonar reading is in section 2 or 5 then the robot has
to turn left to move into position to follow a wall. If the
robot bumps into something, it should rotate away from the
object. When the robot follows these simple rules, it will
also avoid obstacles. The decision to make the front and
rear sensors turn the robot right or left is arbitrary. The
structures supporting the later cognitive behavior are
reflected in the implementation of this algorithm.

At the top level, our code is essentially an infinite loop.
At each iteration, each bump sensor and sonar sensor
generates a codelet that contains instructions to move the
robot in a particular way. Each sonar codelet is assigned an
urgency that is proportional to the inverse square of the
sonar reading, and each bump codelet is assigned the
highest urgency. When the codelets are created, they are
inserted into a container called the coderack . The code
then picks the codelet with the highest urgency from the
coderack and executes it. The contents of the coderack are
then deleted, and it is filled with a new set of codelets.

 Figure 1: Sonar Sensor Arrangement for Madcat

Cognitive Behavior

We want to give the robot the ability to explore unknown
reigons and build internal represtenations of them. In order
to do this we need more diverse codelets, a more complex
coderack, the slipnet, and the workspace.

Each codelet is responsible for a small piece of behavior.
Some codelets tell the robot to move in certain ways, other
codelets refine the adaptive behavior of the program, and
still other codelets modify its internal representation. The
global behavior of the robot emerges from the interaction of
many competing codelets working in parallel on various
structure-building efforts.

In order to effectively pick the codelets that seem most
important, we store them in the coderack. The coderack
automatically stores each codelet in one of seven bins,
based on their importance. Codelets are chosen
probabalistically from the coderack, biased by importance,
and then executed.

When a codelet is created, we determine its importance
based on the slipnet. The slipnet in Madcat is a network of
concepts related to the physical world, such as 'forward',
'reverse', 'right', 'left', 'near', and 'far'. Each concept is
activated by representational structures in the workspace
that relate to features of the physical world. For example, if
the robot has a lot of internal structure that suggests close
objects, then the concept for 'near' in the slipnet would get
a lot of activation. This activation spreads throughout
related nodes. With our example, when the activation is
poured into 'near', all of the concepts directly tied to 'near'
would get a piece of the action. When a new codelet is
built, it checks how relevant its function is to the current
state of the slipnet. If the codelet corresponds to a concept
in the slipnet that currently has a lot activation, then the
codelet is inserted into the coderack with a very high
importance. Conversely, a codelet that is related to a
concept in the slipnet with low activation, then it will be
given a very low importance when it is inserted into the
coderack.

The structures that influence the slipnet reside in the
workspace. The workspace can be visualized as an area
where codelets build structures related to the physical
world. Initally, when the workspace has no pre-existing
structures, pressure from the slipnet leads to a very high
preference for codelets that build on the raw sensor
readings. So, the codelets usually build many structures
that correspond to a single sonar reading. When these get
built, they pour activation into concepts in the slipnet that
motivate looking for patterns in the data. This activation in
turn tends to give high importance to codelets that look for
patterns in the data. The objects built by these codelets
identify interesting features of the data. When these
objects are built, they activate concepts in the slipnet that
relate to physical features of the world. These newly
activated concepts give high importance to codelets that
are capable of building structures that abstract the

emerging structures in the workspace. This feedback loop
continues to build higher-level objects until there is high
coherence among the components of the program. Entropy
is the measure of coherence of the structures in the
program; it is high when the objects have little coherence
and falls as the coherence among the components
increases. At that point the program has gleaned as much
information as possible from the current set of sonar
readings.

Although this is a good model for examining a single set
of sonar readings, we want the robot to be able to travel
through its world and examine it from many different
vantage points. To solve this problem, we designed our
workspace to contain a set of snapshots, each of which
functions like the workspace described in the previous
paragraph. We also designed new types of codelets that
are capable of building structures that identify patterns that
span multiple snapshots. For example, if a codelet identifies
a pattern that has existed for several consecutive
snapshots, it will build a structure that flags the pattern as a
useful abstraction relating to the outside world. The robot
keeps track of these abstractions and how they relate to
one another, and they comprise the robot's internal
representation of its external world.

The Interface and Development Tool

Evaluating the robot's behavior in its environment is
essential to understanding this emergent model. However,
observing the results of our work acting as whole, while
instructive, cannot give us the low level information we
need to tune, refine, and evaluate our work. We need a way
to look "under the hood". Visualization using a graphical
user interface (GUI) is a great way to explore and tune the
cognitive engine of our robot. The GUI we have developed
to represent the internal processes of the engine has to be
flexible enough to allow different views, and sometimes
entirely different paradigms of representation. These views
must complement each other and provide intuitive imagery.
Madcat is information rich and in every aspect of designing
the GUI we have been careful to allow the user to easily
eliminate and simplify the displays. This makes it easier to
focus on the aspect of interest. At the same time we felt the
user should be able to view the system in as much detail as
desired. Our goal in creating this GUI is to balance these
two desires while providing the user as much control over
every aspect of the GUI as possible.

Most of the interesting information about the Madcat
engine is in the slipnet and workspace representations
since these are the two areas from which the robot's
decisions emerge. This is where the bulk of our design
effort has been spent. The basic visual design of the
slipnet display has been implemented. Since the slipnet's
components are fixed, a simple node and link graph is
appropriate. The activation levels of the nodes and their
associated links are represented by coloration. The higher
the activation level the shorter the wavelength of the color.

Clicking on a node or link displays additional information.
This allows layering of information so that the user is only
a click away from further details about individual elements
of the slipnet without being overwhelmed by extraneous
information.

The workspace display provides more of a design
challenge since its principle role is to display structures
being created in response to the changing environment.
This requires a display that can represent a dynamically
changing system while many relationships are created and
destroyed at runtime. The wealth of information and
complexity in the workspace necessitates a multi-windows
approach. The workspace exists not just in two dimensions,
as with the slipnet, but in three. This third dimension is
composed of the snapshots the robot uses to make
inferences about the temporal aspect of its environment.
Rather than writing a true three-dimensional model we
represent the workspace as a series of two-dimensional
representations. This allows the user to quickly see the
state of the system at any one time without having to
decode it from a complex three-dimensional whole. Several
snapshots can be viewed side by side.

The entropy is represented using a simple histogram
which graphs the entropy levels over time. This allows the
user to quickly identify patters in the the overall coherence
of the system. Lessons learned from Copycat argue that the
entropy is a very useful indicator of the robot's operation.
The coderack can be represented simply with counters of
the various codelet types.

In addition to monitoring the real-time actions of the
robot as it engages its environment, the GUI will be able to
replay the internal states of the system from a file recorded
by the robot. This will allow us to slow down the action in
order to better understand the system's properties and to
troubleshoot problems. The advantages of this ability to
change the speed of playback should not be
underestimated since it allows us to focus, step-by-step, on
specific behaviors in much the same way the different
views allow us to zoom-in on specific structures.

In this study we hope to gain some understanding of
emergent behavior. We need to be able to zero-in on both
the microcosm of codelets and bonds, as well as on the
large-scale structures and behaviors they are designed to
produce. This is analogous to our understanding of
neurology. We cannot understand brain function in
organisms by looking at synapses or neurotransmitter
molecules at one end of the scale without also
understanding the structure of the medulla oblongata or
cerebrum. The GUI we are developing will allow us the
flexibility and granularity to view and interpret the Madcat
system at many levels of detail, including the identification
of higher level functioning.

Results

The first goal is to demonstrate that certain basic
competences could be implemented using this emergent

architecture. The chosen behaviors are obstacle avoidance
and wall-following. Obstacle avoidance is defined as the
behavior of moving to avoid a collision. We define wall-
following as the behavior of moving approximately parallel
to the nearest surface, without necessarily moving nearer to
that surface to do so.

In the behavior-based approach these would be
supported by interacting layers, each capable of a particular
behavior. In an emergent architecture a few simple rules
interacting among all the data readings give rise to the
appropriate behavior. Instead of layers, this architecture
relies on competition between peer behaviors to generate
global behavior.

Wall-following can be seen in Figure 2 where the robot
turns corners to remain parallel to the nearest wall.
Obstacle-avoidance is also demonstrated, as the robot
turns in response to surfaces detected in its path.

The second goal is to generate emergent structures
correlated with environmental features. These afford more
effective real-time behavior. For example, the direction
choice for exploration can be made more useful if the
system has a rough model of what it has already
encountered. Random directions can be chosen from
among those not yet explored. As another example,
consider that the sonar sensors cannot detect differences
between measurements for readings below 6 inches,
preventing the reflex behavior from distinguishing a corner
from a continuation of a nearby wall. If the system contains
emergent structures representing a forwardly located wall, it
may use this information to turn away from the wall with
which it would otherwise collide.

Shown in Figure 3 are the emergent structures built by
the robot as it passes a convex corner. Single Surface
Element (SSE) structures, corresponding to each of the
sonar readings taken while traverseing this path, are built in
the workspace. Bonds can be built between these SSEs
according to the relationships in the data. For instance,
Adjacent Equivalence Bonds (AEB) may be built between
SSEs from adjacent sonar sensors if their values are within

Figure 2: Obstacle Avoidance, Wandering, and Wall-Following

a certain percentage of each other. Candidate Surface
Bonds (CSB) tend to be built linking a sequence of AEBs,
which could constitute a surface. Bonds built within a

single snapshot are only tentative. As the data from
successive snapshots continues to bear certain
relationships, bonds based on those become strengthened.
The Maximum Difference Bond (MDB) identifies apexes in
curved surfaces. These only occur after many snapshots
have produced well-established structures. The longer a set
of structures is maintained by the data the more likely it will
be abstracted into an object marker, such as the convex
surface in the bottom of Figure 3.

Figure 4 shows the robot approaching a wall which its
sensors cannot detect. The wall to its left is closer than six
inches, below which the sonar makes no distinction. This
makes the approaching wall look like a continuation of the
wall to the left. However, during the approach, structures
form that reflect the sonar readings of the forward wall. If a
CSB is built in time the robot will notice it when scanning
its internal surfaces for discrepancies with the environment.
At that point it can choose to turn and avoid the wall based
on its internal model of the world. This demonstrates the

use of emergent representation to improve behavior.

Further Research

There are two specific areas of further development with
which we are already engaged. The first is to use the
internal models to augment visual decomposition
algorithms using the color vision camera. Edge-detection is
a hard problem. Established algorithms have some success
but are easily misled. The presence of sonar edges in the
internal model can help to corroborate edges found by
variants of these algorithms. This kind of synthesis is
important to the intelligence of living organisms. We would
like to build models that mimic this capacity.

The second of these goals is related to the idea that
events in the environment enable certain behavior sets and
disable others. We would like to model the sudden shift of
priorities and behaviors in a system in response to events
in the environment. Certain colors will act as triggers for the
system. When these are detected by the camera, changes in
the links in the Slipnet and the priorities of codelets occur
which override the bias to explore and complete internal
models in favor of seeking out a resource or avoiding
danger.

Conclusion

We refine the behavior-based approach to robotics by
requiring that representation, redefined as the emergence of
structures coupled to the environment through behavior,
be given greater focus. We believe that embodiment,
emergence, and representation are important for
understanding intelligence. We have demonstrated the
feasibility of an emergent architecture in solving simple
robotics problems. We have demonstrated that emergent
structures in an embodied architecture can be correlated
through behavior to features of the environment, producing
useful models for generating adaptive behavior. Work is
underway using this architecture for improved visual
decomposition algorithms and environmentally triggered
behavior shifts.

Acknowledgment

This research has been supported at the University of New
Mexico in part by the NASA PURSUE Program (PAIR)
Grant No. NCC5-350 award PP-52-99SU funded by the
NASA MURED Division and by the NSF CISE Research
Infrastructural award CDA-9503064. The contributions of
Tim Mitchell and Monica Rogati have been invaluable.

Distance of convex
surface
identified

Next surface under
construction

Bonds are built
between sensor
readings from several
measurements

 SSE

Figure 3: Correlation Between Emergent Structures
 and Environmental Features

Robot moves past a
convex surface
and along a wall

AEB

CSB

MDB

self

 Figure 4: Emergent Structures Aid in Navigation

Robot approaches
undetectable wall

Two traces show path
with and without
internal model

 Robot scans internal
structures

CSB indicates turn is
necessary

Robot avoids
collision

References

Brooks, R. (1991a). Intelligence Without Representation.
Reprinted in Luger, G. (ed). 1995. Computation &
Intelligence. 343-364. Cambridge: MIT Press.

Brooks R. (1991b). New Approaches to Robotics. Science
253: 1227-1232.

Brooks, R. and Stein, L. (1994). Building Brains for Bodies.
In Autonomous Robots 1: 7-25. Boston: Kluwer
Academic Publishers.

Clark, A. (1997). Being There. Cambridge: Bradford
Books/MIT Press.

Maturana, H. and Varela, F. (1980). Autopoeisis and
Cognition. Dordrecht, Holland:D. Reidel.

Mitchell, M. (1993). Analogy-Making as Perception.
Cambridge: Bradford Books/MIT Press.

Steels, L. (1996). The origins of intelligence. In
Proceedings of the Carlo Erba Foundation Meeting
on Artificial Life . Berlin: Springer-Verlag.

Steels, L. (1995). Intelligence - Dynamics and
Representations. In The Biology and Technology of
Intelligent Autonomous Agents. Berlin: Springer-
Verlag.

