Logistics

» Peerreviews are due tfomorrow before midnight. Use UNM learn to
submit.

» Today Analysis of Variance
» Next Tuesday Cross Validation and Wrap Up
» Next Thursday — Final Exam Review (May 2nd)

» May 7™ - Final Exam (Material from second half of class)

» Assignment 4 will be a regular homework covering ANOVAs.



Analysis of Variance (Part 1)




INntfroduction

We have seen that most experiments involve studying the effect of one or
more factors on a response variable.

The factors can be qualitative or quantitative.



INntfroduction

We have seen that most experiments involve studying the effect of one or
more factors on a response variable.

The factors can be qualitative or quantitative.

If we want to understand the relative impact multiple factors have on the
response we can use Analysis of Variation (ANOVAs).



INntfroduction

The goal of ANOVAs is to identify important independent variables and
rank their importance.

The idea is based on measuring the variability and applying various
stafistical identities to define a test staftistic for the affect factors have on
the response variable.

The test statistic (like others you have seen) is defined so that we can get @
p-value from a lookup table. This allows us to say what factors have a
significant affect on the response variable.



INntfroduction

The goal of ANOVAs is to identify important independent variables and
rank their importance.

The idea is based on measuring the variability and applying various
stafistical identities to define a test staftistic for the affect factors have on
the response variable.

The test statistic (like others you have seen) is defined so that we can get @
p-value from a lookup table. This allows us to say what factors have a
significant affect on the response variable.

This test statistic if called F.



The procedure

First recall that the variability of a set of measurements is proportional to the
sum of squares of deviations from the mean:

This is how we calculated the sample variance.



The procedure

The ANOVA partitions the total sum of squares (1SS) into parts. Each of these
parts is attributed to a particular independent variable (factor) in the
experiment.

n

TSS = Z(yz — g)2 — factory; + - - - + factory + SSE
i=1

Where SSE is the sum of square errors (recall from linear regression lecture).



The procedure

Let’s think about the null hypothesis that there is no relationship.

When the factors have no relationship to the response each of the factor conftributions
to the sum each estimate the variance of the response.
n

TSS = Z(yz — g)2 — factory; + - - - + factory + SSE
i=1

Dividing each term by a constant means 1SS is a good
estimate of the variance of the response.



The procedure

If one of the factors is related to the response then the contribution of its variance
estimate to TSS will be inflated.

TS = Z(yz — ¢)? = factor; + - - - + factory, + SSE
i=1

The contribution of a factor to the total sum of squares is called the “factor’'s sum of
squares’.
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If one of the factors is related to the response then the contribution of its variance
estimate to TSS will be inflated.

TS = Z(yz — ¢)? = factor; + - - - + factory, + SSE
i=1

The contribution of a factor to the total sum of squares is called the “factor’'s sum of
squares’.




The procedure

So now we have the basis for a test staftistic.

We will compare the expected sum of squares for each factor to the actual factors

sum of squares and define a probability of seeing the combination if the null
hypothesis is true.

n

TSS = 2:(yZ — §)* = factor; + - - - + factory, + SSE
i=1




The procedure — an example

Consider the special case where we have two equal samples of size n, and n, where:
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The procedure — an example

Consider the special case where we have two equal samples of size n, and n, where:
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Where yzj is the jth observation in the ith sample and g is the mean over all n; + N, samples.
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Now we partition the Total Sum of Squares:
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Where yw is the jth observation in the ith sample and g is the mean over all n; + np,samples.
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The procedure — an example

Now we partition the Total Sum of Squares:

1 —

f1 =

o1

Where yw is the jth observation in the ith sample and g is the mean over all n; + np,samples.
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Sum of Squares for the tfreatment

(SST). i.e. sum of all the factor
contributions.
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The procedure — an example

2 ni
Now we partition the Total Sum of Squares: ~ _
TSS = >4 >4(yij —7)°
N1 =— N9 i=1 j=1
H1 = U2 Sum of Squares for the treatment ° 9
(SST). i.e. sum of all the factor = 7 E (gi — )
2 2 contributions. -
0.1 — 0.2 1=1
Sum of (SSE) S
um of squares error A _\9
>4 >4(yw Yi)
i=1 j=1

Where yw is the jth observation in the ith sample and g is the mean over all n; + np,samples.
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2 ni
Now we partition the Total Sum of Squares: ~ _
TSS = >4 >4(yij —7)°
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2 2 contributions. -
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Sum of (SSE) S
um of squares error A _\9
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Notice that the SST increases as the means of the two samples diverge and SSE decreases.
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The procedure — an example

2 ni
Now we partition the Total Sum of Squares: ~ _
- TSS = >4 >4(yij —7)°
N1 =— N9 i=1 j=1
H1 = U2 Sum of Squares for the treatment ° 9
(SST). i.e. sum of all the factor = 7 E (gi — )
2 2 contributions. -
0.1 — 0.2 1=1
Sum of (SSE) S
um of squares error R _
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So the larger SST is the greater the evidence for rejecting Hy.

)2




The procedure — an example

So the larger SST is the greater the evidence for rejecting Hy.

How much evidence does this value provide®e



The procedure

So the larger SST is the greater the evidence for rejecting Hy.

How much evidence does this value provide®e

Let Y; denote a normally distributed random variable that generated observation Yij then,

The expected value for the variance is: SSE 9
E =0
2%1 — 2

Recall this was an estimator of variance from the first half of class.



The procedure

So the larger SST is the greater the evidence for rejecting Hy.

How much evidence does this value provide®e

It is possible to prove that the expected value of the treatment sum of squares is
3]

E(SST) = o 5 (p1 — p2)’

So when there is a difference in means the SST exceeds the variance



The procedure

This allows us to define the Z statistic
Y1 —Y5

Z:
\/20'2/TL1




The procedure

This allows us fo define the Z stafistic
Y1 - Yo
\/2(72/n1

Since Z is normally distributed under the null hypothesis...

/

2 2
/< followsa X distibution with 1 degree of freedom.



The procedure

And 72 (E) (Y1 — Ys)? _ SST

The whole point is that we have been able to relate the sum of
squares of the tfreatment to a distribution we can use to
generate a p-value.



The procedure

Assuming SST and SSE are independent it follows that

ZQ
SSE/(in — 2)0’2

Defines an F distribution.



The procedure — Mean squares

Sums of squares divided by their degrees of freedom are called
mean squares.

So we can define a mean squared for the freatment and the error.

Under H() . U1 = M2 both MST and MSE estimate the response variance.




The procedure — Mean squares

Sums of squares divided by their degrees of freedom are called
mean squares.

So we can define a mean squared for the freatment and the error.

Under H() . U1 = M2 both MST and MSE estimate the response variance.

When U1 ?é 2 MST will be larger than the response variance and tend fo
be larger than MSE.




The procedure — Mean squares

So finally we have something we can test!

MST
MSE

F —

f F > F,, then we canreject Hy at the significance level &

As usual we Iool< up F iIn a table (or more likely we use
MATLAB or R.)



The procedure — Mean squares

This explanation was just for a two factor ANOVA. But it is
generalizable to any number of factors.



Consider two factors:

N

6.1 9.1
/7.1 8.2
/.8 8.6
6.9 6.9
7.6 7.9
8.2 /7.9

Are the means different at the 0.05 significance levele



Example

2 6
Total Sum of Squares = Z Z(?/zg — 5)2

1=1 9=1
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Total Sum of Squares = L Vi L 123 L7

1=1 7=1




Example

6

2
Total Sum of Squares = Z Z(?/zg — 5)2

i=1 j=1

(91.9)°

Total Sum of Squares = 711.35 = 7.5492

12



Example

Now we calculate the Treatment and error sums of squares:

2
SST — T Z(y_@ — g)Z
1=1

T



Example

Now we calculate the Treatment and error sums of squares:

SST = n, Z — 1.6875

SSE = LL yii — Ui)° = 5.8617

1=1 5=1




Example

Finally we take the mean sum of squares

MST = SSE/1 = 1.6875
MSE = SSE/(2n; — 2) = 0.58617




Example

Finally we take the mean sum of squares

MST = SSE/1 = 1.6875
MSE = SSE/(2n; — 2) = 0.58617




Example

Finally we take the mean sum of squares

MST = SSE/1 = 1.6875

MSE = SSE/(2n; — 2) = 0.58617
MST

MSE

= 2.88

The F stafistic for 0.05 is 4.96 so these are not stafistically different.



Logistics

» Last Lecture! (You made itl)
» Thursday — final exam review. | will post an example final fonight.

» Assignment 4 is due on Saturday by 11:59.



Logistics

» Assignment 3 has been graded.
» Grades were generally good

18

14

12

10

ce

90 - 100

80

89

70-79

60 - 69

50 - 59

40 - 49

30 -39

20 - 29




Logistics

» Assignment 3 has been graded.

18

» Grades were generally good 16
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» Some recurring issues: .
1. Label you axes!
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» Assignment 3 has been graded.

18
» Grades were generally good 16

14

12

» Some recurring issues: .

1. Label you axes!

Number of Students

Z [
0 -
90 - 100 80 - 89 70-79 60 - 69 50 - 59 40 - 49 30 -39 20 - 29

Assignment Score



Logistics

» Assignment 3 has been
graded.

18
16
» Grades were generally good .
12

. . 10
» Some recurring I1ssues.

1. Label you axes!

2. State specific questions.

Number of Students

Z [
0 -
90 - 100 80 - 89 70-79 60 - 69 50 - 59 40 - 49 30 -39 20 - 29

Assignment Score



Specific Questions

» “MATLAB is a heavily optimized program for linear algebra so | ask whether
it’'s implementation of matrix multiplication is more efficient than standard
C matmul optimized benchmarks.”

» Instead of “| examine the relationship between C benchmarks and
MATLAB.”



Logistics

» Assignment 3 has been
graded.

» Grades were generally good

» Some recurring issues:
1. Label you axes!
2. State specific questions.

3. Make sure your plots are . o
legible. .



Logistics

» Assignment 3 has been graded.
» Grades were generally good

» Some recurring issues:
1. Label you axes!

2. State specific questions.
3. Make sure your plots are legible.
4

Avoid digressions from your main
questions. Don't use up two pages
of tables to make a point that could
be summarized in one sentence and
that isn't a central question.




Logistics

» Assignment 3 has been graded.

» Grades were generally good

» Some recurring issues:

1.

Label you axes!

2. State specific questions.
3.
4. Avoid digressions from your main

Make sure your plots are legible.

questions. Don't use up two pages of
tables o make a point that could be
summarized in one sentence and that
isn’'t a central question.
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ANOVAs (Part 2)




Multiple samples

» We can generalize from testing for differences in population means from
part 1 to multiple populations.

» The random selection of independent samples from p populations is called
‘completely randomized experimental design”.
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‘completely randomized experimental design”.

» Assume the underlying populations are Gaussian with possibly different
means but the same variance.



Multiple samples

» We can generalize from testing for differences in population means from
part 1 to multiple populations.

» The random selection of independent samples from p populations is called
‘completely randomized experimental design”.

» Assume the underlying populations are Gaussian with possibly different
means but the same variance.

» We can allow different sample sizes from each population.



Multiple samples

> Let y; be the response of the jth experimental unit in
the ith sample.

» Let 1} and T,L be the total and mean of the ith sample.
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> Let y; be the response of the jth experimental unit in
the ith sample.

» Let 1} and T,L be the total and mean of the ith sample.

THS = 55T + SSE
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> Let y; be the response of the jth experimental unit in
the ith sample.

» Let 1} and T,L be the total and mean of the ith sample.

TSS = S5ST + 56K

(Total for all observations)?

CM (Correction for the mean) =
n
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Multiple samples

(Total for all observations)?

CM (Correction for the mean) =

n

Which simplifies straightforwardly to (n times the mean squared)

CM = ng*
P T2

SST = z CM SOE = TSS — SS5T
7



Multiple samples

The estimate of variance based on the number of degrees of freedom
(humerator below) is (Mean Squares for Error):

SSE
ny+ng+ e ny —p

MSE =



Multiple samples

SO

ny+ng + -+ ny —p

The mean square for freatments will have p-1 degrees of freedom, i.e. one
less than the number of means.

MSE =

SO

MST =
p—1




Multiple samples

So to test the null hypothesis that all the means are equal we can use the
test statistic:




Multiple samples

So to test the null hypothesis that all the means are equal we can use the
test statistic:

All this is fo say that the greater that difference between the sample means the greater the
probability that the population means are different.



Multiple samples

So to test the null hypothesis that all the means are equal we can use the
test statistic:

All this is fo say that the greater that difference between the sample means the greater the
probability that the population means are different.



Multiple samples

Departing from the assumptions do not usually cause problems. But it is
important fo know the assumptions.

Again: Gaussian distributed populations, random selection of samples from
populations, and equal variance.



ANOVA Table

Source E-_E__

Treatments p-1 MST=33T/(p-1)  MST/MSE

Error Nn-p SSE MSE=SSE/(n-p)
Total N-1 1SS



ANOVA Table Example

>>vy =1[52.757.545.9 44.5 53.0 57.0 45.9 44.0];
gl=[12121212];

g2 = {'hi’;’hi’;1o" 1o’ 'hi';'hi’;'lo’;'lo'};

a3 = {may’;'may’ ;' may’;’may’;june’;june’;june’;june'};
>>




ANOVA Table Example

>>vy =1[52.757.545.9 44.5 53.0 57.0 45.9 44.0];
gl=[12121212];

g2 = {'hi’;’hi’;1o" 1o’ 'hi';'hi’;'lo’;'lo'};

a3 = {may’;'may’ ;' may’;’may’;june’;june’;june’;june'};
>>

>>p = anovan(y.{g1.92.93})

p:




MATLAB ANOVA Table

| NON _ Figure 1: N-Way ANOVA
File Edit View Insert Tools Desktop Window Help =~
Analysis of Variance
Source  Sum Sq. d.f. Mean Sq. F Prob>F
X1 3.781 1 3.781 0.82 0.4174
X2 199.001 1 199.001 42.95 0.0028
X3 0.061 1 0.061 90.01 0.914
Error 18.535 4 4.634

Total 221.379 7




ANOVAs for Block Design

The randomized block design implies we have two qualitatively different
iIndependent variables “blocks” and "tfreatments”.

So now we have the sum of squares for blocks, freatments, and error.

TS5 = 55B 4 55T + SSE

With b blocks and p treatments.




ANOVAs for Block Design

TSS = SSB + SST + SSE

With b blocks and p treatments.
The 1SS, SST, and SSE are calculated as before. Except:

b 2
SSB — 2.i=1 Bi CM
P




ANOVAs for Block Design

TSS = SSB + SST + SSE

The 1SS, SST, and SSE are calculated as before. Except:

b 2 1?_ T2
ooB = 2iz1 B CM and SST = ]_bl ~ —CM
p




ANOVA Table for Block Design

Blocks MSB=SSB/(b-1)  MSB/MSE
Treatments p-1 SST MST=SST/(p-1)  MST/MSE
Error Nn-b-p+1 SSE MSE=3SE/(n-p)

Total N-1 1SS

Notice we can ask about block and treatment effects



35

Tukey's Honestly Significantly Different test

» ANOVA fells you there is a significant effect but not which pairs of
treatments are producing the effect.

» Thisis a post-hoc ftest. So you use it if you have p-values that indicate the
null hypothesis can be rejected in your ANOVA table.

» The HSD test looks at the pairwise difference in means divided by a proxy
for the variance within the treatments.

» The test uses the g statistic which you can find values for in a table — or use
MATLAB.

For more see Herv'e Abdi, Lynne J. Williams https://www.utdallas.edu/~herve/abdi-HSD2010-
prefty.pdfin In Neil Salkind (Ed.), Encyclopedia of Research Design. Thousand Oaks, CA: Sage. 2010



https://www.utdallas.edu/~herve/abdi-HSD2010-pretty.pdf

36
Tukey's Honestly Significantly Different test

>> [p,1,stats] = anovan(y.{g1,92,93})

[c.m.,h,nms] = multcompare(stats);




Cohen's Effect Size

» A study of 14,000 children ages 6-17 showed a “highly significant” (p <
.001) correlation of r=.11) between height and IQ

» What does this p indicatee
» What's the magnitude of this correlatione
» Accounts for 1% of the variance



Cohen's Effect Size

» A study of 14,000 children ages 6-17 showed a “highly significant” (p <
.001) correlation of r=.11) between height and IQ

» What does this p indicatee
» What's the magnitude of this correlatione
» Accounts for 1% of the variance

» Based on anr this big, you'd expect that increasing a child’s height by
4 feet would increase 1Q by 30 points, and that increasing 1Q by 233
points would increase height by 4 inches (as a correlation, the
predicted relationship could work in either direction)

The height-lIQ correlation: Cohen 1990




Cohen's Effect Size

» A study of 14,000 children ages 6-17 showed a “highly significant” (p < .001)
correlation of r=.11) between height and IQ

» What does this p indicatee
» What's the magnitude of this correlation?
» Accounts for 1% of the variance

» Based on anr this big, you'd expect that increasing a child’s height by 4
feet would increase IQ by 30 points, and that increasing IQ by 233 poinfts
would increase height by 4 inches (as a correlation, the predicted
relationship could work in either direction)

» The Effect Size does NOT tell us whether there is a real effect! P-value
does that.

The height-lIQ correlation: Cohen 1990



Cohen's Effect Size

» To calculate Cohen's effect size:

» For any two treatment groups, find treatment means, subtract
them, and divide by the standard deviation

The height-lIQ correlation: Cohen 1990



Cohen’s Effect Size Visual

» hitps://rosychologist.com/d3/cohend/

Cohen'sd: 1.1
>



https://rpsychologist.com/d3/cohend/

Experimental CS
Examples




Approximation algorithms for Bin

Heleigle

» Given alist of n weights drawn uniformly at random from the range (0,1),
what is the expected asymptotic packing ratio (compared to optimal) of
simple algorithms like First Fit, Best Fit, First Fit Decreasing, and Best Fit
Decreasing?

» A series of experiments by Jon Bentley and others suggested that all four
are asymptotically optimal (which contradicted previous conjectures),
and also revealed patterns that inspired the arguments used in the proofs

On Experimental Algorithmics, An Interview with Catherine McGeoch and Bernard Moret
by Richard T. Snodgrass



Dijkstra’s algorithm

» Traditional worst case analysis of Dijkstra’s algorithm for the shortest paths
problem shows that the decrease-key operation dominates, and much
design work has gone into creating data sfructures (such as Fibonacci
heaps) that reduce the worst case bound.

» Experiments by Andrew Goldberg et al. suggested that, for a large
category of input graphs, the decrease-key operation is rare—a property
which they went on to prove.

» Those good-worst-case data structures optimized the wrong thing in many
Cases.



Insutficiency of the RAM Model

» The simple RAM model does not predict computation fimes on modern
machines with sufficient accuracy because it does not take the memory
hierarchy into account.

» Anthony LaMarca and Richard Ladner developed experiments to guide
their design of a new two-level model of computation that captures the
interactions between caches and main memory.

» They reanalyzed classic algorithms (sorting) and data structures (heaps)
under the new model; their analyses are much closer to experience, and
in some cases flatly contradict conventional design wisdom based on
traditional analyses.



Insutficiency of the RAM Model

» The LaMarca and Ladner work was predated by a long and rich history of
experimental and theoretical efforts—carried out by both the theory and
the systems communities since around 1966—to develop two-level models
of computation that describe algorithm performance in virtual memory
systems. Peter Denning has a nice article that describes how theory and
experiments contributed to develop our understanding of how locality of
reference affects computation time [?]. A separate thread of research into
cost models for I/O-bound computation has been equally fruitful.
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