
Logistics

u The project deadline has been extended due to scheduled system 
maintenance. See the assignment version 1.3 on UNM learn for details.



Quiz

u Define frequentist inference in opposition to Bayesian inference.

u 5 mins
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Reversion to the Mean

u ‘“... while attempting to teach flight instructors that praise is more effective than 
punishment for promoting skill-learning...one of the most seasoned instructors 
in the audience raised his hand and made his own short speech..."On many 
occasions I have praised flight cadets for clean execution of some aerobatic 
maneuver, and in general when they try it again, they do worse. On the other 
hand, I have often screamed at cadets for bad execution, and in general they 
do better the next time. So please don't tell us that reinforcement works and 
punishment does not, because the opposite is the case." ...because we tend to 
reward others when they do well and punish them when they do badly, and 
because there is regression to the mean, it is part of the human condition that 
we are statistically punished for rewarding others and rewarded for punishing 
them.”’

u Kahneman, D., 2002, Bank of Sweden "Nobel" Prize Lecture



Reversion to the Mean

Reversion to the mean, is the statistical phenomenon that the greater the 
deviation of a random variate from its mean, the greater the probability 
that the next measured variate will deviate less far.

Doesn’t this violate the definition of independent events?

But this is a consequence of probability distributions suming to 1 and are 
non-negative .Thus, as you move away from the mean, the proportion of 
the distribution that lies closer to the mean than you do increases 
continuously. 

http://mathworld.wolfram.com/RandomVariate.html
http://mathworld.wolfram.com/Mean.html
http://mathworld.wolfram.com/IndependentEvents.html
http://mathworld.wolfram.com/Mean.html


Linear Regression

Y

1 2Y Xb b= +

1b

XX1 X2 X3 X4

Suppose that a variable Y
is a linear function of 
another variable X, with 
unknown parameters b1
and b2 that we wish to 
estimate.

The line is just a 
uninformed model so far.

C. Dougherty, Introduction to Econometrics, fifth edition 
2016, Oxford University Press



Linear Regression

Y

1 2Y Xb b= +
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Imagine we have some 
observations Qi = (Xi,Yi). 
Where Xi is a particular 
factor level and Yi is the 
response.

In this case the
coefficients of our model 
b1 and b2 are easy to find.

Notice we have defined 
a 1D response “surface” 
(ok its just a line).
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Linear Regression
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But life is rarely that 
straightforward,  Pi = 
(Xi,Yi). 

We usually have 
observations that do not 
lie on a straight line – but 
where a linear model 
may still be appropriate.
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But life is rarely that 
straightforward,  Pi = 
(Xi,Yi). 

We usually have 
observations that do not 
lie on a straight line – but 
where a linear model 
may still be appropriate.

Why might a linear model 
be appropriate even 
when the observations 
are scattered like this?
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Why might a linear model 
be appropriate even 
when the observations 
are scattered like this?

Because we might care
about the underlying
process, and we
recognise that there will
be variance in our
observations.
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Linear Regression
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To be more rigorous we 
introduce a disturbance 
term: u

So now our model of the 
relationship between Xi
and Yi is:

Y = b1 + b2X + u
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Y = b1 + b2X + u
Our model has a 
deterministic term…
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u = disturbance 
term
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In practice (your 
project for example) all 
you will see are your 
experimental 
outcomes Pi.
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Obviously we can 
draw a straight line 
through these points.

The notation is to write 
our estimate as  
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ˆ ˆŶ Xb b= +
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ˆ ˆŶ Xb b= +



Linear Regression

Y

1 2Y Xb b= +

1b

XX1 X2 X3 X4

Y

1 2Y Xb b= +

1b

XX1 X2 X3 X4

1Q
2Q

3Q
4Q

Y

1 2Y Xb b= +

1b

1P

XX1 X2 X3 X4

2P
3P

4PY

1 2Y Xb b= +

1b

XX1 X2 X3 X4

1P

2P
3P

4PY

1 2Y Xb b= +

1 2 1Xb b+

1u

1b

XX1 X2 X3 X4

1P

2P
3P

4P

1Q
2Q

3Q
4Q

Y

XX1 X2 X3 X4

1P

2P
3P

4P
We have now fit our model 
(the line) which predicts 
values, Ri.

We can start to think about 
how well it represents the 
experimental outcomes.
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The difference between a 
value predicted by the 
model and the observed 
value is the residual,    .

The residuals are an 
estimate of the disturbance 
term, but are not the same 
as the disturbance term.
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The residuals are an 
estimate of the disturbance 
term, but are not the same 
as the disturbance term.

Y = b1 + b2X is now the 
deterministic part of the 
process that generated the 
observations. 

I’m just saying the model fit
is wrong because of the 
disturbance term.
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Ŷ

1 2
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The better the fit the closer 
the residuals will approach 
the disturbance term.
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The better the fit the closer 
the residuals will approach 
the disturbance term.

Conceptually we will use 
the residuals and 
disturbance term to 
decompose Y into its 
deterministic and random 
components.

Practically we will use the fit 
line to do this.
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Ŷ

1 2
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3û

4û
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Linear Regression

Least squares criterion:

Minimize RSS (residual sum of squares), where

2 2 2
1

1
ˆ ˆ ˆ...

n

i n
i

RSS u u u
=

= = + +å

To begin with, we will draw the fitted line so as to minimize the sum of the 
squares of the residuals, RSS.  This is described as the least squares criterion.



Linear Regression

Why minimise the 
squares instead of the 
actual residuals?

1
1
ˆ ˆ ˆ...

n

i n
i
u u u

=

= + +å
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Y

Because then drawing a 
line through the mean gives 
you an apparently perfect 
fit. The sum of residuals 
would always be zero.



Linear Regression

Why minimise the 
squares instead of the 
actual residuals?

Taking the square 
ensures all the values 
being summed are 
positive so they can’t 
cancel each other.
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Linear Regression - Example
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Y uXY ++= 21 bb
True model

X

3Y

4Y

1Y

2Y

(1,4)
(2,3)

(3,5)

(4,8)
Given a set of factor levels 
X, and responses Y as 
shown we will determine 
the best linear fit.

You have already seen a 
maximum likelihood way of 
doing this??
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Y
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1Y
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212 2ˆ bbY +=

213 3ˆ bbY +=

Writing the fitted 
regression as , 
we will determine the 
values of b1 and b2 that 
minimize RSS, the sum of 
the squares of the 
residuals.

1 2Ŷ b b X= +
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Our residuals will be:

1 1 1 1 2

2 2 2 1 2
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ˆˆ 3 2
ˆˆ 5 3
ˆˆ 8 4

u Y Y b b
u Y Y b b
u Y Y b b
u Y Y b b

= - = - -
= - = - -
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= - = - -
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( ) ( ) ( ) ( )2 2 2 2
1 2 1 2 1 2 1 2

2 2
1 2 1 2 1 2
2 2
1 2 1 2 1 2
2 2
1 2 1 2 1 2
2 2
1 2 1 2 1 2
2 2
1 2 1 2 1 2

4 3 2 5 3 8 4
16 8 8 2
9 4 6 12 4
25 9 10 30 6
64 16 16 64 8
114 4 30 40 114 20

RSS b b b b b b b b
b b b b b b
b b b b b b
b b b b b b
b b b b b b
b b b b b b

= - - + - - + - - + - -
= + + - - +

+ + + - - +
+ + + - - +
+ + + - - +

= + + - - +

We can write 
the RSS for our 
observations as 
a function of b1
and b2.
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( ) ( ) ( ) ( )2 2 2 2
1 2 1 2 1 2 1 2
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1 2 1 2 1 2
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4 3 2 5 3 8 4
16 8 8 2
9 4 6 12 4
25 9 10 30 6
64 16 16 64 8
114 4 30 40 114 20

RSS b b b b b b b b
b b b b b b
b b b b b b
b b b b b b
b b b b b b
b b b b b b

= - - + - - + - - + - -
= + + - - +

+ + + - - +
+ + + - - +
+ + + - - +

= + + - - +

We can write 
the RSS for our 
observations as 
a function of b1
and b2.

We want to find of b1 and b2 such that RSS is minimized. There is a 
procedure we use a lot whenever we want to minimize or maximize 
something...  
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1 2
1

8 20 40RSS b b
b

¶
= + -

¶

1 2
2

20 60 114RSS b b
b

¶
= + -

¶

( ) ( ) ( ) ( )2 2 2 2
1 2 1 2 1 2 1 2

2 2
1 2 1 2 1 2
2 2
1 2 1 2 1 2
2 2
1 2 1 2 1 2
2 2
1 2 1 2 1 2
2 2
1 2 1 2 1 2

4 3 2 5 3 8 4
16 8 8 2
9 4 6 12 4
25 9 10 30 6
64 16 16 64 8
114 4 30 40 114 20

RSS b b b b b b b b
b b b b b b
b b b b b b
b b b b b b
b b b b b b
b b b b b b

= - - + - - + - - + - -
= + + - - +

+ + + - - +
+ + + - - +
+ + + - - +

= + + - - +

We take the 
partial 
derivatives and 
apply the first 
order 
condition.
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4 3 2 5 3 8 4
16 8 8 2
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114 4 30 40 114 20

RSS b b b b b b b b
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+ + + - - +
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We take the 
partial derivatives 
and apply the first 
order condition.

I.e. we set the 
derivatives to zero 
and solve.

Notice we are 
working with our 
estimates now –
no longer 
candidate b 
values.

1 2
1

ˆ ˆ0 8 20 40 0RSS
b

b b¶
= Þ + - =

¶

1 2
2

ˆ ˆ0 20 60 114 0RSS
b

b b¶
= Þ + - =

¶
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We take the 
partial derivatives 
and apply the first 
order condition.

I.e. we set the 
derivatives to zero 
and solve.

1 2
1

8 20 40RSS b b
b

¶
= + -

¶

1 2
1 2

ˆ ˆ0 1.5 , 1.4RSS RSS
b b

b b¶ ¶
= = Þ = =

¶ ¶

1 2
2

20 60 114RSS b b
b

¶
= + -

¶
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uXY ++= 21 bb
True model

1 2Ŷ b b X= +
Fitted model      

3Y

4Y

4̂ 7.1Y =

Y

X

1Y

1̂ 2.9Y = 2Y

2̂ 4.3Y =

3̂ 5.7Y =

1b̂ 2b̂

So now we have 
our slope and 
intercept for the 
linear fit.

Easy right!



Linear Regression

Happily we have computers



Linear Regression

Happily we have computers. Let’s use MATLAB to do some regressions.

First setup the problem in 
matrix form.

Again, Y is the response 
vector and X is the factor 
level vector.

B are the coefficients that 
define our model.



Linear Regression

Let’s get some data. MATLAB comes with sample datasets. 

load accidents
x = hwydata(:,14); %Population of states
y = hwydata(:,4); %Accidents per state
format long



Linear Regression

And perform a linear regression on b1 (just b1 to make a point). 

load accidents
x = hwydata(:,14); %Population of states
y = hwydata(:,4); %Accidents per state
format long
b1 = x\y



Linear Regression

And perform a linear regression on b1 (just b1 to make a point). 

load accidents
x = hwydata(:,14); %Population of states
y = hwydata(:,4); %Accidents per state
format long
b1 = x\y
b1 =

1.372716735564871e-04

So now we have the best fit 
slope.



Linear Regression

… and can make predictions.

b1 =

1.372716735564871e-04

>> yCalc1 = b1*x;
scatter(x,y)
hold on
plot(x,yCalc1)
xlabel('Population of state')
ylabel('Fatal traffic accidents per state')
title('Linear Regression Relation Between Accidents & Population')
grid on



Linear Regression

… and can make predictions.

b1 =

1.372716735564871e-04

>> yCalc1 = b1*x;
scatter(x,y)
hold on
plot(x,yCalc1)
xlabel('Population of state')
ylabel('Fatal traffic accidents per state')
title('Linear Regression Relation Between 
Accidents & Population')
grid on



Linear Regression

Now lets include the intercept…

X = [ones(length(x),1) x];
b = X\y

b =

1.0e+02 *

1.427120171726538
0.000001256394274

yCalc2 = X*b;
plot(x,yCalc2,'--')
legend('Data','Slope','Slope & 
Intercept','Location','best');



Linear Regression

Now lets include the intercept.

How can we demonstrate that one 
fit is better than another?



Linear Regression

Now lets include the intercept.

How can we demonstrate that one 
fit is better than another?

We need a “Goodness of Fit” (GoF) 
metric. 



Linear Regression

… but didn’t we just use a goodness 
of fit measure to fit the model in the 
first place?



Linear Regression

We want a metric. Something that 
we can compare across different 
best fit models.

This is R2, notice the numerator is the 
RSS. But we are normalizing by the 
total variance.



Linear Regression

We want a metric. Something that 
we can compare across different 
best fit models.

This is R2, notice the numerator is the 
ESS (explained sum of squares). But we 
are normalizing by the total variance 
(the TSS, total sum of squares).



Linear Regression

Rsq1 = 1 - sum((y - yCalc1).^2)/sum((y -
mean(y)).^2)
Rsq1 = 0.822235650485566 
Rsq2 = 1 - sum((y - yCalc2).^2)/sum((y -
mean(y)).^2)
Rsq2 = 0.838210531103428

We interpret this to mean the proportion of the variance explained by this model (0-1).


