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Abstract

Endowing artificial swarms with collective decision-making capabilities
has been a major endeavor in swarm intelligence research. Researchers
working in this area have drawn inspiration from the behavior of social
insects. In this paper, we introduce a collective decision-making mecha-
nism for swarms that is not inspired by any social insect behavior. Our
proposed mechanism is based on an opinion formation model. Opinion
formation models, studied mostly in statistical physics, try to capture
the essential mechanisms of agreement in large populations of interacting
agents. We use the majority-rule opinion formation model in which agents
are in one of two states called opinions. Agents change opinion through
the repeated application of the majority rule on small teams of agents. We
extend this model with the concept of differential latency. With this ex-
tension, agents that just adopted an opinion go into a latent state during
which they cannot influence nor be influenced by other agents. The dura-
tion of a latent state is stochastic and depends on the opinion adopted by
an agent. Consensus on the opinion associated with the shortest average
latency is the result of this extension. In a swarm intelligence context,
this means that agents whose opinions represent actions that take time
to perform, will choose by consensus the action that takes less time to
perform. We validate our proposal with a swarm robotics experiment in
which robots must choose one of two paths of different length that connect
two locations. As a result of the application of the proposed mechanism,
the swarm is able to choose the shortest path.

1 Introduction

Natural swarms are known for their ability to make good collective decisions in
a completely decentralized way. A collective decision, sometimes also called a
consensus decision, occurs when all the members of a group choose the same
action from a set of two or more mutually exclusive alternative actions (Conradt
and Roper, 2005). Well-known examples of collective decisions are the ones
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made by swarms of bees when selecting the best nest site from a number of
candidates (Seeley, 2010), or by ant colonies when selecting the shortest path
from their nest to a food source (Goss et al., 1989). Researchers working in the
swarm intelligence field (Bonabeau et al., 1999; Dorigo and Birattari, 2007), try
to endow artificial swarms with collective decision-making capabilities similar
to the ones observed in natural swarms. The main reason why decentralized
collective decision-making is a desirable feature in artificial swarms is that it
can be as advantageous as it is in natural swarms (Kordon, 2010; Krause and
Ruxton, 2002).

In this paper, we introduce a mechanism that allows swarms to exhibit col-
lective decision-making capabilities.1 The novelty of our proposal is that we do
not take inspiration from the behavior of social insects as it is common in the
field (Bonabeau et al., 2000; Şahin, 2005). Instead, we look at the phenomenon
of collective decision-making in swarms as a process of agreement in a large
population of interacting physical agents. This viewpoint leads us to consider
opinion formation models, which are usually discussed in the statistical physics
literature (see Castellano et al. (2009), for a recent survey), as possible agree-
ment mechanisms. Opinion formation models are used for modeling large-scale
social, economic, and natural phenomena that involve many interacting agents.

The collective decision-making mechanism introduced in this paper is based
on two components: a) an opinion formation model that evolves through the
repeated use of the majority rule, and b) properties of swarm intelligence systems
composed of embodied agents. The majority-rule opinion formation model,
proposed by Krapivsky and Redner (2003), operates on a population of agents
each of which is in one of two possible states, called opinions. The dynamics of
the model result from the iterative application of the majority rule on teams of
randomly picked agents from a large population. When the population of agents
is well-mixed, that is, when an agent can be teamed up with any other agent in
the population, the majority-rule opinion dynamics make the population reach
a consensus, that is, a state in which all agents share the same opinion. Some
of the properties of swarm intelligence systems that together with the majority-
rule opinion formation model produce collective-decision making capabilities
are: i) different agents can act in parallel, and ii) agents’ actions take time to
perform. These properties make us extend Krapivsky and Redner’s model in a
number of ways. The most significant extension that we introduce is the concept
of differential latency. This means that when an agent adopts an opinion, it
becomes latent, that is, it cannot change opinion again for a period of time
of stochastic duration. The mean duration of this latent state depends on the
agent’s recently adopted opinion.

The potential of the proposed collective decision-making mechanism is demon-
strated through a swarm robotics task in which teams of robots must transport
objects from a source location to a target location. These two locations are con-
nected through two paths of different lengths. Teams need to choose between
these two paths to transport the objects. Different from previous approaches,
which require robots to measure path-travel times or to rely on pheromone-like
information, we simply associate with the available paths the two opinions the
majority-rule opinion formation model is able to work with. The result is an
intelligent collective decision without intelligent decision-makers. The swarm of

1A preliminary version of this proposal has been published in (Montes de Oca et al., 2010).
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robots eventually selects the shortest path.
The contributions of our work are:

1. An extension of the majority-rule opinion formation model proposed by Kra-
pivsky and Redner (2003). We introduce: a) multiple teams of agents, and
b) different latency period lengths depending on the adopted opinions, that
is, we introduce the concept of differential latency.

2. An analysis of the system’s dynamics when latency periods are expo-
nentially distributed. This analysis shows that the population of agents
reaches consensus on the opinion associated with the shortest latency pe-
riod.

3. A study in simulation of the system’s dynamics when latency periods
are normally distributed. In this case, we determine the conditions under
which the population of agents reaches consensus on the opinion associated
with the shortest latency period.

4. An application of the proposed extended model on a swarm robotics sce-
nario. We show that the dynamics of the majority-rule opinion formation
model with differential latency can be used as a decentralized collective
decision-making mechanism.

The rest of this paper is structured as follows. In Section 2, we describe
the opinion formation models that are the direct precursors of our proposal. In
Section 3, we present the extensions introduced in this paper, the analysis of the
model’s dynamics when latency periods are exponentially distributed, as well
as the study in simulation when latency periods are normally distributed. In
Section 4, we present the application of the extended model to a swarm robotics
scenario as an example of the potential of the approach as a decentralized col-
lective decision-making mechanism. In Section 5, we discuss the differences and
similarities between our approach and previous works in the specialized litera-
ture. We also discuss limitations of the proposal as well as ways to overcome
them. We conclude our presentation in Section 6.

2 Opinion Formation Based on the Majority Rule

In this section, we describe two opinion formation models based on the majority
rule. These two models are the direct precursors of our proposal, which is
described in Section 3.

2.1 Majority-Rule Opinion Dynamics without Latency

Krapivsky and Redner (2003) studied the opinion dynamics that results from
the iterative application of the majority rule in a population of N agents each
of which can be in one of two possible states, called opinions (A or B)2. The
number of agents with opinion A is denoted by a. Likewise, the number of
agents with opinion B is denoted by b. It is always true that N = a+ b. Agents
can change opinion over time depending on the opinion held by the majority of
the team they belong to. The model’s initial condition is the density of agents

2Throughout this paper, we use letters A and B to label the two available opinions.
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Initial population configuration

Random team formation

Result after applying the majority rule

Random team formation

Result after applying the majority rule
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Figure 1: Example of the dynamics induced by the iterative application of the
majority rule on a population of six agents. Agents’ opinions are represented
by different shades or colors. Initially, the density of agents in favor of the
opinion represented by black is 0.5. After applying three times the majority
rule on randomly-formed teams of three agents each (marked with squares), the
population reaches consensus with on one of the two competing opinions.

with opinion A at time step t = 0. This density is defined as ρA = a/N . The
evolution of the system proceeds as follows: three different agents are randomly
picked from the population to form a team. The majority rule is then used
to aggregate the opinions of the team members and transform them into a
single opinion that all team members adopt. Team members are put back in
the population, and a new team made of randomly picked agents is formed.
The process is repeated until consensus is reached on one of the two available
opinions. Figure 1 shows a depiction of the process just described.

Krapivsky and Redner (2003) showed that when the population is well-
mixed, that is, when any three agents in the population can form a team, the
population eventually reaches a consensus. They also showed that the opinion
on which the population reaches consensus depends on the initial conditions.
An example of this is shown in Figure 2(a). If the initial absolute majority (i.e.,
the majority at the level of the population) favors one opinion, say A, over the
other, the population reaches consensus on opinion A with a higher probability
than on opinion B. If there is no initial absolute majority, the opinion on
which consensus is reached is either A or B. The relation between the initial
density of individuals favoring one opinion over the other, and the probability
to reach consensus on one of those opinions is nonlinear. Small deviations of the
initial opinion density from the critical value of 0.5, produce large changes in the
probability of reaching consensus on one or the other opinion. The size of the
population is another factor that affects the dynamics of the system. The larger
the population size, the sharper is the transition of the probability of reaching
consensus on the initial absolute majority. In other words, the system is more
sensitive to the initial absolute majority when the opinion dynamics occur on a
large population.

The number of team formations needed to reach consensus as a function of
the initial opinion density and the population size is shown in Figure 2(b). The
time required to reach consensus in the majority-rule opinion formation model
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Figure 2: Characteristic dynamics of the majority-rule opinion formation model.
The probability of reaching consensus on one opinion (labeled A) as a function
of the initial density of agents in favor of that opinion and the population size
is shown in (a). The number of team formations needed to reach consensus as
a function of the initial opinion density and the population size is shown in (b).
These plots are based on data gathered through 1,000 independent runs of a
Monte Carlo simulation.

grows nonlinearly with the population size. There is also a critical value of the
initial opinion density. When this quantity is equal to 0.5, a maximum in the
number of team formations needed to achieve consensus is reached.

2.2 Majority-Rule Opinion Dynamics with Latency

Lambiotte et al. (2009) introduced latency into Krapivsky and Redner’s model.
Latency is a period of time of stochastic duration during which an agent cannot
be influenced by other agents, and thus cannot change opinion. The evolution of
the system proceeds as follows: three different agents are randomly picked from
the population to form a team. The opinion shared by the majority of the team
members is identified, but team members decide whether to adopt the team’s
majority opinion depending on whether they are in a latent state or not. If an
agent is not in a latent state, it adopts the team’s opinion and if this opinion
is different from its previous opinion, the agent goes into a latent state. If an
agent was already in a latent state when the team was formed, the agent ceases
to be in a latent state with probability λ, which is a parameter of the model.

In Lambiotte et al.’s model, the resulting dynamics do not always lead to
consensus. Depending on the probability of an agent becoming non-latent, λ,
a so-called “zero magnetization” state is also possible. In a zero magnetization
state the proportion of agents favoring one opinion or another fluctuates ran-
domly and no opinion is favored in the long run. The characteristic dynamics
of Lambiotte et al.’s model are shown in Figure 3.

In Lambiotte et al.’s model, the tendency to reach consensus induced by the
majority rule is cancelled by the possibility of latent agents to influence non-
latent agents without being influenced themselves. This combination of effects
can inhibit consensus formation and lead to a zero magnetization state (Lam-
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Figure 3: Characteristic dynamics of Lambiotte et al.’s extension of the
majority-rule opinion formation model. Depending in the value of the prob-
ability λ consensus may or may not be achieved. For example, when λ = 1/2,
consensus is always achieved. Thus, in Figure (a), we plot the probability of
reaching consensus on opinion A as a function of the initial density of agents in
favor of that opinion and the population size. In contrast, when λ = 1/20, the
population do not always achieve consensus. In Figure (b), we plot the average
density of agents with opinion A after 100,000 team formations. These plots
are based on data gathered through 1,000 independent runs of a Monte Carlo
simulation.

biotte et al., 2009).

3 Majority-Rule Opinion Dynamics with Differ-
ential Latency

In this section, we present the extensions introduced in this paper to the majority-
rule opinion formation models proposed by Krapivsky and Redner (2003) and
Lambiotte et al. (2009). We begin by describing the features of real-world multi-
robot systems that motivate these extensions. Then, we analyze the dynamics
of the system when latency periods are exponentially distributed. We finish
this section with a study of the system’s dynamics when latency periods are
normally distributed. The first analysis is of theoretical interest as it is a direct
successor of Lambiotte et al.’s model. The second analysis is an attempt to
study the dynamics of the system under more realistic conditions.

3.1 The Proposed Model

Before we describe the extensions to Krapivsky and Redner’s and Lambiotte
et al.’s models that we propose in this paper, it is important to define first the
fundamental connection between those models and a swarm robotics system:
opinions can represent actions or sets of actions that robots have to choose
from while executing a task. Examples of single actions that can be modeled
as opinions are whether to turn left or right at some point in an environment,
or whether to connect or not with another robot. Examples of an opinion
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representing more than one action could be whether to follow the rules for
moving with other robots in a formation, or whether to follow the rules for
assembling one shape or another for a specific task.

The extensions introduced to Krapivsky and Redner’s and Lambiotte et al.’s
models are motivated by some properties of real-world swarm robotics systems.
These properties and the corresponding extensions are the following:

1. A swarm robotics system is composed by many robots which can oper-
ate in parallel. This property is directly translated into k independent
teams instead of just one as in the original formulations of Krapivsky and
Redner’s and Lambiotte et al.’s models.

2. Robot actions may require physical displacement. Since in swarms of
robots communication is local, physical displacement means that robots
that are executing an action cannot be influenced by other robots, and
crucially, cannot influence other robots. The fact that robots cannot be
influenced by other robots, and therefore, cannot change opinion after
forming a team, is already captured by the concept of latency as defined
by Lambiotte et al.. However, in Lambiotte et al.’s model latent agents
can still influence other agents. Thus, we extend Lambiotte et al.’s model
by restricting team members to be non-latent at the moment of forming
a team. This change forbids latent agents to influence other agents.

3. Robot actions take time to perform. Moreover, the duration of an action
is stochastic because there are physical interactions between robots and
the environment. In addition, different actions may have different average
duration. This is translated into differential latency, that is, the average
duration of the latency period depends on the agents’ recently adopted
opinion. In contrast with Lambiotte et al.’s model in which agents go
into a latent state only if they switch opinions, in our case, agents go
into a latent state regardless of whether they switched opinion or not.
They always go into a latent state after the team they belong to makes a
decision.

The way the system evolves is similar to the way it does in Krapivsky and
Redner’s and Lambiotte et al.’s models. First, teams are formed at random.
Then, each team applies the majority rule to update its members’ opinions.
After that, all agents that belong to a team enter into a latent state whose
duration depends on the team’s recently adopted opinion. Finally, once a team
leaves the latent state, its members become available again to form a new team.
The new team members will be picked from a reduced population because, at
that point in time, there will be latent agents that belong to other teams, and
thus cannot be picked to form new teams. The process is repeated ad infinitum
or until the population reaches a consensus. Table 1 shows a pseudo-code version
of the process through which the system ideally evolves.

In the remainder of this section, we analyze the opinion dynamics that re-
sult from our extensions. We focus on two cases: a) when the duration of the
latency periods are exponentially distributed, and b) when the duration of the
latency periods are normally distributed. The fist case is a direct extension of
Lambiotte et al.’s model in which the duration of the latency period is exponen-
tially distributed with respect to the number of times an agent becomes part of
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Table 1: Majority-Rule Opinion Formation with Differential Latency

Input: Number of agents, N , number of teams, k, initial density of agents with
opinion A, ρA = a/N .
/* Initialization */
t← 0
Initialize population of agents X with density ρA.
/* Initial team formations */
for i = 1 to k do

Form team i by selecting at random three non-latent agents from X.
Apply the majority rule in team i, updating team members’ opinions.
Team i enters into a latent state according to adopted opinion.

end for
repeat
for i = 1 to k do
if Team i leaves latent state then

Form new team i by selecting at random three non-latent agents from
X.
Apply the majority rule in team i, updating team members’ opinions.
Team i enters into a latent state according to adopted opinion.

end if
end for
t← t+ 1

until Ad infinitum or consensus is reached

a team. In the second case, we try to model a more realistic situation in which
agents are robots that have to perform actions that cannot be completed at a
constant rate per unit of time.

3.2 Exponentially Distributed Latency Periods

In this subsection we assume that the delays the agents experience when they
execute actions are distributed exponentially. This assumption allows to study
the effect of the proposed extensions on the dynamics of the system by means of
a differential equation model. More precisely, we assume an unlimited number
of agents and model the fractions of agents that favor the different opinions. As
shown in Toral and Tessone (2007) in models of opinion dynamics the finiteness
of the number of agents may play a crucial role. Nevertheless, the character-
ization of the models at a macroscopic scale, that is, in the continuum limit,
can lead to useful insights (Castellano et al., 2009). It can help to character-
ize quantitative behaviors, to understand the robustness of certain features and
might filter out non-universal microscopic details.

One of the proposed extensions to the majority-rule model is that a fixed
number of teams operate in parallel. In the differential equation model this
is reflected by a fix proportion between latent and non-latent agents (recall
that agents are latent if they are currently executing an action, and non-latent
otherwise). Let 0 < β < 1 denote the fixed fraction of all agents that stays
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non-latent. The fraction of non-latent agents that have opinion A is denoted by
f(t) (in the following non-Greek letters denote functions; moreover we omit the
time index t, thus we write f instead of f(t)). The fraction of agents that are
latent and have opinion A is denoted by a. Thus, f(t) + a(a) gives overall the
fraction of agents that favor opinion A at time t.

Without loss of generality the mean time agents with opinion A stay latent
is set to 1 and the mean time agents with opinion B stay latent is set to 1/λ
with 0 < λ ≤ 1. Thus λ = 1/2 implies, for example, that agents with opinion
B stay in mean twice as long latent than agents with opinion A (action A takes
twice as long that B).

Within a unit time step a certain fraction of agents leaves the latent state.
Because the time the agents stay latent is distributed exponentially, this fraction
is proportional to a for agents with opinion A and to λ(1 − β − a) for agents
with opinion B. Hence, the overall number of agents that become non-latent is

r = a+ λ(1− β − a).

If agents finish their actions immediately new teams are formed. Conse-
quently, if in the continuum model r agents leave the latent state the same
fraction of agents enter it. These r agents are chosen randomly from the β non-
latent agents. The probability to choose an agent with opinion A among these
agents is p = f/β. Hence, the fraction of agents that are non-latent and favor
opinion A decreases by rp in a unit time step. A team of three randomly chosen
non-latent agents enter the latent state with opinion A if at least two agents
favor A. Thus, the probability that a team enters latent state with opinion A is
given by

(
3
2

)
p2(1 − p) + p3. Adding these parts together, the dynamics of the

system can be modeled as:

ḟ = −rp+ a (1)

ȧ = −a+ r(3p2 − 2p3)

Figure 4(a) depicts six example trajectories of the model. The starting
conditions for the trajectories are chosen so that for a given initial fraction of
agents with opinion Athe values of f and a are f = β(f+a) and a = (1−β)(f+a)
(the fraction of non-latent agents is β = 0.25). First consider the case of equal
latencies for both opinions (λ = 1, dashed lines). If the system starts without
any bias, that is, with f + a = 0.5 (middle line) no evolution takes place. On
the other hand, if the system starts biased it finds ultimate consensus on the
opinion that was initially in the majority. For example, if the system starts with
the majority favoring opinion A (f + a = 0.52, top line) it develops consensus
on A. If, on the other hand, opinion A is in the minority (f + a = 0.48, bottom
line) the ultimate consensus is B. This resembles the results from Krapivsky and
Redner (2003), where the mean-field limit of the majority rule opinion dynamics
model without (differential) latencies is studied.

The introduction of opinion dependent latencies has a strong impact on the
dynamics of the system: the system can end up in consensus on an opinion
even if this opinion was initially favored only by a minority of the agents. For
instance, consider the case that agents with opinion B stay twice as long latent
than agents with opinion A (λ = 0.5, solid lines of Figure 4(a)). In this case it
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Figure 4: (a) predicted fraction of agents with opinion A over time; for equal
latencies (dashed) starting with f +a = 0.52 (top),f +a = 0.5 (middle),f +a =
0.48 (bottom) and differential latencies (λ = 0.5, solid) starting with f+a = 0.40
(top),f + a = 0.3845 (middle),f + a = 0.36 (bottom); (b) Comparison of the
model with an agent based simulation of 1000 agents

is sufficient that an initial fraction of only f + a = 0.4 favors opinion A to lead
the system to consensus on this opinion (top line).

Figure 4(b) compares the continuum model with results gained in a Monte
Carlo simulation. Shown is the fraction of agents that favor opinion A depending
on the elapsed time t. The simulation results were obtained with 1000 agents
and over 100 independent runs. The depicted bars mark the deviation of the
number of agents with opinion A at this time point. For the continuum model
the curves give the value of f(t) + a(t), that is, the sum of latent agents and
non-latent agents with opinion A. The shown results were obtained with two
different initial conditions that were determined as follows. Let fi be the initial
bias (initial fraction of agents with opinion A), then f(0) and a(0) are calculated
as f(0) = βfi and a(0) = (1 − β)(3f2i − 2f3i ). This calculation is done to take
a property of the Monte Carlo simulation into account that is not present in
the continuum model. More precisely, in the Monte Carlo simulation all agents
start non-latent. In a very first step the desired number of teams is formed and
in all of these formed teams the majority rule is applied. Figure 4(b) shows
that the predictions of the continuum model fit the simulation results well. For
fi = 0.35 the number of agents with opinion A converges to zero. On the other
hand, if fi = 0.45 the system ends up with consensus on opinion A.

In the following we will investigate the stability of the equilibrium points of
the continuum model. The stationary solutions are the states [f = β, a = 1−β],
[f = 0, a = 0], and [f = β/2, a = λ(1 − β)/(1 + λ)]. The two solutions
[f = β, a = 1 − β] and [f = 0, a = 0] correspond to consensus on A and B, re-

spectively. The Jacobian matrix evaluated at these points results in

[β−1
β λ

0 −λ

]
and

[
λ(1−β)

β 1

0 −1

]
, respectively. The eigenvalues of these matrices are (β−1)/β

and −λ for the first and (λβ − λ)/β and −1 for the second one. All these val-
ues have negative real parts (for 0 < β, λ < 1) and thus the consensus states
are asymptotically stable. On the other hand the analysis shows that the lin-
earization of the system near the third equilibrium point has one positive and
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Figure 5: direction field of system (1) with isoclines (dotted) and example tra-
jectories (solid); bold trajectory relates to an unbiased system

one negative eigenvalue (details are omited because of lengthiness). Thus, this
point is a saddle point and hence not stable. Consequently, the only stable
equilibrium points of the system are [f = β, a = 1 − β] and [f = 0, a = 0]. In
other words, in the continuum limit model the agents always find consensus.

Figure 5 visualizes the state space of the system for parameters β = 0.25
and λ = 0.5. The dotted lines mark the two isoclines, that is, the solutions
of ḟ = 0 and ȧ = 0. The saddle point is the point at which the two isoclines
meet (the point [f = 0.125, a = 0.25]). Moreover, four example trajectories for
different starting conditions are depicted. The thick plotted trajectory relates
to a “uninformed” system, that is, a system that starts with exactly half of the
agents with opinion A.

3.3 Normally Distributed Latency Periods

The analysis presented in the previous section was possible because we assumed
that at any given time step agents could switch from a latent to a non-latent
state with a constant probability, that is, that the duration of latency periods
were exponentially distributed. However, if we reconsider our initial motivation
for extending Krapivsky and Redner’s and Lambiotte et al.’s models, it is clear
that we cannot use exponential distributions to model the time required by a
team of robots to finish executing an action. In general, we can expect that
action execution times in have a typical duration with some deviation around
it. This deviation may or may not be symmetrical with respect to the typical
duration.

In this section, we study the dynamics of the system that result from having
normally distributed latency periods. Unfortunately, the new conditions do not
make the system amenable for an exact analytical treatment. Thus, the analysis
that follows is based on Monte Carlo simulation.
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3.3.1 Experiment 1: Dynamics

The system is initialized and evolves in exactly the same way as described in
Table 1. The only difference is that opinion A is associated with a latency period
whose duration is normally distributed with mean µA and standard deviation
σA. Likewise, opinion B is associated with a latency period whose duration is
normally distributed with mean µB and standard deviation σB .

A first set of experiments were run in order to investigate the effects of
having different mean latency periods and varying the number of teams. In these
experiments, we simulated the dynamics of the system with N ∈ {9, 90, 900}
agents and k ∈ {1, 2, 3}, when N = 9, k ∈ {1, 10, 20, 30}, when N = 90, and
k ∈ {1, 100, 200, 300}, when N = 900. We varied the latency duration ratio
r = µB/µA by changing the value of µB . The explored values of r were 1, 2,
3, and 4. The reference mean µA was fixed to a value of 100 time steps. We
set σA = σB = 20 time steps. With these settings, the two distributions do not
significantly overlap which allows us to see the dynamics in the absence of high
levels of interference. Typical results are shown in Figures 6 and 7.3

In Figure 6, we show the effects of varying the latency duration ratio, r, while
keeping the number of teams, k, constant. In this example, we set k = N/3− 1.
The probability of reaching consensus on opinion A as a function of the initial
density of agents in favor of that opinion, the population size, and the number
of teams is shown in Figures 6(a), 6(c), and 6(e). Opinion A is associated with
the shortest mean latency period.

Some aspects of the dynamics of the system with the introduced extensions
are similar to those of the original majority-rule opinion formation model. First,
the system achieves consensus on one opinion. Second, the actual opinion on
which the system achieves consensus depends on the initial density of individuals
favoring one opinion over the other. Finally, the relation between the initial
configuration of the population and the probability of reaching consensus on one
of the alternative opinions follows the same nonlinear pattern. However, there is
an important difference between the two systems. When latency periods have a
different mean duration, it is more likely that the system achieves consensus on
the opinion associated with the shortest mean latency duration than on the other
opinion. This is reflected by the shift to the left of the critical initial density in
favor of the opinion associated with the shortest mean latency duration. In fact,
the larger the latency duration ratio, the smaller is the critical initial density
in favor of the opinion associated with the shortest mean latency duration. For
example, in Figures 6(c) and 6(e), the critical initial density is approximately
equal to 0.35 when r = 4, while it is approximately equal to 0.42 when r = 2.
However, the difference between critical initial densities becomes smaller as the
latency duration ratio increases. Thus, it appears there is a lower bound on the
value of initial critical density for different latency duration ratios.

The average number of team formations needed to reach consensus under the
general conditions of Figure 6 for different population sizes is shown in Figures
6(b), 6(d), and 6(f). In all cases, the maximum number of team formations is
reached at the critical initial density. Additionally, at this critical point, the
larger the latency duration ratio, the more team formations are needed to reach
consensus. Interestingly, the shape of these curves is not symmetric around the

3At http://iridia.ulb.ac.be/supp/IridiaSupp2010-014/ the reader can find the com-
plete set of results and supplemental material for this article.
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Figure 6: Characteristic dynamics of the majority-rule opinion formation model
with normally-distributed latencies. In this figure, we study the effects of
varying the latency duration ratio while keeping k constant. In these figures,
k = N/3− 1. 1,000 independent runs of a Monte Carlo simulation were used to
generate these plots. See text for details.

critical initial density when r > 1.

The second aspect that we study in this experiment is the effect on the opin-
ion dynamics when we vary the number of teams. An example of the obtained
results is shown in Figure 7. A first result of this experiment is that by vary-
ing the number of teams, the likelihood of achieving consensus on the opinion
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Figure 7: Characteristic dynamics of the majority-rule opinion formation model
with normally-distributed latencies. In this figure, we study the effects of chang-
ing the number of teams. For these figures we kept r = 4. When k = N/3,
the system does not evolve, and thus, the population does not reach consensus
(curve in gray). 1,000 independent runs of a Monte Carlo simulation were used
to generate these plots. See text for details.

associated with the shortest latency period can be increased. The general ten-
dency is that the greater the number of teams, the smaller is the critical initial
density in favor of the opinion associated with the shortest mean latency period
(see Figures 7(a), 7(c), and 7(e)). However, as k approaches N/3 the system
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stops obeying this tendency. This is a second result of this experiment. When
k = N/3 the system does not achieve consensus (curve plotted in gray). Al-
though counterintuitive at first sight, the reason for this result is simple. When
k = N/3, every time a team becomes non-latent, a new team is formed but with
exactly the same members because the probability of having two teams leaving
the latent state at exactly the same time is zero. This means that when k = N/3
there is no change in the density of opinions after the initial team formations.

In terms of the number of team formations to achieve consensus, the results
are not surprising. In Figures 7(b), 7(d), and 7(f) it is shown how as the
number of teams increases, so does the number of team formations needed to
reach consensus. As before, the peak of these curves is reached at the critical
initial density.

Note that in all cases, the dynamics are better observed when the population
size is relatively large. When the population is small, the system is so low in
resolution that it is difficult to observe any effect.

3.3.2 Experiment 2: Development over Time

A second experiment was carried out to understand the dynamics of the system
as the number of teams approaches the limit N/3 and to explain why the system
exhibits different critical initial densities when different latency duration ratios
or different number of teams are used. Unless otherwise stated, we used the
same setup used for the previous experiment.

The experiment consists in tracking over time the number of latent and
non-latent agents with the opinion associated with the shortest latency period
(opinion A). With these numbers, we compute the total proportion of agents
with opinion A, and the proportion of non-latent agents with opinion A. The
first piece of information tells us the state of the system. The second piece of
information is the proportion of non-latent agents that ”advertise“ opinion A
when a team leaves the latent state.

In Figure 8, we show the development of these proportions over time when
the population size, and the number of teams vary. For these plots, we fixed
r = 4, and the initial density of agents with opinion A to 0.5. The first row
of plots corresponds to a total number of agents equal to 900. The second and
third rows correspond to 901 and 902 agents respectively. From left to right, the
columns show the plots that correspond to 100, 200, and 300 teams respectively.

In the previous experiment, we saw that when N , the population size, is
a multiple of 3k, that is, when all agents are in a latent state at any point
in time, the system does not exhibit any dynamics. This phenomenon can be
seen in Figure 8(c). In this experiment, we observe that when N = 3k + 1 (see
Figure 8(f)) there is some dynamics in the non-latent subpopulation. However,
there is no dynamics at the level of the whole population. Thus, when N = 3k
and N = 3k + 1, the population of agents does not achieve consensus. The
dynamics that we observe in the case N = 3k + 1 are present only in the
non-latent subpopulation, which consists in this case of one single agent. This
non-latent agent together with the members of any team that leaves the latent
state create a subpopulation of four agents from which a new team is formed.
However, because at least three of these agents have the same opinion, this agent
has no possibility to change the opinion of the agents that just switched state.
Thus, one single non-latent agent cannot induce population-wide dynamics and
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Figure 8: Development over time of the total proportion of agents with opinion
A, and the proportion of non-latent agents with opinion A. Opinion A is asso-
ciated with the shortest latency period. For these plots, the latency duration
ratio is equal to four and the initial density of agents with opinion A is equal
to 0.5. These plots are based on data gathered through 1,000 independent runs
of a Monte Carlo simulation.

therefore, no consensus can be reached.

When the non-latent population is composed of two agents, the population
can reach consensus (see Figure 8(f)). Two non-latent agents are enough for
possibly changing the opinion of one agent that just switched from a latent to
a non-latent state. Thus, a non-latent population of at least two non-latent
agents guarantees consensus.

The proportion of individuals with the opinion associated with the shortest
mean latency period evolves in an undulatory way. These ”waves” are especially
evident in the non-latent population. This phenomenon is caused by the exis-
tence of two different latency periods. In Figure 8, we can see how the valleys
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of the waves concur with multiples of the mean of the slowest latency period.
In other words, the period of these waves is µB . In our example, µB = 400
because r = 4 and µA = 100. The amplitude of these waves is proportional to
the number of teams of latent agents. This is simply a consequence of having
more agents switching between latent and non-latent states.

The wave-like variations in the proportion of non-latent agents with one or
the other opinion explain the existence of critical initial densities. They also
explain their change in value when the latency duration ratio or the number of
teams change. A latency duration ratio greater than one gives more time to
teams with agents with opinion A than to teams with opinion B to accumulate
agents with that same opinion in the non-latent subpopulation. Given that µB =
rµA, by the time the first teams with opinion B leave the latent state, teams
with opinion A will have switched states approximately r times. This imbalance
makes the population reach consensus on opinion A with higher probability than
on opinion B. If the initial density is such that at the beginning of the process
there are more teams with opinion B than with opinion A, that is, the initial
density is lower than 0.5, then it is possible to balance the system. In such a
situation consensus will be reached on either of the two opinions but due to
random fluctuations. Thus, the initial density that balances the opinion update
process in the non-latent population is the initial critical density. A similar
reasoning explains why the initial critical density decreases when the number of
teams increases.

3.3.3 Experiment 3: Decision Power

If there is no a priori information about the latency duration distributions,
there is no reasonable population initialization strategy other than with a den-
sity equal to 0.5. Under these circumstances we are interested in measuring the
decision power of the system, that is, we would like to know with what proba-
bility the population of agents reaches consensus on the opinion associated with
the shortest latency duration. To meet this goal we fixed the parameters of
the distribution associated with the shortest latency period (µA, σA). Then,
we varied both the mean and standard deviation of the distribution associated
with the longest latency period (µB , σB). The explored ranges were: µB = rµA
with r ∈ [1.0, 2.0] in increments of 0.1, and σB = sσA with s ∈ [1.0, 10.0] in
increments of 1.0. This experiment was designed with the purpose of studying
the behavior of the system with different levels of overlap between the two distri-
butions. The parameters used for the distribution associated with the shortest
latency period were µA = 100, and σ = 2. Other values were explored but the
system did not exhibit different dynamics. The analysis is valid as long as the
relations between the distributions’ coefficients of variation remain the same.
To ensure consensus, we increased the population size with respect to the pre-
vious experiments by adding two non-latent agents. The results are shown in
Figure 9.

With 11 agents (Figures 9(a), 9(b), and 9(c)), the minimum probability
is approximately equal to 0.6. With one team, we know that the population
achieves consensus but on a random opinion. Thus, the probability does not
change at any point with one team. With two and three teams, the probability
increases with the ratio between the means until reaching a value of approxi-
mately 0.8. The ratio between standard deviations does not seem to affect the
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(d) N = 92, k = 10
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(e) N = 92, k = 20
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(f) N = 92, k = 30
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(g) N = 902, k = 100

Mean ra
tio

1.0

1.2

1.4

1.6

1.8
2.0

S
tandard deviation ratio 2

4

6

8

10

P
ro

b
. c

o
n
s
e
n
u
s
 o

p
in

io
n
 A

0.0

0.2

0.4

0.6

0.8

1.0

(h) N = 902, k = 200
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(i) N = 902, k = 300

Figure 9: Probability of reaching consensus on the opinion associated with the
shortest latency period as a function of different level of overlap between latency
duration distributions. The mean of the longest latency period, µB , is computed
as rµA, where µA is the mean of the shortest latency period (equal to 100 time
steps), and r ∈ [1.0, 2.0] in increments of 0.1. Likewise, σB = sσA with σA = 2,
and s ∈ [1.0, 10.0] in increments of 1.0. The initial density is equal to 0.5 and the
results are based on data gathered through 1,000 independent runs of a Monte
Carlo simulation.

system. With 92 agents and 10 teams (Figure 9(d)) the probability increases
from a value of approximately 0.5 at r = 1 to a value of 0.8 at r = 2. With
20 teams (Figure 9(e)), the probability increases from 0.5 at r = 1 to a value
greater than 0.95 at r = 2. In both cases, it is the ratio between means what
causes the increment of the probability value. The ratio between standard de-
viations does not seem to affect the system. However, with 92 agents and 30
teams (Figure 9(f)) the ratio between standard deviations does have an impact
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on the system. The probability increases from a value of 0.5 at s = 1 to a
value of approximately 0.85 at s > 5. In this case, the ratio between means
does not affect the system. The same high-level behavior can be observed with
902 agents. With 100 and 200 teams (Figures 9(g) and 9(h)), the system is
mostly affected by the ratio between means. When using 200 teams, the system
reaches a probability of one to achieve consensus on the opinion associated with
the shortest latency period already from r ≥ 1.2. With 300 agents (Figure 9(i)),
it is mostly the ratio between the standard deviations what affects the system,
reaching a probability of one from s ≥ 3.

In summary, the system is able to detect the opinion associated with the
shortest latency period under a wide range of combinations of means and stan-
dard deviations of the distributions involved. The probability of reaching con-
sensus on the opinion associated with the shortest latency period grows more
rapidly when a large number of teams, and consequently, a large population is
used. Distributions with high levels of overlap are successfully distinguished.
When the number of teams approaches the limit N/3 the system exhibits in-
teresting dynamics that can be used to detect the opinion associated with the
latency period with the lowest standard deviation.

4 Self-Organized Collective Decision-Making in
Swarms of Robots

In this section, we demonstrate an example application of the proposed model’s
dynamics as a self-organized collective decision-making mechanism for robot
swarms. First, we discuss why we consider such a mechanism to be self-
organized. Then, we describe the robotics task that serves as an example of
the kind of situations the proposed mechanism could be used for. We conclude
by presenting results that confirm the effectiveness of the approach.

4.1 Majority-Rule Opinion Dynamics with Differential La-
tency and Self-Organization

The majority-rule opinion dynamics with differential latency can be said to be
an example of a self-organization process. The reasons are the following. First,
a large-scale pattern emerges as the result of purely local interactions among the
system constituent entities. In our model, the large-scale pattern is consensus
and it arises from many team-level interactions. Second, the rule that agents
follow to exchange and integrate information, that is, the majority rule, does
not make any reference to the population-level pattern that emerges. Third, no
single agent is capable of supervising or controlling the evolution of the system
because agents have knowledge only about their own and their team members’
opinions. There is no obvious way for them to know whether the population has
reached a consensus or not. Finally, the proposed model’s dynamics adhere to
the four principles of self-organization (as described by Camazine et al. (2003);
Moussaid et al. (2009)):

1. Positive feedback. In a differential latency scenario, agents whose opinion
is associated with the shortest latency period leave the latent state before
others. Thus, the probability that a new team has a majority in favor of
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the opinion that these agents had increases. If the latency duration ratio
is large enough, this process can be repeated several times before the first
agents with the alternative opinion leave the latent state. The result is an
imbalance of opinion representation in the non-latent subpopulation from
which new teams are formed. Since this imbalance grows over time, the
population eventually reaches total consensus.

2. Negative feedback. The positive feedback process described above can be
counterbalanced if the number of latent agents with the opinion associated
with the longest latency period is large enough. This occurs when the
system begins with an initial density lower than or equal to the critical
density as explained in Section 3.3.2. Another limiting factor that balances
the system is the finiteness of the population. In other words, the system
eventually reaches a stable state because the population has reached a
consensus.

3. Amplification of fluctuations. Because teams are formed at random, the
proportion of non-latent agents with one opinion or another may fluctuate
randomly. These fluctuations can be amplified by the positive feedback
process described in point 1. When the system is in an unstable state due
to an initialization at the critical density, fluctuations allow the system to
break the symmetry of the update “waves” we saw in Figure 8 and reach
consensus on any of the two opinions available in the system.

4. Multiple direct or indirect interactions. In the model we are proposing,
agents interact directly every time a new team is formed. Multiplicity is
satisfied because teams must be destroyed and created many times before
the population reaches a consensus.

4.2 Example Task: Foraging with Collective Transport

Goss et al. (1989) studied the collective decision-making capabilities of colonies
of Iridomyrmex humilis ants. To make ants choose between two options, they
connected the ants’ nest with a food source by a bridge with two branches
that differed in length. Their experiments showed that a colony of this kind of
ants was able to choose more frequently the shortest branch of the connecting
bridge. Ants can do that through pheromones, which are chemicals ants lay on
the ground. Differences in the pheromones relative concentrations indicate the
preferences of the colony. Ants detect these differences and reinforce the selected
branch creating in this way a positive feedback process. This experiment has
been a major source of inspiration to the swarm intelligence community. It was,
for instance, the inspiration source for ant colony optimization (Dorigo, 2007;
Dorigo and Stützle, 2004), which is one of the most successful optimization
techniques derived from research in swarm intelligence.

We used a bridge-like environment similar to the one used by Goss et al.
to study the decision-making capabilities of a robot swarm governed by the
dynamics of the majority-rule opinion formation model with differential latency.
An illustration of this environment is shown in Figure 10(a). The task of the
robots is to transport objects from a starting location (located at the bottom
part of the figure) to a goal location (located at the top part of the figure). The
objects that need to be transported are heavier than the capacity of a single
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(a) Environment (b) Team

Figure 10: Task Scenario. The arena is a bridge-like environment with two
branches of different lengths (see Figure (a)). The task of the robots is to
transport objects from the lower part to the upper part of the environment.
Teams of robots start pre-attached to these objects (see Figure (b)). The choice
robots must make is whether to take the left or the right path.

robot. Thus, teams of robots need to be assembled in order to move the objects
around the environment. An assembled team ready to transport an object is
shown in Figure 10(b). The choice robots have to make while performing this
object transportation task is to go to the target location using either the left or
the right path. These two options represent the robots’ “opinions”. The time
it takes for a robot to go from the starting to the target location and back is
the duration of the latency period associated with each opinion. In the context
of swarm robotics, we refer to these latency periods as “action execution times”
since the idea can be generalized to the time it takes for a robot to execute an
action associated with an opinion.

In the experiments that will be described next, we used ARGOS (Pinciroli,
2007), a simulator especially developed for the SWARMANOID project.4 The
simulator uses the open dynamics engine library to accurately simulate physical
interactions. The robot models are based on the physical and electronic designs
of the actual SWARMANOID foot-bots (currently under development).

4.3 Experiment 1: Action Execution Time Distributions

We conducted a first experiment to estimate the distributions of the action ex-
ecution times associated with each branch of our bridge-like environment. To
simulate the consensus on one of the branches, we initialized robots to always
choose one of the two branches. We did this for both branches. In this experi-
ment, we varied the number of teams to see how the tendency of the system to
reach consensus affects these distributions.

The simulation proceeds as follows: Three robots are generated simulta-
neously as a team. These robots are physically pre-attached to the object to

4http://www.swarmanoid.org/
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be carried through an on-board gripper actuator (see Figure 10(b)). Only one
team is generated at a time. The next team is generated after 40 simulated
seconds in order to avoid collisions. The process is repeated until the maximum
number of teams have been deployed. This number is mostly determined by the
dimensions of the environment. In this experiment, the environment can hold
up to ten teams. Every time a team is generated, robots apply the majority
rule to make a local decision on the path to follow. This is done by exchang-
ing messages using the range and bearing communication device the robots are
equipped with. Once robots agree on the path to follow, they execute the col-
lective transport controller described in (Ferrante et al., 2010). This controller
allows the robots to transport the object to the goal location while avoiding
obstacles. The goal location is indicated by a light source located far above it,
which the robots can perceive through their light sensors. Obstacles are detected
using a rotating distance scanner, that is, a rotating infra-red emitter and re-
ceiver. To coordinate the heading direction, robots use the algorithm described
in (Ferrante et al., 2010), which uses the range and bearing communication de-
vice. Finally, two LEDs are placed close to the junctions to let robot teams
know in which direction they should turn. When close to a junction, robots
use their omni-directional camera to detect the junction LED, which they use
to turn left or right according to the chosen path. When robots reach the goal
area they detach from the object they were transporting and go back through
the chosen path as single robots. On their way back, robots try to go away from
the light at the goal location using the same path they used when they were
part of a team. However, because other teams may be close by and robots need
to avoid obstacles, it can happen that individual robots have to go back to the
starting location through the “wrong” path.

Example results of this experiment are shown in Figure 11. This figure shows
the estimated distributions for the cases when there are two and ten teams in
the environment. The three most important things to notice are: a) In all cases,
the distributions are well separated, which means that there is a clear difference
in terms of travel times between the two branches of the environment. The
action execution time ratio and standard deviation ratio for the two-teams case
are respectively (1.71,0.26) and (1.72, 1.23) for the ten-teams case. b) The
distributions are right-skewed. This means that some robots take much longer
than the average time required to go back to the starting location. Visual
inspection of the robots’ behavior revealed that this occurs when robots need
to choose a path different from the one they used to reach the target location.
As we mentioned above, this happens because robots avoid incoming teams
and as a result, these robots find themselves in a path different from the one
they originally chose to traverse. As expected, this phenomenon occurs more
frequently when the number of teams in the environment increases. c) The
mean and the variability of the distributions increase with the number of teams
deployed in the environment. This is a phenomenon related to what we said in
the previous point. As the number of teams in the environment increases, so
does the level of interference between teams and robots. In other words, robots
need to avoid more obstacles and move more slowly when the path they choose
is filled near to capacity. Thus, we expect that while the swarm is operating,
the action execution time distributions will change over time. This occurs as a
direct result of the system’s tendency of reaching a consensus on one of the two
available opinions.
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(b) Ten teams

Figure 11: Action execution time distributions. Figure (a) shows the estimated
densities for the two available actions when there are two teams in the environ-
ment. Figure (b) shows the estimated densities when there are ten teams in the
environment. Each density plot is based on 10,000 round trips (100 runs of 100
trips each) of a robot between the starting and goal locations in the environment
shown in Figure 10(a).

4.4 Experiment 2: Collective Decision-Making

In this second experiment, we measure the probability of a population of robots
to choose the shortest path by consensus between the starting and goal locations
in the environment shown in Figure 10(a). We also measure the number of
team formations needed to reach consensus. With this experiment we test our
hypothesis that states that the dynamics of the majority-rule opinion formation
model with differential latency can be used as a self-organized collective decision-
making mechanism for swarms of robots.

In this experiment, we varied the number of teams in the environment while
keeping the population of robots constant. We used 32 robots in total. This
choice is due to the maximum capacity of the environment, which can hold
up to ten teams. We added two more robots in order to ensure consensus as
explained in Section 3. The simulation works in exactly the same way as in
the first experiment. The initial density of robots with the opinion associated
with the shortest path is 0.5, that is, 16 robots initially favored the shortest
path and 16 favored the longest one. In Figure 12, we show two snapshots of a
simulation run that finishes with the swarm selecting the shortest path between
the starting and target locations.5

The results of this experiment are summarized in Table 2. This table shows
the estimated probabilities of the swarm choosing the shortest branch of the
environment as a function of the number of teams. These data are based on
statistics take from 100 independent simulation runs. To compare results with
what our model would predict, we also ran our Monte Carlo simulation using
the data gathered in the first experiment. Specifically, we set the mean and
standard deviation of the latency period associated with the shortest path to

5At http://iridia.ulb.ac.be/supp/IridiaSupp2010-014/, the reader can find video clips
that show the collective decision-making mechanism in action.
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(a) In progress (b) Consensus

Figure 12: Shortest path selection process. Figure (a) shows a swarm of robots
in the process of transporting objects from the starting to the target location.
At this stage, the swarm has not reached consensus yet and thus robots still use
both branches of the environment. Figure (b) shows the state of the environment
when the a swarm of robots has reached consensus. The path selected by the
swarm of robots is the shortest one.

100 and 20 time steps, respectively. The mean of the latency period associated
with the longest path was set to 1.72× 100 = 172 time steps, and its standard
deviation was set to d1.23× 20e = 25 time steps.

Table 2: Probability of choosing the shortest branch of the environment as a
function of the number of teams k. The population size N is equal to 32 robots.

Physics-Based Simulation Monte Carlo Simulation

k Probability Avg. Team Formations Probability Avg. Team Formations

1 0.48 74.29 0.54 70.66
2 0.52 72.67 0.62 74.62
3 0.69 72.75 0.58 74.39
4 0.71 70.28 0.68 71.87
5 0.75 71.60 0.74 70.17
6 0.74 75.22 0.72 71.18
7 0.79 76.20 0.83 80.84
8 0.86 77.73 0.82 85.58
9 0.83 81.29 0.86 98.43
10 0.81 109.95 0.69 248.25

The probability of choosing the shortest path increases with the number of
teams up to a certain limit. In fact, the maximum probability is reached with
eight teams in the case of the physics-based simulator and with nine with Monte
Carlo simulation. In both cases, the maximum probability found was equal to
0.86. The average team formations needed to reach consensus oscillates within
the range [70, 75] for most cases and grows substantially when the number of
teams approaches the limit N/3, where N is the number of robots. To explain
this result, we should recall the analysis presented in Section 3. First, the action
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execution time ratio is lower than two. This condition proved to be difficult for
small swarms (our 32-robot swarm can still be considered to be small). Second,
as the number of teams approaches the limit N/3, the size of the non-latent
subpopulation starts playing a role in both the quality of the decision eventually
made by the swarm (lowering its quality) and the time it takes to reach consensus
(increasing the number of needed team formations). The difference in the results
obtained with the physics-based simulator and our Monte Carlo simulation,
specially regarding the number of team formations needed to reach consensus,
may be due to the way teams are treated. In the physics-based simulator, a 40
seconds long delay precedes each team formation. This delay makes it possible
for robots to meet at the starting location after transporting an object. This
enables teams that reach the starting location within a time difference lower
than 40 seconds to exchange individuals. This phenomenon never occurs in
the model and our simulations presented in Section 3. Thus, it seems that
deploying teams sequentially reduces the number of team formations needed to
reach consensus when the number of teams reaches the limit N/3.

In summary, in the first experiment we have seen that the action execution
time distribution associated with an opinion is not independent of the swarm of
robots or the environment. In fact, we have seen that it depends on the number
of active robots that at some point in time have that opinion. As the swarm of
robots reaches consensus, the distributions associated with each opinion change.
In the second experiment, we measured the probability of the swarm selecting
the shortest branch of our bridge-like environment. Under the tested circum-
stances, a swarm of 32 robots selects the shortest path between a starting and
target locations with a probability of 0.86 in less than 100 team formations.
Based on the analysis of the previous section, we can expect that this proba-
bilty increases if the action execution time ratio increases. This can occur if
the environment is larger, for example. These results show that the proposed
approach is affective as a self-organized collective decision-making mechanism
for swarms of robots.

5 Discussion

In this section, we put our proposal into the proper context by pinpointing
the differences and similarities of our approach with works described in the
specialized literature. After that, we discuss some limitations of the current
proposal and possible ways of overcoming them.

5.1 Collective Decision-Making in Artificial Swarms

As we mentioned in the introduction, swarm intelligence researchers have al-
ways tried to endow artificial swarms with decision-making capabilities similar
to the ones of natural swarms. Although the swarm intelligence field, as we now
know it, was born within the broader field of robotics (Beni, 2005), the first
truly successful attempts to do this occurred within the realm of software. For
example, in ant colony optimization algorithms (Dorigo and Stützle, 2004), a
population of agents, loosely mimicking the pheromone-laying and pheromone-
following behavior of real ants, collectively select good solutions to hard opti-
mization problems from a very large set of candidates. In robotics, collective
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decision-making is harder to achieve than in software because the environment
is mostly unknown.

Many collective decision-making mechanisms in swarm robotics have also
been inspired by the behavior of insects, and in particular of ants. For in-
stance, a very important category of approaches is based on the simulation
of pheromones. Approaches in this category range from the use of real chemi-
cals (Fujisawa et al., 2008a,b; Russell, 1999), to the use of digital video projectors
to draw pheromone trails on the ground (Garnier et al., 2007; Hamman et al.,
2007; Sugawara et al., 2004). This category of approaches also include those in
which the environment is enhanced in order to let it give robots information that
is normally encoded in the concentration of pheromones. For example, Mamei
and Zambonelli (2005) and Herianto and Kurabayashi (2009) deploy RFID tags
in the environment so that robots can read from or write in them. In (Mayet
et al., 2010), the authors use an environment whose floor is covered with a paint
that glows if ultraviolet light is applied to it. The authors simulate pheromones
by making robots activate ultraviolet LEDs as they move. A further variant of
this approach is the use of actual robots as markers to form trails. Some works
that use this approach are (Ducatelle et al., 2010; Nouyan et al., 2008, 2009;
Payton et al., 2001; Werger and Matarić, 1996). Simulating pheromones, at
least in the way it has been done so far, has important limitations. For exam-
ple, dealing with chemicals is problematic because robots need very specialized
sensors. Because designing such sensors is not an easy task, some authors have
even tried using antennae of real insects (Kuwana et al., 1995; Nagasawa et al.,
1999). Using video projectors is an approach that can be used only indoors and
under controlled conditions. Furthermore, the use of video projectors implies
the use of tracking cameras and a central computer to generate the images to
be projected. The existence of such a central information processing unit makes
the approach depart from swarm intelligence principles. Modifying the environ-
ment with special floors or with RFID tags is a cheap and interesting approach.
However, their applicability is limited to situation in which it is possible to have
access to the environment before robots are deployed. Finally, using robots as
markers allows a swarm to operate in unknown environments and no central
control is required. However, complex robot controllers are needed in order to
allow individual robots to play different roles in the swarm. While a promising
approach, the development of complex robot control software for swarms is still
in early stages of research as we are still trying to understand the connection
between individual-level and collective-level behaviors.

The mechanism that we are proposing in this article does not rely on the
simulation of pheromones. However, one could find connections between the
two approaches. First, one could interpret the population as a distributed
pheromone model. For example, the proportion of agents with opinion A rep-
resents the pheromone level associated with that opinion. Second, the majority
rule simultaneously reinforces and evaporates the pheromone levels of the two
opinions. This occurs when the majority rule makes an agent change its opinion.
One opinion gains one agent, while the other simultaneously loses one agent.
Finally, because teams are formed at random, it is possible to have a very noisy
idea of the opinion that has the actual majority in the whole population. For
example, if there is no majority, it is likely that the first two agents of a team
that is being formed do not share the same opinion. In this case, the third
agent would decide the opinion the team will adopt. In contrast, if there is a
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majority, the likelihood of those two agents having the same opinion grows and
the opinion of the third agent becomes irrelevant.

While the pheromone-laying and pheromone-following behavior of ants has
inspired most collective-decision making mechanisms for artificial swarms, other
insect behaviors have also served as inspiration sources. Trophallaxis, the ex-
change of liquid food between insects, has been the inspiring phenomenon behind
the proposal of Gutiérrez et al. (2010), who propose a method through which a
swarm of robots can locate and navigate to the closest location of interest from
a particular origin. The method Gutiérrez et al. propose needs robots to im-
plicitly know what they are supposed to achieve. Robots measure the distance
they have traveled and communicate this information to other robots in order
to reduce the uncertainty of each robot’s estimate of the location of a target.
In our work, robots do not measure neither travel times nor distances and still,
the swarm finds the shortest path between two locations.

Another insect behavior that has triggered research in collective decision-
making in swarms of robots is that of aggregation and quorum sensing. For
example, the aggregation behavior of cockroaches has been the source of inspi-
ration for a site-selection mechanism with robots (Garnier et al., 2009). The
nest-selection mechanism use by ants, which is based on detecting a quorum
in favor of one option, has inspired the work of Parker and Zhang (Parker and
Zhang, 2009, 2010). In these works, robots need to know whether there are
enough committed robots for one of the competing options. In both cases, the
more committed robots there are for one of the options, the more likely it is for
a robot to commit for that option too. In Garnier et al.’s work the decision is
probabilistic, and in Parker and Zhang’s work the decision depends on whether
the number of committed robots is larger than a threshold. Deciding the value
of this threshold or the rate at which the commitment probability increases is
a critical issue because the first alternative that is identified as dominant will
be the alternative chosen by the swarm. In our work, there are no thresholds
or probabilities that depend on the number of robots with one opinion or the
other. Thus, decision-making is a continuous process until the whole population
reaches a consensus.

Finally, the work of Wessnitzer and Melhuish (2003) is related to ours too
in the sense that they use the majority rule to make robots make decisions.
Through the majority rule, robots decide which of two “prey” to chase and
immobilize. Robots capture one prey after the other. Although the decision is
collective, the majority rule is used simply to break the symmetry of the decision
problem.

5.2 Limitations

We believe that the proposed collective decision-making mechanism is promis-
ing given that it enables a swarm of robots to make a decision that from an
observer’s point of view is intelligent without requiring intelligent individual
decision makers. However, we are aware that the approach has the following
limitations:

• Robots know exactly when they need to form teams and make a local
decision. As we said before, one of the main problems in robotics is that
the environment is unknown. Thus, it is difficult for a robot to know
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where it is and therefore when it should form a team. In our experiments,
teams were pre-assembled in order to avoid this problem. Additionally,
we used LEDs to let robots know when and how to turn. Future work
should address this issue.

• Robots know the number of available alternatives. In this paper we fo-
cused on the case where there are two opinions only. It is easy to imagine
an extension of the model in order to make it deal with more opinions.
However, the main limitation of this and of such an extension is that
robots know how many opinions there are. A possible approach to deal
with this issue is to use some form of learning whereby robots can add
opinions to the system as they interact with the environment.

• Consensus is a good solution only in some cases. It is easy to imagine a
situation in which the optimal allocation of robots is 80% for one opinion
and 20% for the other one. In such cases, consensus on one of the two
opinions will be a suboptimal solution. Integrating opinion dynamics with
task allocation methods could be a possible solution to this problem.

• If the environment changes after the system crossed has reached a consen-
sus, the population cannot adapt. This problem could be tackled if some
fixed number of robots do not change opinion. Ongoing work is already
exploring this idea.

• The opinion dynamics that allows the swarm to reach consensus on one
opinion is based on time-related “rewards”. This means that the faster
action is rewarded implicitly by giving robots that choose this action the
chance to spread their opinion faster than other robots. In many situa-
tions, the desirable action may not be constrained by time. Therefore,
ways of extending the proposed decision-making mechanism in order to
make it deal with qualitative aspects are needed. A first approach to deal
with this issue would be to translate into time these qualitative aspects
of the alternative actions the swarm needs to choose from. For example,
if some resource is more preferable to other, robots in favor of that re-
source should spend less time as non-latent than the other robots. In this
way, a positive feedback process could favor that option. However, other
methods should be explored.

• The decision quality depends on the population size. We saw that the
larger the size of the population, the better is the decision made by the
swarm. While this is related to scalability, which is a desirable property
of swarm robotics systems, it hinders its use in real robotics systems.
The reason for this is that, at least until now, the promise of having
thousands of cheap robots has not been met. Research is needed in order
to improve the decision quality of the swarm when its size is relatively
small. An option, currently under study, is to simulate large swarms by
making robots remember their past over long time horizons (not of just
one action execution as it is currently done) and make a decision based
on the opinion that has been observed more often during that period.
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6 Conclusions

In this paper, we have introduced the concept of differential latency to the
majority-rule opinion formation model. This model operates on a population
of agents that can be in one of two states, called opinions. Teams of agents are
repeatedly formed from randomly picked agents and the majority rule is applied
locally. The result of this process is consensus, a collective state in which all
agents have the same opinion. Latency is a period of time of stochastic duration
during which agents cannot be influenced by other agents. When latency is used
in the majority-rule opinion formation model, agents that switch opinion go into
a latent state if they were not already in it. If agents were already in a latent
state, they switch back to a non-latent state with a certain probability. The
result is that the system may or may not reach consensus depending on the value
of this probability. Differential latency is a new concept in the context of opinion
formation models. Differential latency means that when agents go into a latent
state, they remain in that state for a duration that depends on the opinion they
just adopted. We show in this paper that when the durations of these latency
periods are different, the population is more likely to reach consensus on the
opinion associated with the shortest latency period. We demonstrated that this
is the case for latency periods that are exponentially and normally distributed.

The opinion dynamics of the majority-rule opinion formation model with
differential latency can be exploited in the field of swarm robotics as a self-
organized collective decision-making mechanism. In a swarm robotics setting,
agents are robots, opinions are actions, and latency periods are the duration
of an action execution. We demonstrated the potential of the new approach as
a collective decision-making mechanism in a scenario based on the well-known
double bridge experiment that allowed researchers to show that ant colonies
are able to find the shortest path between their nest and a food source. The
results of our experiment clearly show that through the proposed mechanism a
swarm of robots is able to find the shortest path between two locations without
simulating pheromones or requiring robots to measure travel times or distances.

Collective decision-making in artificial swarms has been inspired by insect
behaviors since the birth of swarm intelligence as a research field. In this paper
we do not take inspiration from any natural phenomenon. We used instead a
purely abstract model that exhibits interesting dynamics when coupled with
features of real swarm intelligence systems. Our results suggest that it may
be time to start departing from the field’s historical inspiration source. From
the engineering point of view this is not a problem because the interest there
is to build effective systems. From the biological point of view, we believe that
opinion formation models may be another tool to understand the underlying
physical properties of animals’ collective decision-making mechanisms.
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