
Logistics

u Ask for help! Hoss and I both have office hours that you can come to 
for help.

u Final exam time: 12:30pm May 7th.
u You should have completed your initial exploration and decided on 

the questions you want to investigate.
u This week you should be defining the hypotheses you will use to answer 

your questions.
u You should also be deciding on an experimental design.
u Think about potential extraneous and nuisance variables.
u Look into the Graduate Student Resource Center
https://unmgrc.unm.edu/support-services/individual-consultations.php

https://unmgrc.unm.edu/support-services/individual-consultations.php


Graduate Student Resource Center

Writing
Schedule an individual consultation for assistance with graduate-level writing assignments, including (but not limited to)
funding proposals, presentations, articles, and even your thesis or dissertation! Our graduate consultants are trained to
provide feedback on content, organization, argument, and structure. The goal is to help you become a proficient writer, so
come prepared to engage with our consultants and do not expect a proofreading or editing session.

ESOL Writing
These one-on-one consultations are designed to address specific concerns and questions about academic writing for
students who have English as a second language. Using a collaborative approach, the consultant will engage you in
reviewing your writing strengths as well as in identifying areas for improvement. The focus of the consultation will be on
helping you develop self-directed language learning skills and applying the feedback to future academic writing pieces.

Statistics
GRC Statistics Consultants offer support with quantitative research, including statistical design, analysis, and
interpretation. Our consultants can also assist with particular statistics software or recommend additional resources.
Students enrolled in undergraduate statistics courses may also use CAPS Math drop-in labs.

https://caps.unm.edu/hours-and-locations/service-hours.php


Designing Experiments

u What do the benchmarks output?

u Is that the value you what you want to compare your other language?

u What can you do?



Experimental Computer 
Science
MATTHEW FRICKE

1.0 – SEND CORRECTIONS TO MFRICKE@UNM.EDU



Applications to Computer Science

u Experiments usually show up in CS in:

u Algorithm Engineering
u Computer Performance

u Simulation



Success of experiments

Successful experiments are partly the product of good experimental 
designs; there is also an element of luck (or savvy) in choosing a well-
behaved problem to study 

An experiment is not considered negative when it disproves your 
conjecture: an experiment fails by being inconclusive

A guide to experimental algorithmics, by Catherine C. McGeoch



Inconclusive versus analysis-friendly data



Inconclusive versus analysis-friendly data

Two experiments to study the average value of a 
function D(m). 

Each column of data represents 25 independent trials 
at levels m=1, 101, 201, …, 1001
The lines connect the sample means in each column

The mean is known to change from negative to positive as m increases
The experimental problem is to find the crossover point mc.

The sample means have the same theoretical average in both experiments, but the experiments yield different 
insights with respect to mc.



Guideline: For best views of how average 
cost depends on parameters, work to 
magnify response and minimize variance



Design for clear views

Sometimes the right experimental design for the problem does not produce easy-to-analyze results. 
But many designs can be improved to better show the relationship between parameters and 
performance. 

Inconclusive                             Strong support for linearity



Design for clear views

Sometimes the right experimental design for the problem does not produce easy-to-analyze results. 
But many designs can be improved to better show the relationship between parameters and 
performance. 

The underlying function is the 
same in these two 
experiments. But the 
experimental designs differ in 
the range, spacing, and 
number of levels of n, and 
the number of random trials

Inconclusive                             Strong support for linearity



Design for clear views

Do’s and don’ts for designing better experiments (with a goal of clear views)

● Do run more trials: variance in a data sample is inversely proportional to sample size.

● Do expand the range of n values: if the response of C(n) to n is small compared to variance, 
try magnifying the response by increasing the range of n levels.

● Do “right size” the data sample. Avoid experiments that produce too many or too few data 
points to be analyzable.

● Do prefer narrow performance indicators: one that focuses closely on one component of 
algorithmic performance. Simple relationships are generally easier to model and analyze.

● Focus on one thing at a time if at all possible.



Design for clear views

Do’s and don’ts for designing better experiments (with a goal of clear views)

● Don’t summarize prematurely: the right choice of statistics depends on distribution properties 
of the sample 

● Don’t use “lossy” performance indicators. Report measurements that maximize the information 
content of each trial

Suppose the experimental goal is to study a ratio R=X/Y

If the test program reports both, X and Y, R can be calculated

If it reports only R, other useful quantities for data analysis like X-Y or (X-Y)/X cannot be 
calculated 



Guideline: Design your experiments to maximize the 
information content in the data: aim for a clear view of 

simple relationships



Variance reduction techniques

● If the data will not cooperate despite your best design efforts, consider a technique for reducing 
the variance.

● A variance reduction technique (VRT) modifies the test program in a way that reduces variance 
in the measured outcomes, on the theory that less variance yields better views of average case 
costs

● Variance can always be reduced by increasing the number of trials, but this is not always 
feasible.

● If the goal of the experiment is to understand variance as it occurs naturally, do not apply VRTs



Terminology: Design Point

● When running experiments various input values the combination of inputs is called the 

Design point



Case study for self-organizing 
sequential search rules

The self organizing search problem is to maintain a list of n distinct keys to service a series of m
requests for keys

The cost of each request is equal to the position of the key in the list (linear search from the front)

The list is allowed to reorder itself by some rule that tries to keep frequently requested keys near the 
front to reduce total search cost

What is a possible null hypothesis?



Case study for self-organizing 
sequential search rules

Move to Front (MTF): After key k is requested, move it to the front of the list

Transpose (TR): After key k is requested, move it one position closer to the front by transposing with its 
predecessor



Analyzing the rules

Suppose requests are generated independently at random according to a probability distribution 
P(n) = p1, p2, p3, … pn defined on n keys

The request cost for key k in position L[i] in a given list is equal to its position i

The average list cost for list L depends on the requests costs and request probabilities for each key:



Analyzing the rules

The average cost of a rule is the expected cost of the mth request, assuming that L is initially in 
random order and that the rule is applied to a sequence of random requests generated according 
to distribution P(n)

Let                  denote the average cost of MTF, where n is is the number of keys and m is the number 
of the lookup.

Let                  denote the average cost of TR

The experiments measure costs for requests drawn from Zipf’s distribution Z(n) defined over the 
integers 1, …, n

The probability that key k is requested next is given by 

Zipf's law states that given a large sample of words used, the frequency of any word is 
inversely proportional to its rank in the frequency table, proposed by linguist George Zipf. 

p(k) =
1

kHn
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⌧(n,m)
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Aside Harmonic Series

Zipf’s law models the frequency of words (or keys in this case) as inversely proportional to the 
harmonic series.

Zipf's law states that given a large sample of words used, the frequency of any word is 
inversely proportional to its rank in the frequency table, proposed by linguist George Zipf. 

p(k) =
1

kHn
, where Hn =

nX

k=1

1

k
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Zipf’s distribution for n=9

Where Hn is the nth harmonic 
number (multiplying by Hn
scales the probabilities so 
they sum to 1)

p(k) =
1

kHn
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k
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Exploration

There are no known formulas for calculating                  
and                   under this distribution, so we develop 
experiments to study these average costs.

µ(n,m)
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Exploration

There are no known formulas for calculating                  
and                   under this distribution, so we develop 
experiments to study these average costs.

µ(n,m)
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• For each random trial the code generates an initial list L that contains a random permutation of 
the keys. 

• Then it generates a random sequence of keys lookups according to the Zipf’s distribution. 
• For each key it looks up the request in the list, records the cost, and reorders the list according to 

the rule
• At the end the program reports the cost of the mth request



Setting up our experiment

t random 
trials at each 
design point 
(n,m)

SequentialSearchTest(n, m, R, trials)
For ( t=1; t<= trials, t++ )

L = randomPermutation (n)
For ( i=1; i<=m; i++ )

K = randomZipf(n)
For ( j=1; L[j] != k; j++ )

Cost = j
reorder(R, L, j) 

printCost(R, t, n, m, cost)

n = distinct keys
m = requests
R = MTF or TR



Setting up our experiment

The experiment runs t random trials at each design point (n,m)

The random variate Mi(n,m) denotes the cost of MTF reported in the ith trial at this design point

The sample mean at a design point is the average of t outcomes

The expectation E[Mi(n,m)] =

The variate Mi(n,m) is an estimator of  

µ(n,m)
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M̄(n,m) =
1

t

tX

i=1

Mi(n,m)
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The first experiment

Mi(50,m) and Ti(50,m) in 25 random trials at each design point 
n=50 and m= 1, 101, 201, …, 1001. The input sequences are 
independent.



Let Ti(n,m) and Var(T(n,m)) denotes the cost of TR reported in the ith trial at this design point (Mi and 
Var(M(n,m) are defined analogously.

Result: For any non uniform request distribution such as Zipf, TR has lower asymptotic cost, but MTF 
reaches its asymptote more quickly 

There is a crossover point mc such that

when  1 < m < mc

when  mc < m

We are also interested in the sample variance, a statistic that describes the 
dispersion of points away from their mean



Let Ti(n,m) and Var(T(n,m)) denotes the cost of TR reported in the ith trial at this design point (Mi and 
Var(M(n,m) are defined analogously.

Known: for any non uniform request distribution such as Zipf, TR has lower asymptotic cost, but MTF 
reaches its asymptote more quickly 

There is a crossover point mc such that

when  1 < m < mc

when  mc < m

We are also interested in the sample variance, a statistic that describes the 
dispersion of points away from their mean

Our first 
experimental goal 
is to locate mc



The first experiment

Mi(50,m) and Ti(50,m) in 25 random trials at each design point 
n=50 and m= 1, 101, 201, …, 1001

Mean Var 95% Conf.

MTF 15.6 159.75 [10.64, 20.56]

TR 11.4 195.83 [5.91, 16.89]

Since the confidence intervals 
overlap, we cannot say with any 
certainty whether at some m
µ(n,m) < ⌧(n.m)
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The first experiment

We failed to reject the null hypothesis that there is a crossover 
point. Never mind actually finding that point.

Looking at the experimental results and the overlapping 
confidence intervals what could be a problem here?



Variance Reduction Techniques (VRT)

It is possible that the large sample variance is keeping us from 
getting a clear view.

A couple of methods we will examine are:

Common Random Numbers (CRN)

Conditional Expectation (CE)



Common Random Numbers

Common random numbers VRT can be applied when:

1. The goal of the experiment is to compare the differences in costs of 
two (or more) algorithms.

2. There is a reason to believe that the costs of the algorithms are 
positively correlated with respect to some random variate in each trial.

Measuring cost differences in paired trials with matching random variates 
should yield outcomes with less variance than measuring differences using 
independent random variates



Common Random Numbers

In other words if two random variables are correlated then the difference 
between those variables will have a lower variance than either alone:

So we redefine our response to be the difference in performance as 
opposed to the plain performance.

And we compare the response of X and Y on the same input. This is how 
we introduce the correlation. (This is why it is called common random 
variables)

Var(X � Y ) = Var(X) + Var(Y )� 2Cov(X,Y )
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Common Random Numbers

Cost difference on independent request sequences Cost difference on common request sequences



Common Random Numbers

Mean 
D(50,1001)

Var(50,1001) 95% Conf.

Independent 4.20 456.42 [10.64, 20.56]

CRN -3.00 206.75 [-8.64, 2.63]

Even though the sample mean is negative in the 
second experiment, this VRT is not enough to 
obtain a definitive answer about mc, since the 
95% ci contains both negative and positive 
values. But this experiment needs fewer 
additional trials to shrink the range to answer the 
question



Common Random Numbers

Can be used when the performance of two tests subjects is positively correlated 
with respect to some random variate, compare performance in paired trials with 
identical values for that variate



Common Random Numbers

Common Random Numbers is considered an easy variance reduction technique 
but has pitfalls.

For example, if the correlation is negative between X and Y then the variance will 
be increased instead of decreased.



Conditional Expectation

E(E(X|Y )) = E(X)
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Based on the fact that for any random X and Y 

Var(E(X|Y )) = Var(X)� E(Var(X|Y ))
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Conditional Expectation

E(E(X|Y )) = E(X)
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Based on the fact that for any random X and Y 
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Var(E(X|Y ))  Var(X)
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Therefore,



Conditional Expectation

E(E(X|Y )) = E(X)
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Based on the fact that for any random X and Y 

Var(E(X|Y ))  Var(X)
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Now suppose we wish to estimate E(X) and we know 
E(X|Y) is a function of Y (call it g(Y)). 

Then g(X) has the same expected value as X but a smaller variance. 



Conditional Expectation

Also called conditional Monte Carlo, conceptually splits an experiment into 
two phases:

1. Generate a random state S
2. Generate a random sample of the cost of that state

Using this approach for MTF consists of a phase that generates a sequence of m-1 
requests to obtain a random list order L (the state after m-1 requests), followed by a 
second phase that generates r random requests and reports their cost (without reordering 
the list)

The new variate Mr
i(n,m) reports the average costs of r requests 

on the same list instead of just one. Our g(X) is this average.



Conditional Expectation

Panel 1 shows Mi(50,m) and panel 2 shows Mi
10(50,m) in 25 random trials 

each



Conditional Expectation

Panel 1 shows Mi(50,m) and panel 2 shows Mi
10(50,m) in 25 random trials 

each

Mean Var 95% Conf.

Mi(50,1001) 15.60 159.75 [10.65, 22.55]

Mi
10(50,1001) 15.00 17.61 [13.35, 16.65]

Variance is 9.07 times smaller in this 
table; on average variance will be 10 
times smaller; on average the range 
in confidence intervals will shrink by a 
factor of sqrt(10)



Conditional Expectation – with averaging

Instead of 10 random searches, 
get the average cost for list L



Conditional expectation with exact costs

First 
experiment

Conditional 
expectatio
n with 
exact 
computatio
n of 
average list 
cost



M(50,1001) T(50,1001) D(50,1001)

Before VRT 15.6 [10.6, 20.6] 11.4 [5.9, 16.9] 4.2 [-4.2, 12.6]

After VRT 14.6 [14.3, 15.0]] 12.2 [12.0, 13.4] 1.5 [1.1, 1.9]

We can locate mc
somewhere 
between m=4001 
and m=5001
More experiments 
focused in that 
region, together with 
the common 
random numbers 
VRT could be 
applied to get a 
tighter estimate



when the computation of an average cost can be split 
into two parts, add extra work to reduce or eliminate 

variance in the second part

Guideline: Consider a variety of variance reduction 
techniques, including control variates, antithetic 

variates, stratification, poststratification, and importance 
sampling

Conditional expectation with exact costs



More guidelines on data analysis

● Location and dispersion are the yin and yang of data summaries; do not report one 
without the other

● Apply logarithmic transformation, or more generally a power transformation to impose 
symmetry in a skewed data sample

● Consider these properties when deciding how to summarize a data sample: symmetry, 
outliers, skew, bi- or multimodality, kurtosis, and data censoring

● Calculate confidence intervals for your sample means

● Use bootstrapping (or related resampling methods) to generalize inferential methods to 
non-normal distributions and non-standard statistics



More guidelines on data analysis

● Different graphs give different views of relationships in data. Try many 
views to learn the full story

● Let the trend in residuals guide the search for a better model of your 
data

● Any data analysis technique applied to answer an asymptotic question 
about a finite data set must be considered a heuristic that provides no 
guarantees.

● Insight rather than certainty must be the goal



Computer Performance



Measuring performance

Basic characteristics of a computer system that we typically need to measure are:

● A count of how many times an event occurs
● The duration of some time interval
● The size of some parameter

Examples:

● Count how many times  a processor initiates an input/output request
● How long each of these requests takes
● Number of bits transmitted and stored
● Number of times a prediction is correct

Measuring Computer Performance, A practitioner’s guide
By David J. Lilja



Performance metrics

If we are interested specifically in the time, count, or size value measures, we can use that value 
directly and a performance metric

Other times we are interested in normalizing event counts

For example, normalizing time measured to a common time basis to provide a speed metric 
such as operations executed per second

This kind of metric is a rate metric and it is calculated by dividing the count by some normalizing 
factor (e.g.  seconds)

Choosing an appropriate performance metric depends on the goals for the specific situation and 
the cost of gathering the necessary information



Performance metrics

There are many metrics that have been used, for example: MIPS, MFLOPS, and others are invented for 
new situations as they are needed

Not all metrics are good, as they can be misleading. A good metric should be:

● Linear: the value of the metric should be linearly proportional to the actual performance. Not all 
metrics satisfy this proportionality requirement (e.g., logarithmic metrics such as dB scale used to 
describe intensity of sound)

● Reliable: if a system outperforms another by the specific metric, then this should be reflected in 
the actual performance (e.g., MIPS is unreliable)

● Repeatable: the same value of the metric is measured every time the same experiment is 
performed



Performance metrics (cont)

Easy to measure:  if a metric is not easy to measure, it is unlikely that it will be used, and the more 
likely it will be determined incorrectly

Consistent: the units of the metric and its precise definition are the same across different systems and 
different configuration of the same system (e.g., MIPS and MFLOPS are not consistent)

Independent: there is pressure from manufacturers to design their machines to optimize the value 
obtained for a particular metric and to influence the composition of the metric to their benefit



Examples of performance metrics

● Clock rate, e.g., 250 MHz but ignores complex interactions w. memory
● MIPS, millions of instructions executed per second = n / (timeN x 10^6)
● MFLOPS, millions of floating point operations per second
● SPEC, set of integer and floating point benchmark + methodology
● Execution time, time to execute a program (problems, context 

switching)
● Accuracy, percent of correct instances
● Precision, how many selected items are relevant?
● Recall, how many relevant items are selected?
● Other: latency, bandwidth, throughput, response time



Speedup and relative change

Speedup and relative change are useful metrics because they normalize performance to 
a common basis

Speedup of system 2 with respect to system 1 is the value S(2,1) such that R2=S(2,1)*R1 
where R1 and R2 are the speed metrics for systems 1 and 2. Then system 2 is S(2,1) times 
faster than system 1

Relative change expresses performance as a percent change, relative to the 
performance of another system. Delta(2,1) = ((R2 - R1) / R1) * 100



Speedup and relative change, example

Example of calculating speedup and relative change using system 1 as the basis

System x Execution 
time

Speedup Relative 
change

1 480 1 0

2 360 1.33 +33

3 540

4 210



Speedup and relative change, example

Example of calculating speedup and relative change using system 1 as the basis

System x Execution 
time

Speedup Relative 
change

1 480 1 0

2 360 1.33 +33

3 540 0.89 -11

4 210 2.29 +129



Means versus ends metrics

Most metrics measure what was done, whether or not it was useful

What makes a metric reliable is that it accurately and consistently measures progress towards a goal 
(means-based metrics vs ends-based metrics). Example

For ( i = 1; i < N; i++) s = s+ x[i] * y[i];

Executes N floating point addition and multiplication operations, if time to execute one addition is 
ta and multiplication is tm. Total time is T1=N(ta+tm) cycles

Execution rate is ER1 = 2N / N(ta+tm) = 2/(ta+tm) FLOPS/cycle



Means versus ends metrics

But, there is no need to perform addition or multiplication for elements with value 0

For ( i = 1; i < N; i++) 

If ( x[i]!= 0 && y[i] !=0 ) s = s + x[i] * y[i];

If the conditional requires tif cycles, the total time to execute is

T2 = N(tif + f(ta+tm)), f is fraction of N where x[i] and y[i] are nonzero

ExecRate ER2 = 2Nf/N(tif+f(ta+tm)) = 2f/tif+f(ta+tm) FLOPS/cycle



Means versus ends metrics

ER1 = 2/(ta+tm) FLOPS/cycle, ER2 = 2f/tif+f(ta+tm) FLOPS/cycle

If tif= 4, ta=5, tm=10, f=10% and processor clock is 250 MHz (1 cycle in 4 ns). Then t1=60N ns and 
t2=N[4+0.1*(5+10)]*4ns,  t2=22N ns

● The speedup for program 2 relative to 1 is S(2,1) = 60N/22N = 2.73
● Execution rates R1= 2/60= 33 MFLOPS and R2=2(0.1)/22 = 9.09 MFLOPS

Even though we have reduced the total execution time from 60 to 22, the means based metric 
(MFLOPS) shows that program 2 is 72% slower than program 1

The ends-based metric shows that program 2 is 173% faster 



Average performance and variability

Computer performance is multidimensional. It can be misleading trying to summarize it 
with one single number - think specialization cases

But, humans continue to want a simple way to compare different systems

The use of mean values can be useful to perform coarse comparisons. But it is important to 
understand how to correctly calculate an appropriate mean value and how to recognize 
when a mean has been calculated incorrectly or being used inappropriately 



Indices of central tendency

● Sample mean. Given n different measures  E[X] = 1/n ∑ xi i=1:n
○ Gives equal weight to all measurements ~ problems with outliers

● Sample median, reduces skewing effect of outliers. 
○ Found by ordering all of the n measures. The middle value is the median

● Sample mode. Is just the value that occurs more frequently
○ Best index for categorical data

Mean uses all of the sample data, but it is sensitive to outliers. Mean and 
Mode do not use all of the available information, but are less sensitive to 
outliers



Other types of means

If you decide the mean is the appropriate index of central tendency for the current situation, you must 
decide which type of mean to use

Characteristics of a good mean: Depending on the actual meaning of the measured values, the 
resulting mean value may not make any sense

● If time values are averaged together, the resulting mean should be directly 
proportional to the total weighted time. So if total execution time were to double, 
so would the value of the corresponding mean

● If a rate metric is calculated by dividing the number of operations executed by 
the total execution time, a mean calculated with rates should be inversely 
proportional to the total weighted time. If total execution time were to double, the 
mean of rates should be reduced to 1/2



Which mean to use?

● Assume that we have measured execution times of n benchmarks on the same system: Ti, 1<= 
i <= n

● Assume total work performed by each benchmark is constant (executed F flops)
● This workload produces an execution rate for program i of Mi = F/Ti flops

Arithmetic mean

● Mean execution time,  Ta = 1/n∑Ti
○ Result is directly proportional to the total execution time

● Mean execution rate, Ma= 1/n ∑Mi = ∑(F/Ti)/n = F/n∑ 1/Ti
○ Result is directly proportional to the sum of inverse execution times. But we need a value that is inversely 

proportional to the sum of times



Which mean to use?

Harmonic mean xh = n / ∑(1/xi)

Execution time Th = n / ∑(1/Ti)

● Result is obviously not proportional to the total execution time

Execution rate Mh = n / ∑(1/Mi) = n / ∑(Ti/F) = Fn / ∑(Ti)

● Result is inversely proportional to the sum of times

Harmonic mean is appropriate for summarizing rate measurements



Which mean to use?

The geometric mean is the nth root of the product of the  n individual xi values

xg = ( ∏xi )1/n

It is the appropriate mean for summarizing normalized numbers and for summarizing measurements 
with a wide range of values, since a single value has less influence on the geometric mean than on 
the arithmetic mean. 

It maintains  consistent relationships when comparing normalized values regardless of the basis 
system used to normalize measurements



Which mean to use?

Program System1 System2 System3

1 417 224 134

2 83 70 70

3 66 153 135

4 39,449 33,527 66,00

5 772 368 369

Geom. mean 587 503 499

Rank 3 2 1



Which mean to use?
Program System1 System2 System3

1 1.0 0.59 0.32

2 1.0 0.84 0.85

3 1,0 2.32 2.05

4 1.0 0.85 1.67

5 1.0 0.48 0.45

Geom. mean 1.0 0.86 0.84

Rank 3 2 1
Normalize with respect to system 1



Which mean to use?
Program System1 System2 System3

1 1.71 1.0 0.55

2 1.19 1.0 1.00

3 0.43 1,0 0.88

4 1.18 1.0 1.97

5 2.10 1.0 1.00

Geom. mean 1.17 1.0 0.99

Rank 3 2 1
Normalize with respect to system 2



The geometric mean produces a consistent ordering of the systems being compared, but it is the 
wrong ordering. Geometric mean is not appropriate for summarizing times or rates

Program System1 System2 System3

1 417 224 134

2 83 70 70

3 66 153 135

4 39,449 33,527 66,00

5 772 368 369

Total time 40,787 34,362 66,798

Rank 2 1 3



Experimental algorithms
BASED ON MATERIAL FROM: A GUIDE TO EXPERIMENTAL ALGORITHMICS, BY CATHERINE C. MCGEOCH



Example: telecommunications network



Example: problem definition

There are a number of cell towers in a 
given region

Towers within a radius need to be 
assigned a different broadcast 
frequency, so that nearby towers do not 
interfere with one another



Example: can be modeled as a graph
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Greedy approach
Greedy(G)

For (v=1; v<=n; v++)

For (c=1; c<=m; c++)

If (G.checkColor(c,v)) 

G.assignColor(c,v)

Break

Return G.coloring



Graph coloring, greedy

v = {1, 2, 3, 4, 5, 6, 7, 8}

c = { red, yellow, green, blue, magenta, cyan }
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Graph coloring, greedy

v = {1, 2, 3, 4, 5, 6, 7, 8}

c = { red, yellow, green, blue, magenta, cyan }

Color count =  4

1 2 3 4 5 6 7 8

red red yellow red yellow green green blue
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Graph coloring, greedy

v = {8, 7, 6, 5, 4, 3, 2, 1}

c = { red, yellow, green, blue, magenta, cyan }

Color count =  3

8 7 6 5 4 3 2 1

red yellow yellow green red red yellow green
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Random approach
Random(G,I)

For (i=1; i<=I; i++)

coloring = Greedy(G.randomVertexOrder())

If ( coloring.colorCount < bestCount)

bestCount = coloring.colorCount

bestColoring = coloring

Return bestColoring



Questions
How much time do these approaches take on average, as a function of vertices, edges, I?

Are they competitive with state of the art GC algorithms?

On what types of inputs are they most and least effective?

How does I affect the trade-off between time and color count in Random?

What is the best way to implement G.checkColor and G.assignColor ?



Experimental design

Experimental design is a plan for an experiment that targets a specific question

The design specifies what properties to measure, what input classes to incorporate, what input sizes 
to use, etc.



Terminology

Performance metric: A dimension of algorithm performance that can be measured, such as time, 
solution quality, space usage, accuracy, precision, recall, sensitivity, specificity, etc.

Performance indicator: A quantity associated with a performance metric that can be measured in 
an experiment.

Parameter: Any property that affects the value of a performance indicator.

● Algorithm parameter
● Instance parameter (or problem parameter)
● Environment parameter



Terminology
Factor: a parameter that is explicitly manipulated in the experiment

Level: a value (range or subset) assigned to a factor in an experiment

Design point: a particular combination of levels to be tested (combinatorial design)

Trial or test: one run of the test program at a specific design point, which produces a measurement 
of the performance indicator (the design may specify some number of trials at each design point to 
account for variance) 

Fixed parameter: a parameter held constant through all trials

Noise parameter: a parameter with levels that change from trial to trial in some uncontrolled or 
semi-controlled way



Selecting input instances

Input instances may be collected from real-world application domains or constructed by 
generation programs

Stress-test inputs: are meant to invoke bugs and reveal artifacts found in boundary conditions and 
presenting easy to check cases

Worst case inputs: may be hard or expensive to solve. Used to assess performance boundaries 

Random inputs: typically controlled by a small number of parameters and use random number 
generators to fill in the details



Selecting input instances

Structured random inputs: 

● Algorithm centered generators: built with parameters that exercise algorithm mechanisms
● Reality centered generators: capture properties of real-world inputs

Real instances: collected from real world applications. It may be difficult to collect enough samples 
for thorough testing

Hybrid instances: combine real-world structures with generated components 

Benchmarks and testbeds: produce results that are directly comparable to others



HPC benchmarks

1. HPL - the Linpack TPP benchmark which measures the floating point rate of execution for 
solving a linear system of equations.

2. DGEMM - measures the floating point rate of execution of double precision real matrix-matrix 
multiplication.

3. STREAM - a simple synthetic benchmark program that measures sustainable memory 
bandwidth (in GB/s) and the corresponding computation rate for simple vector kernel.

4. PTRANS (parallel matrix transpose) - exercises the communications where pairs of processors 
communicate with each other simultaneously. It is a useful test of the total communications 
capacity of the network.

http://www.netlib.org/benchmark/hpl/
http://www.cs.virginia.edu/stream/
http://www.netlib.org/parkbench/html/matrix-kernels.html


Top 500



Graph 500 benchmark: search and shortest path
1. Construct a graph from the edge list (timed, kernel 1).
2. Randomly sample 64 unique search keys with degree at least one, not counting self-loops.
3. For each search key:

1. Compute the parent array (timed, kernel 2).
2. Validate that the parent array is a correct BFS search tree for the 

given search tree.
4. For each search key:

1. Compute the parent array and the distance array (timed, kernel 
3).

2. Validate that the parent array/distance vector is a correct SSSP 
search tree with shortest paths for the given search tree.

5. Compute and output performance information.



Graph 500
There are six problem classes defined by their input size:
● Toy 17GB or around 1010 bytes, which we also call level 10,
● Mini 140GB (1011 bytes, level 11),
● Small 1TB (1012 bytes, level 12),
● Medium 17TB (1013 bytes, level 13),
● Large 140TB (1014 bytes, level 14), and
● Huge 1.1PB (1015 bytes, level 15).



Selecting input instances

The choice of input instances should reflect general experimental goals

To meet goals of correctness and validity: 

● Use stress-test inputs and check that random generators really generate instances with the 
intended properties

● Use pilot experiments to identify, and remove from consideration, instances that are too easy 
or too hard to be useful for distinguishing competing algorithmic ideas (recall floor and ceiling 
effects) 



Big Data benchmarks



Selecting input instances

For general results incorporate good variety in the set of input classes tested. But avoid variety for 
variety’s sake: consider how each class contributes new insights about performance.

● Worst case instances provide general upper bounds
● Random generators that span the input space can reveal the range of possible outcomes
● Real world instances from application hot spots can highlight properties of interest to certain 

communities

More ambitious analysis tend to require more general input classes and tight control of parameters.



Comparison of sorting algorithms



Guideline: Choose input classes to support goals of 
correctness and generality, and to target the question 
at hand



Choosing factors and design points

The motivating question in an algorithmic experiment typically falls into one of these four broad 
categories:

1. Assessment: These experiments look at general properties, relationships, and ranges of 
outcomes (e.g. find performance bottlenecks, find input properties that affect performance). 

2. The horse race: This type of experiment looks for winners and losers in the space of 
implementation ideas

3. Filling functions: This experiment start with a functional model that describes some cost 
property and aims to fill in the details (e.g. finding coefficients) 

4. Modeling: These experiments are concerned with finding the correct function family to 
describe a given cost (e.g.is cost linear, exponential, logarithmic?) 



Function growth

Image from 
http://slideplayer.com/slide/3481392/



Guideline: Choose as factors these parameters that are 
most important to performance, fix the parameters that 
are least relevant to performance, and let the other 
parameters vary.



General assessment

The goal is to identify promising algorithm designs. 

Choose performance indicators and factors to highlight the differences between options. It is helpful 
to determine questions to ask.

E.g., If the task is to compare data structures A, B, C, choose a performance indicator that is 
common to all three and changes the most when a data structure is substituted 

Get a rough idea of the functional relationship between key parameters (especially input size) and 
algorithm performance. 



Doubling experiments
Strategy for quick assessment of function growth: use doubling experiments 

(n, 2n, 4n, 8n ..) 

If measurements do not change with n, C(n) is constant

If costs increment by a constant as n doubles, then C(n) is O(log n)

If costs double as n doubles, C(n) is linear 

To determine if C(n) in O(n log n), divide each measurement by n and check whether the 
result C(n)/n increments by a constant

If cost quadruples each time n doubles, c(n) in O(n2)



Assessing convergence

Determine when an algorithm has converged (i.e., the probability of improving / changing further is 
too small to be worth continuing searching/iterating/optimizing)

A stopping rule is a condition that halts the algorithm

A poorly chosen stopping rule either wastes time or stops the algorithm prematurely

Stopping rules are automatic, platform independent, and usually consider the relative change in cost 
for two or more iterations  



Assessing convergence

Image from 
http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html



Guideline: The problem of analysing a multidimensional 
function can be simplified by focusing on a small 
number of one-dimensional functions, ideally with similar 
shapes

Guideline: To study trends and functions, choose design 
points that exploit what you already know



Factor analysis (how to reduce experimental 
designs)
Merge similar factors: if 2 factors have similar effect on performance, treat them as one by restricting 
the experiment to just the design points ++ and -- (omitting +- and -+) 

Use trace data to infer effects of omitted factors

Convert factors to noise parameters: instead of explicitly setting levels for a factor, let the levels vary 
according to a simple probability distribution 

Limit the scope of the experiment by fixing some factors or reducing the number of levels  



Guideline: Full factorial design maximize the information 
gained from one experiment

Guideline: When the experimental design is too big, 
apply factor reduction strategies to reduce the size of 
the design with least damage to generality



Some more guidelines

Leverage the pilot study and the literature to create better experiments

Never assume! Design experiments with built in safeguards against bugs and biases, and be sure you 
can replicate your own results

Experimental efficiency depends on the speed of the test program, the usability of the test 
environment, the quality of data returned, and the generality of conclusions

When comparing algorithm design options, choose performance indicators and factors to highlight 
the differences among the options being compared

Try a doubling experiment for a quick assessment of function growth



Experimental design template
● Question
● Performance indicators
● Factors
● Levels
● Trials per design point
● Design points
● Outputs


