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Revisions

 1.1: 

• Added a reference to a proof that independence of the sample mean and 

sample variance are necessary and sufficient conditions for the parent 

distribution to be Gaussian (). 

• Highlighted the typo in the contingency table example. Two figures were 

transposed (293 instead of 239) so the sum of the first row is incorrect.



Parametric Tests Revisited

 Parametric tests assume something about sampling distribution?



Parametric Tests Revisited

 Why do we make this assumption? 

 The sample, itself, does not provide enough information for us to 
estimate how wrong our guesses about the population mean are given 
the samples

 It gives us a start, but we still have to fill in certain blanks in order to 
derive the center, spread, and shape of the sampling distribution of the 
mean. In parametric statistics, we fill in the blanks concerning shape by 
assuming that the sampling distribution of the mean is normal. 

 In the late 1700s de Moivre, Gauss, Laplace, and Maxwell all noticed 
that the normal distribution was showing up everywhere. 



Interstate Road Map

Each city is a node, each interstate is

An edge. The degree distribution is Normal



Parametric Tests Revisited

 Why do we assume that the sampling distribution of the mean is normal, as 

opposed to some other shape? 

 The First Known Property of the Normal Distribution says that: given random 

and independent samples of N observations each (taken from a normal 

distribution), the distribution of sample means is normal and unbiased (i.e., 

centered on the mean of the population), regardless of the size of N. 

 If a population has finite variance σ2 and a finite mean μ and is normally 

distributed, then the distribution of sample means (from an infinite set of 

independent samples of N independent observations each) must be 

normally distributed (with variance σ2/N and mean μ), regardless of the 

size of N. 



Parametric Tests Revisited

 Why do we assume that the sampling distribution of the mean is normal, as 

opposed to some other shape? 

 Therefore, if the population distribution is normal, then even small N will 

produce a sampling distribution of the mean that is normal (by the First 

Known Property). As the population is made less and less normal (e.g., by 

adding in a lot of skew and/or messing with the kurtosis), a larger and 

larger N will be required. 

 In general, the Central Limit Theorem “kicks in” at an N of about 30. 

 As long as the sample is based on 30 or more observations, the sampling 

distribution of the mean can be “safely” assumed to be normal. 



Parametric Tests Revisited

 Why do we assume that the sampling distribution of the mean is normal, as 
opposed to some other shape? 

 Worst-case scenario (i.e., a population distribution that is the farthest from 
normal); this is the exponential. 

 If the population has an exponential distribution, how big does N have to 
be in order for the sampling distribution of the mean to be close enough to 
normal for practical purposes? 

 Extensive computer simulation suggests that 30 is a good value.

 It has not been proved that 30 is sufficient; this rule-of-thumb was 
developed by having a computer perform Monte Carlo simulations for a 
couple of months. 



Parametric Tests Revisited

 Why do we assume that the sampling distribution of the mean is normal, as 
opposed to some other shape?  Let’s review:

 1. Parametric statistics work by making an assumption about the shape of the 
sampling distribution of the characteristic of interest; the particular assumption 
that all of our parametric stats make is that the sampling distribution of the 
mean is normal. 

 i.e. We assume that if we took a whole bunch of samples, calculated the mean for 
each, and then made a plot of these values, the distribution of these means would 
be normal.) 

 2. As long as the sample size, N, is at least 30 and we’re making an inference 
about the mean, then this assumption is true (by Central Limit Theory plus some 
simulations) ☺



Parametric Tests Revisited

 Why do we assume that the sampling distribution of the mean is normal, as 

opposed to some other shape? 

 The remaining problem is this: we want to make the same assumption(s) for 

all of our inferences even when we sometimes use samples that are 

smaller than 30. 

 Parametric methods might not be warranted when samples are small. 



Parametric Tests Revisited

 Why do we assume that the sampling distribution of the mean is normal, as 

opposed to some other shape? 

 We are always safe for any N if the underlying distribution is normal.

 Researchers often “hope” this is true.



Parametric Tests Revisited

 Why do we assume that the sampling distribution of the mean is normal, as 

opposed to some other shape? 

 Thankfully there is another reason to believe the distribution is normal.

 The Second Known Property of the Normal Distribution says that: given 

random and independent observations (from a normal distribution), the 

sample mean and sample variance are independent†. 

 The only distribution with this property is the Gaussian distribution†.

 But really – you should perform a normality test, such as the Shapiro-Wilk 

test*, if you are going to use a parametric test.

*Shapiro, Samuel Sanford, and Martin B. Wilk. "An analysis of variance test for normality (complete samples)." Biometrika52.3/4 (1965): 

591-611.

†Lukacs, Eugene. "A Characterization of the Normal Distribution." The Annals of Mathematical Statistics, Vol. 13, No. 1 (Mar., 

1942), pp. 91-93



Contingency Table Test

 Consider qualitative data such as gender, occupation, party affiliation.

 What does the mean and standard deviation mean for this kind of data?

 Nothing.

 But there is variability defined by proportions. We can look at the size of a 

subset compared to the whole set. (e.g. how many males vs females in the 

class.)

 We still want to ask the same sort of question we have been asking 

throughout the course. Is there an association between two distributions?



Contingency Table Test

 Consider qualitative data such as gender, occupation, party affiliation.

 We still want to ask the same sort of question we have been asking 

throughout the course. Is there an association between two distributions?

 To tackle this for qualitative data (which are certainly not parametric) we 

use contingency tables.

 Consider a number of outcomes, O. For example an outcome might be 

being (tall, hairy), (short, bald). Recovered and treated, or recovered and 

not treated, or not-recovered and not-treated, or treated and not-

recovered.



Contingency Table Test

 Consider qualitative data such as gender, occupation, party affiliation.

 Once we have estimated the probabilities we can compare them to the 

expected probabilities for independent random variables.

A contingency table with r
rows and c columns representing
two variables R and S with r and
c possible outcomes, respectively.



Contingency Table Test

 Consider qualitative data such as gender, occupation, party affiliation.

 Once we have estimated the probabilities we can compare them to the 

expected probabilities for independent random variables.

 The idea is simple. If there is no dependency or association between two 

distributions then the probabilities are independent and obey the 

multiplication rule: 

 This is easy to check by looking at the relative frequencies to estimate the 

probabilities.



Contingency Table Test

 Consider qualitative data such as gender, occupation, party affiliation.

 Once we have estimated the probabilities we can compare them to the 

expected probabilities for independent random variables.

 The idea is simple. If there is no dependency or association between two 

distributions then the probabilities are independent and obey the 

multiplication rule: 

 This is easy to check by looking at the relative frequencies to estimate the 

probabilities.

 Expected probabilities for independent random variables:



Contingency Table Test

 Consider qualitative data such as gender, occupation, party affiliation.

 Expected probabilities for independent random variables:

 Define a test statistic that measures how far the distributions are from the 

expected independent proportions:



Contingency Table Test

 So now we have this test statistic ‘Y’

 We think it makes sense as a way to tell if qualitative data distributions are 

independent or not.

 Here we resort to the idea that things tend to be normal. Not the 

outcomes that wouldn’t make sense.

 We are going to appeal to the distribution of 

being pretty normal if we have enough 

outcomes. The argument is that these are counts of discrete events on a 

finite interval and are therefor well modelled by a Poisson distribution.



Contingency Table Test

Do you recall the distribution we have 

Seen earlier in the class is the sum of

Squared normal deviates?



Contingency Table Test

Do you recall the distribution we have 

Seen earlier in the class is the sum of

Squared normal deviates?



Contingency Table Test

Do you recall the distribution we have 

Seen earlier in the class is the sum of

Squared normal deviates?



Contingency Table Test

Do you recall the distribution we have 

Seen earlier in the class is the sum of

Squared normal deviates? ~



Contingency Table Test

 As we have just seen, the test is an approximate test

 (e.g. approximating Poisson variables by Normal variables). This 

approximation requires large samples to be good. In practice, the 

expected frequencies should be above 5, although it is common to allow 

20% exceptions, but none of these expected frequencies may be less than 

1.



Contingency Table Test

 Now we have everything we need to perform 

the Contingency Table Test:

 A way to map divergence from the expected 

probabilities of independent qualitative distributions 

to a distribution for which we can define a 

significance level, the       distribution.



Contingency Table Test

 The algorithm:

 Null hypothesis H0 : No association, i.e. for all i and j, 

 Alternative hypothesis H1 : Association

 Significance level: 5%

 Input Outcomes: 

 Step 1: Calculate the expected proportions if H0 is true

 Step 2: Calculate the test statistic: 

 Accept H0 iff 𝑌 ≤ 𝜒crit
2 (from table)



Contingency Table Test

 The algorithm:

 Null hypothesis H0 : No association, i.e. for all i and j, 

 Alternative hypothesis H1 : Association

 Significance level: 5%

 Input Outcomes: 

 Step 1: Calculate the expected proportions if H0 is true

 Step 2: Calculate the test statistic: 

 Accept H0 iff 𝑌 ≤ 𝜒crit
2 (from table)

 We need to know the degrees of freedom to use 𝜒2



Example One

Outcome

Diet Cancer Fatal

Heart

Non-Fatal 

Heart

Healthy Total

AHA 15 24 25 293 303

Mediterra

nean

7 14 8 273 302

Total 22 38 33 512 605

de Lorgeril, Michel, et al. "Mediterranean dietary pattern in a randomized trial: prolonged 

survival and possible reduced cancer rate." Archives of Internal Medicine 158.11 (1998): 

1181-1187.

Should have

been 239.

Despite this the 

conclusion is the 

same.
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Outcome

Diet Canc

er

Fatal
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Non-
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Health

y

Total

AHA 15 24 25 293 303

Medit
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7 14 8 273 302

Total 22 38 33 512 605

Outcome

Diet Cancer Fatal
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Non-

Fatal 

Heart

Healthy Total

AHA 22 × 303
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303

Mediter

ranean
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Total 22 38 33 512 605



Example One

Outcome

Diet Canc

er

Fatal

Heart

Non-

Fatal 

Heart

Health

y

Total

AHA 15 24 25 293 303

Medit

errane

an

7 14 8 273 302

Total 22 38 33 512 605

Outcome

Diet Cancer Fatal

Heart

Non-

Fatal 

Heart

Healthy Total

AHA 22 × 303

605

38 × 303

605

33 × 303

605

512 × 303

605

303

Mediter

ranean

22 × 302

605

38 × 302

605

33 × 302

605

512 × 302

605

302

Total 22 38 33 512 605



Example One

Outcome

Diet Canc

er

Fatal

Heart

Non-

Fatal 

Heart

Health

y

Total

AHA 15 24 25 293 303

Medit

errane

an

7 14 8 273 302

Total 22 38 33 512 605

Outcome

Diet Cancer Fatal

Heart

Non-

Fatal 

Heart

Healthy Total

AHA 11.02 19.03 16.53 256.42 303

Mediter

ranean

10.98 18.97 16.47 255.58 302

Total 22 38 33 512 605



Example One

Outcome

Diet Canc

er

Fatal

Heart

Non-

Fatal 

Heart

Healthy Total

AHA 11.02 19.03 16.53 256.42 303

Mediter

ranean

10.98 18.97 16.47 255.58 302

Total 22 38 33 512 605

Calculate  

(15−11.02)2

11.02
+

(24−19.03)2

19.03
+

(25−16.53)2

16.53
+

(293−256.42)2

256.42

+ +
(7−10.98)2

10.98
+

(14−18.97)2

18.97
+

(8−16.47)2

16.47

+
(273−255.58)2

255.58
= 16.55 ∽ 𝜒𝑐𝑟𝑖𝑡

2 with 3 degrees of 

freedom: 𝑟 − 1 𝑐 − 1 = 1 × 3 = 3

Outcome

Diet Cance

r

Fatal

Heart

Non-

Fatal 

Heart

Health

y

Total

AHA 15 24 25 293 303

Mediter

ranean

7 14 8 273 302

Total 22 38 33 512 605



Example One

16.55 ∽ 𝜒𝑐𝑟𝑖𝑡
2 with 3 degrees of 

freedom: 𝑟 − 1 𝑐 − 1 = 1 × 3 = 3
16.55



Example One

16.55 ∽ 𝜒𝑐𝑟𝑖𝑡
2 with 3 degrees of freedom: 

𝑟 − 1 𝑐 − 1 = 1 × 3 = 3

So H0 is rejected with a p-value < 0.001.



Example One

What does that mean? 

If the null hypothesis associated with the null model that the outcomes 

(health status and diet) are independent is true, then we would expect 

to see this sample less than 10 times in 10,000 trials.

The (slightly imprecise) implication is that the alternate hypothesis is 

probably true, and diet does effect health.



Example Two

Eye Color

Gender Blue Brown Green Hazel Total

Female 370 352 198 187 1107

Male 359 290 110 160 919

Total 729 642 308 347 2026

Froelich, Amy G., and W. Robert Stephenson. "Does Eye Color Depend on Gender? It Might Depend on 

Who or How You Ask." Journal of Statistics Education 21.2 (2013).



Confirmation Bias

 Consider why there were objections to the conclusions from our analysis of 

Example 2, but none raised after our analysis of Example 1.

 That diet impacts health was the result we expected. That eye color is 

gender associated was not expected, so we were encouraged to dig 

deeper to find an error.

 This is particularly a problem in computer science. When a simulation or 

algorithm does what we expect we tend to stop debugging. When it has 

an unexpected result we put a lot more effort into finding the “bug”.



The Sign Test

 Motivation: If we want to test whether the means of two distributions are the 
same without assuming normality we can make use of the fact that half the 
area under the distribution will be less than the mean and half will be greater 
than the mean.

 Data distribution: The Sign test is a non–parametric test, so we do not assume 
that the data is normally distributed.

 One sample: We test to see if the number of outcomes less than a 
hypothesized mean is equal to the number of outcomes greater than the that 
mean.

 Two sample: Pair up outcomes from samples S1 and S2 and see if the number 
of times S1i< S2i equals the number of times S1i < S2i, discard S1i = S2i

 H0 is that there are an equal number of + and –, i.e. the population means are 
equal to the sample mean.



The Sign Test

 As with the Contingency Tables method we have come up with a 

reasonable measure of similarity between distributions.

 And again we have to map this into a probability distribution so we can 

understand the probability of seeing particular values for this measure.

 In the sign test this is the binomial distribution.

 Why?



The Sign Test

 As with the Contingency Tables method we have come up with a 

reasonable measure of similarity between distributions.

 And again we have to map this into a probability distribution so we can 

understand the probability of seeing particular values for this measure.

 In the sign test this is the binomial distribution.

 Why?

 Recall your discrete math class (CS261 at UNM). Because the binomial 

distribution is a measure of the probability of events when there are only 2 

possibilities. (here greater than and less than).



The Sign Test

The binomial distribution tells us the probability of x 

“successful” outcomes in a sample

of size N, where p=0.5 is the probability of success.  

Note: the binomial distribution converges to the normal 

distribution for large N. 

As a practical matter when p=0.5 you need N>20. 

Usually you can use an exact table or binomial 

calculator.



Example

A new chemotherapy treatment is proposed for patients with breast cancer. Investigators are concerned 

with patient's ability to tolerate the treatment and assess their quality of life both before and after receiving 

the new chemotherapy treatment. Quality of life (QOL) is measured on an ordinal scale and for analysis 

purposes, numbers are assigned to each response category as follows: 1=Poor, 2= Fair, 3=Good, 4= Very 

Good, 5 = Excellent. The data are shown below.

Patient QOL Before

Chemotherapy Treatment

QOL After

Chemotherapy Treatment

1 3 2

2 2 3

3 3 4

4 2 4

5 1 1

6 3 4

7 2 4

8 3 3

9 2 1

10 1 3

11 3 4

12 2 3



Example

The question of interest is whether there is a difference in QOL after 

chemotherapy treatment as compared to before. 

Step 1. Set up hypotheses and determine level of significance.

H0: The median difference is zero versus

H1: The median difference is not zero α=0.05

Step 2. Select the appropriate test statistic.

The test statistic for the Sign Test is the smaller of the number of positive or 

negative signs.

Step 3. Set up the decision rule.

This will be based on the binomial distribution, our hypothesized p-

value, and the number of samples.

Step 4. Compute the test statistic.



Example

Patient
QOL Before 

Chemotherapy 

Treatment

QOL After

Chemotherapy 

Treatment

Difference

(After-Before) Sign

1 3 2 -1 -

2 2 3 1 +

3 3 4 1 +

4 2 4 2 +

5 1 1 0 -

6 3 4 1 +

7 2 4 2 +

8 3 3 0 +

9 2 1 -1 -

10 1 3 2 +

11 3 4 1 +

12 2 3 1 +

There are 3 negative and 9 positive outcomes. But is it significant at p=0.05 given only 12 outcomes?
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Patient

QOL Before 
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Treatment
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Chemotherapy 

Treatment

Difference

(After-Before)
Sign

1 3 2 -1 -

2 2 3 1 +

3 3 4 1 +

4 2 4 2 +

5 1 1 0 -

6 3 4 1 +

7 2 4 2 +

8 3 3 0 +

9 2 1 -1 -

10 1 3 2 +

11 3 4 1 +

12 2 3 1 +

There are 3 negative and 9 positive outcomes. But is it 

significant at p=0.05 given only 12 outcomes?

Because we care 

About positive and negative

Changes (two-tailed) and the

Binomial is symmetric we can just double P(x)



Example

Patient

QOL Before 

Chemotherapy 

Treatment

QOL After

Chemotherapy 

Treatment

Difference

(After-Before)
Sign

1 3 2 -1 -

2 2 3 1 +

3 3 4 1 +

4 2 4 2 +

5 1 1 0 -

6 3 4 1 +

7 2 4 2 +

8 3 3 0 +

9 2 1 -1 -

10 1 3 2 +

11 3 4 1 +

12 2 3 1 +

There are 3 negative and 9 positive outcomes. But is it 

significant at p=0.05 given only 12 outcomes?

Because we care 

About positive and negative

Changes (two-tailed) and the

Binomial is symmetric we can just double P(x).

x 2
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Treatment

Difference
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Sign

1 3 2 -1 -

2 2 3 1 +
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Example

Patient

QOL Before 

Chemotherapy 

Treatment

QOL After

Chemotherapy 

Treatment

Difference

(After-Before)
Sign

1 3 2 -1 -

2 2 3 1 +

3 3 4 1 +

4 2 4 2 +

5 1 1 0 -

6 3 4 1 +

7 2 4 2 +

8 3 3 0 +

9 2 1 -1 -

10 1 3 2 +

11 3 4 1 +

12 2 3 1 +

There are 3 negative and 9 positive outcomes. But is it 

significant at p=0.05 given only 12 outcomes?

x 2

Step 3. Conclusion: We fail to reject the H0 that the distributions are 

the same at the 0.05 significance level. 



Wilcoxon Signed-Rank Test

 What if we have quantitative values not just binary choices?

 Instead of just looking at the category (>,<) we can add the direction and 

magnitude of the differences. 

 The Wilcoxon signed-rank test statistic, W converges to a Normal 

distribution for large samples. For small samples we refer to a table of 

values.



Example

 A study is run to evaluate the effectiveness of an exercise program in reducing systolic blood 
pressure in patients. The blood pressure of 15 participants is measured before and after the 
exercise program:

Patient
Systolic Blood Pressure

Before Exercise Program

Systolic Blood Pressure

After Exercise Program

1 125 118

2 132 134

3 138 130

4 120 124

5 125 105

6 127 130

7 136 130

8 139 132

9 131 123

10 132 128

11 135 126

12 136 140

13 128 135

14 127 126

15 130 132



Example

 A study is run to evaluate the effectiveness of an exercise program in reducing systolic blood 
pressure in patients. The blood pressure of 15 participants is measured before and after the 
exercise program:



Example

 A study is run to evaluate the effectiveness of an exercise program in reducing systolic blood 
pressure in patients. The blood pressure of 15 participants is measured before and after the 
exercise program:

Question: Is there is a difference in systolic blood pressures after participating in the exercise program as 

compared to before?

•Step1. Set up hypotheses and determine level of significance.

H0: The median difference is zero versus, H1: The median difference is not zero α=0.05

•Step 2. Select the appropriate test statistic.

The test statistic for the Wilcoxon Signed Rank Test is W, defined as the smaller of W+ and W- which are the 

sums of the positive and negative ranks, respectively. 

•Step 3. Set up the decision rule.

The critical value of W can be found in the table of critical values. To determine the appropriate critical value 

from the table we need sample size (n=15) and our two-sided level of significance (α=0.05). The critical value 

for this two-sided test with n=15 and α=0.05 is 25 and the decision rule is as follows: Reject H0 if W < 25.

•Step 4. Compute the test statistic.



Example

 A study is run to evaluate the effectiveness of an exercise program in reducing systolic blood 
pressure in patients. The blood pressure of 15 participants is measured before and after the 
exercise program:

Patient

Systolic Blood Pressure

Before Exercise Program

Systolic Blood Pressure

After Exercise Program

Difference

(Before-After)

1 125 118 7

2 132 134 -2

3 138 130 8

4 120 124 -4

5 125 105 20

6 127 130 -3

7 136 130 6

8 139 132 7

9 131 123 8

10 132 128 4

11 135 126 9

12 136 140 -4

13 128 135 -7

14 127 126 1

15 130 132 -2



Example

 Now we rank the absolute values of the differences. Specifically, we assign ranks from 1 
through n to the smallest through largest absolute values of the difference scores. When 
there is a tie we take the mean value. Then set the appropriate sign. 

Observed Differences

Ordered Absolute

Ranks
Values of Differences

7 1 1

-2 -2 -2.5

8 -2 -2.5

-4 -3 -4

20 -4 -6

-3 -4 -6

6 4 6

7 6 8

8 -7 -10

4 7 10

9 7 10

-4 8 12.5

-7 8 12.5

1 9 14

-2 20 15



Example

 Now we rank the absolute values of the differences. Specifically, we assign ranks from 1 
through n to the smallest through largest absolute values of the difference scores. When 
there is a tie we take the mean value. Then set the appropriate sign. 

Observed Differences

Ordered Absolute

Ranks
Values of Differences

7 1 1

-2 -2 -2.5

8 -2 -2.5

-4 -3 -4

20 -4 -6

-3 -4 -6

6 4 6

7 6 8

8 -7 -10

4 7 10

9 7 10

-4 8 12.5

-7 8 12.5

1 9 14

-2 20 15

Next: Sum the positive ranks (W+)

and negative ranks (W-).



Example

 Finally we consult a Wilcoxon table to find out to 
which p-value our test statistic W corresponds:

Next: Sum the positive ranks (W+)

and negative ranks (W-).
25



Example

 Finally we consult a Wilcoxon table to find out to 
which p-value our test statistic W corresponds:

We cannot reject H0 at the  0.05 significance

level.

We cannot conclude that the changes

In blood pressure were statistically significant.


