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The two-player Iterated Prisoner’s Dilemma game is a model for
both sentient and evolutionary behaviors, especially including the
emergence of cooperation. It is generally assumed that there
exists no simple ultimatum strategy whereby one player can en-
force a unilateral claim to an unfair share of rewards. Here, we
show that such strategies unexpectedly do exist. In particular,
a player X who is witting of these strategies can (i) deterministi-
cally set her opponent Y’s score, independently of his strategy or
response, or (ii) enforce an extortionate linear relation between
her and his scores. Against such a player, an evolutionary player’s
best response is to accede to the extortion. Only a player with
a theory of mind about his opponent can do better, in which case
Iterated Prisoner’s Dilemma is an Ultimatum Game.

evolution of cooperation | game theory | tit for tat

Iterated 2 × 2 games, with Iterated Prisoner’s Dilemma (IPD) as
the notable example, have long been touchstone models for

elucidating both sentient human behaviors, such as cartel pricing,
and Darwinian phenomena, such as the evolution of cooperation
(1–6). Well-known popular treatments (7–9) have further estab-
lished IPD as foundational lore in fields as diverse as political
science and evolutionary biology. It would be surprising if any
significant mathematical feature of IPD has remained unde-
scribed, but that appears to be the case, as we show in this paper.
Fig. 1A shows the setup for a single play of Prisoner’s Dilemma

(PD). If X and Y cooperate (c), then each earns a reward R. If one
defects (d), the defector gets an even larger payment T, and the
naive cooperator gets S, usually zero. However, if both defect, then
both get a meager payment P. To be interesting, the game must
satisfy two inequalities: T > R > P > S guarantees that the Nash
equilibrium of the game is mutual defection, whereas 2R>T þ S
makes mutual cooperation the globally best outcome. The “con-
ventional values” ðT;R;P; SÞ ¼ ð5; 3; 1; 0Þ occur most often in the
literature. We derive most results in the general case, and indicate
when there is a specialization to the conventional values.
Fig. 1B shows an iterated IPD game consisting of multiple,

successive plays by the same opponents. Opponents may now
condition their play on their opponent’s strategy insofar as each
can deduce it from the previous play. However, we give each player
only a finitememory of previous play (10). Onemight have thought
that a player with longer memory always has the advantage over
a more forgetful player. In the game of bridge, for example,
a player who remembers all of the cards played has the advantage
over a player who remembers only the last trick; however, that is
not the case when the same game (same allowed moves and same
payoff matrices) is indefinitely repeated. In fact, it is easy to prove
(Appendix A) that, for any strategy of the longer-memory player Y,
shorter-memory X’s score is exactly the same as if Y had played
a certain shorter-memory strategy (roughly, the marginalization of
Y’s long-memory strategy: its average over states remembered by
Y but not by X), disregarding any history in excess of that shared
with X. This fact is important. We derive strategies for X assuming
that both players have memory of only a single previous move, and
the above theorem shows that this involves no loss of generality.
Longer memory will not give Y any advantage.

Fig. 1C, then, shows the most general memory-one game. The
four outcomes of the previous move are labeled 1; . . . ; 4 for the
respective outcomes xy ∈ ðcc; cd; dc; ddÞ, where c and d denote
cooperation and defection. X’s strategy is p ¼ ðp1; p2; p3; p4Þ, her
probabilities for cooperating under each of the previous out-
comes. Y’s strategy is analogously q ¼ ðq1; q2; q3; q4Þ for out-
comes seen from his perspective, that is, in the order of
yx ∈ ðcc; cd; dc; ddÞ. The outcome of this play is determined by
a product of probabilities, as shown in Fig. 1.

Methods and Results
Zero-Determinant Strategies. As is well understood (10), it is not
necessary to simulate the play of strategies p against q move by
move. Rather, p and q imply a Markov matrix whose stationary
vector v, combined with the respective payoff matrices, yields an
expected outcome for each player. (We discuss the possibility of
nonstationary play later in the paper.) With rows and columns of
the matrix in X’s order, the Markov transition matrix Mðp; qÞ
from one move to the next is shown in Fig. 2A.
Because M has a unit eigenvalue, the matrix M′ ≡ M− I is

singular, with thus zero determinant. The stationary vector v of
the Markov matrix, or any vector proportional to it, satisfies

vTM ¼ vT ; or vTM′ ¼ 0: [1]

Cramer’s rule, applied to the matrix M′, is

AdjðM′ÞM′ ¼ detðM′ÞI ¼ 0; [2]

where AdjðM′Þ is the adjugate matrix (also known as the classical
adjoint or, as in high-school algebra, the “matrix of minors”). Eq.
2 implies that every row of AdjðM′Þ is proportional to v.
Choosing the fourth row, we see that the components of v are
(up to a sign) the determinants of the 3 × 3 matrices formed from
the first three columns of M′, leaving out each one of the four
rows in turn. These determinants are unchanged if we add the
first column of M′ into the second and third columns.
The result of these manipulations is a formula for the dot

product of an arbitrary four-vector f with the stationary vector v
of the Markov matrix, v · f ≡ Dðp; q; fÞ, where D is the 4 × 4
determinant shown explicitly in Fig. 2B. This result follows from
expanding the determinant by minors on its fourth column and
noting that the 3 × 3 determinants multiplying each fi are just the
ones described above. What is noteworthy about this formula for
v · f is that it is a determinant whose second column,

~p≡ ð−1þ p1;−1þ p2; p3; p4Þ; [3]

is solely under the control of X; whose third column,
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~q≡ ð−1þ q1; q3; −1þ q2; q4Þ; [4]

is solely under the control of Y; and whose fourth column is
simply f.
X’s payoff matrix is SX ¼ ðR; S;T;PÞ, whereas Y’s is

SY ¼ ðR;T; S;PÞ. In the stationary state, their respective scores
are then

sX ¼ v ·SX

v · 1
¼ Dðp; q; SX Þ

Dðp; q; 1Þ

sY ¼ v ·SY

v · 1
¼ Dðp; q;SY Þ

Dðp; q; 1Þ ;
[5]

where 1 is the vector with all components 1. The denominators
are needed because v has not previously been normalized to
have its components sum to 1 (as required for a stationary
probability vector).

Because the scores s in Eq. 5 depend linearly on their corre-
sponding payoff matrices S, the same is true for any linear
combination of scores, giving

αsX þ βsY þ γ ¼ Dðp; q; αSX þ βSY þ γ1Þ
Dðp; q; 1Þ : [6]

It is Eq. 6 that now allows much mischief, because both X and Y
have the possibility of choosing unilateral strategies that will
make the determinant in the numerator vanish. That is, if X
chooses a strategy that satisfies ~p ¼ αSX þ βSY þ γ1, or if Y
chooses a strategy with ~q ¼ αSX þ βSY þ γ1, then the deter-
minant vanishes and a linear relation between the two scores,

αsX þ βsY þ γ ¼ 0 [7]

will be enforced. We call these zero-determinant (ZD) strategies.
We are not aware of any previous recognition of these strategies in
the literature; they exist algebraically not only in IPD but in all
iterated 2 × 2 games. However, not all ZD strategies are feasible,
with probabilities p all in the range ½0; 1�. Whether they are feasible
in any particular instance depends on the particulars of the ap-
plication, as we now see.

X Unilaterally Sets Y’s Score. One specialization of ZD strategies
allows X to unilaterally set Y’s score. From the above, X need
only play a fixed strategy satisfying ~p ¼ βSY þ γ1 (i.e., set α ¼ 0
in Eq. 7), four equations that we can solve for p2 and p3 in terms
of p1 and p4, that is, eliminating the nuisance parameters β and γ.
The result, for general R; S;T;P (not necessarily a PD game), is

p2 ¼ p1ðT −PÞ− ð1þ p4ÞðT −RÞ
R−P

p3 ¼ ð1− p1ÞðP− SÞ þ p4ðR− SÞ
R−P

:

[8]

Fig. 1. (A) Single play of PD. Players X (blue) and Y (red) each choose to cooperate (c) or defect (d) with respective payoffs R, T, S, or P as shown (along with
the most common numerical values). (B) IPD, where the same two players play arbitrarily many times; each has a strategy based on a finite memory of the
previous plays. (C) Case of two memory-one players. Each player’s strategy is a vector of four probabilities (of cooperation), conditioned on the four outcomes
of the previous move.

Fig. 2. (A) Markov matrix for the memory-one game shown in Fig. 1C. (B)
The dot product of any vector f with the Markov matrix stationary vector v
can be calculated as a determinant in which, notably, a column depends only
on one player’s strategy.
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With this substitution, Y’s score (Eq. 5) becomes

sY ¼ ð1− p1ÞP þ p4R
ð1− p1Þ þ p4

: [9]

All PD games satisfy T >R>P> S. By inspection, Eq. 8 then has
feasible solutions whenever p1 is close to (but ≤) 1 and p4 is close
to (but ≥) 0. In that case, p2 is close to (but ≤) 1 and p3 is close to
(but ≥) zero. Now also by inspection of Eq. 9, a weighted average
of P and R with weights ð1− p1Þ and p4, we see that all scores
P≤ sY ≤ R (and no others) can be forced by X. That is, X can set
Y’s score to any value in the range from the mutual non-
cooperation score to the mutual cooperation score.
What is surprising is not that Y can, with X’s connivance,

achieve scores in this range, but that X can force any particular
score by a fixed strategy p, independent of Y’s strategy q. In
other words, there is no need for X to react to Y, except on
a timescale of her own choosing. A consequence is that X can
simulate or “spoof” any desired fitness landscape for Y that she
wants, thereby guiding his evolutionary path. For example, X
might condition Y’s score on some arbitrary property of his last
1,000 moves, and thus present him with a simulated fitness
landscape that rewards that arbitrary property. (We discuss the
issue of timescales further, below.)

X Tries to Set Her Own Score.What if X tries to set her own score?
The analogous calculation with ~p ¼ αSX þ γ1 yields

p2 ¼ ð1þ p4ÞðR− SÞ− p1ðP− SÞ
R−P

≥ 1

p3 ¼ −ð1− p1ÞðT −PÞ− p4ðT −RÞ
R−P

≤ 0:

[10]

This strategy has only one feasible point, the singular strategy
p ¼ ð1; 1; 0; 0Þ, “always cooperate or never cooperate.” Thus, X
cannot unilaterally set her own score in IPD.

X Demands and Gets an Extortionate Share. Next, what if X
attempts to enforce an extortionate share of payoffs larger
than the mutual noncooperation value P? She can do this by
choosing

~p ¼ ϕ½ðSX −P1Þ− χðSY −P1Þ�; [11]

where χ ≥ 1 is the extortion factor. Solving these four equations
for the p’s gives

p1 ¼ 1−ϕðχ− 1ÞR−P
P− S

p2 ¼ 1−ϕ
�
1þ χ

T −P
P− S

�

p3 ¼ ϕ
�
χþ T −P

P− S

�
p4 ¼ 0

[12]

Evidently, feasible strategies exist for any χ and sufficiently small
ϕ. It is easy to check that the allowed range of ϕ is

0<ϕ ≤
ðP− SÞ

ðP− SÞ þ χðT −PÞ: [13]

Under the extortionate strategy, X’s score depends on Y’s
strategy q, and both are maximized when Y fully cooperates, with
q ¼ ð1; 1; 1; 1Þ. If Y decides (or evolves) to maximize his score by
cooperating fully, then X’s score under this strategy is

sX ¼ PðT −RÞ þ χ½RðT − SÞ−PðT −RÞ�
ðT −RÞ þ χðR− SÞ : [14]

The coefficients in the numerator and denominator are all pos-
itive as a consequence of T >R>P> S. The case ϕ ¼ 0 is for-
mally allowed, but produces only the singular strategy ð1; 1; 0; 0Þ
mentioned above.
The above discussion can be made more concrete by special-

izing to the conventional IPD values ð5; 3; 1; 0Þ; then, Eq. 12
becomes

p ¼ ½1− 2ϕðχ− 1Þ; 1−ϕð4χþ 1Þ;ϕðχþ 4Þ; 0�; [15]

a solution that is both feasible and extortionate for
0<ϕ ≤ ð4χþ 1Þ−1. X’s and Y’s best respective scores are

sX ¼ 2þ 13χ
2þ 3χ

; sY ¼ 12þ 3χ
2þ 3χ

: [16]

With χ> 1, X’s score is always greater than the mutual co-
operation value of 3, and Y’s is always less. X’s limiting score
as χ → ∞ is 13/3. However, in that limit, Y’s score is always 1,
so there is no incentive for him to cooperate. X’s greed is thus
limited by the necessity of providing some incentive to Y. The
value of ϕ is irrelevant, except that singular cases (where
strategies result in infinitely long “duels”) are more likely at
its extreme values. By way of concreteness, the strategy for X
that enforces an extortion factor 3 and sets ϕ at its midpoint

value is p ¼
�
11
13;

1
2;

7
26; 0

�
, with best scores about sX ¼ 3:73 and

sY ¼ 1:91.
In the special case χ ¼ 1, implying fairness, and ϕ ¼ 1=5 (one

of its limit values), Eq. 15 reduces to the strategy ð1; 0; 1; 0Þ,
which is the well-known tit-for-tat (TFT) strategy (7). Knowing
only TFT among ZD strategies, one might have thought that
strategies where X links her score deterministically to Y must
always be symmetric, hence fair, with X and Y rewarded equally.
The existence of the general ZD strategy shows this not to be
the case.

Extortionate Strategy Against an Evolutionary Player. We can say,
loosely, that Y is an evolutionary player if he adjusts his strategy
q according to some optimization scheme designed to maximize
his score sY , but does not otherwise explicitly consider X’s score
or her own strategy. In the alternative case that Y imputes to
X an independent strategy, and the ability to alter it in response
to his actions, we can say that Y has a theory of mind about X
(11–13).
Against X’s fixed extortionate ZD strategy, a particularly

simple evolutionary strategy for Y, close to if not exactly Dar-
winian, is for him to make successive small adjustments in q and
thus climb the gradient in sY . [We note that true Darwinian
evolution of a trait with multiple loci is, in a population, not
strictly “evolutionary” in our loose sense (14)].
Because Y may start out with a fully noncooperative strategy

q0 ¼ ð0; 0; 0; 0Þ, it is in X’s interest that her extortionate strategy
yield a positive gradient for Y’s cooperation at this value of q.
That gradient is readily calculated as

∂sY
∂q

����
q¼q0

¼
�
0; 0; 0;

ðT − SÞðSþ T − 2PÞ
ðP− SÞ þ χðT −PÞ

�
: [17]

The fourth component is positive for the conventional values
ðT;R;P; SÞ ¼ ð5; 3; 1; 0Þ, but we see that it can become negative
as P approaches R, because we have 2R> Sþ T. With the con-
ventional values, however, evolution away from the origin yields
positive gradients for the other three components.
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We have not proved analytically that there exist in all cases
evolutionary paths for Y that lead to the maximum possible
scores (Eq. 16) and that have positive directional derivatives
everywhere along them. However, this assertion seems likely
from numerical evidence, at least for the conventional values.
Fig. 3 shows a typical numerical experiment in which X plays an
extortionate strategy (here, χ ¼ 5, with maximum scores
sX ¼ 3:94 and sY ¼ 1:59), and Y takes small steps that locally
increase his score. Y has no unique gradient direction because
the mapping from the score gradient (a covariant vector) to the
step direction (a contravariant vector) involves an arbitrary
metric, signifying how easily Y can evolve in each direction. Fig.
3 shows 10 arbitrary choices for this metric. In no case does Y’s
evolution get hung up at a local maximum. That is, all of the
evolutions shown (and all of a much larger number tried) reach
the value of Eq. 14.

Discussion
We have several times alluded to issues of timescale. The ZD
strategies are derived mathematically under the assumption that
the players’ expected scores are generated by a Markov sta-
tionary state defined by their respective strategies p and q.
However, we have also suggested situations in which X may vary
her ZD strategy so as to spoof Y with a fictitious fitness land-
scape. The question also arises whether Y can somehow vary his
strategy on timescales faster than that for Markov equilibrium to
be established. Perhaps by playing “inside the equilibration
timescale” he can evade the linear constraint on scores (Eq. 7)
imposed by X.
Interestingly, it is easy to prove that this latter situation cannot

occur (Appendix B). If X plays a constant ZD strategy, then any
strategy of Y’s, rapidly varying or not, turns out to be equivalent
(from X’s perspective) to a fixed strategy against which X’s im-
position of a constraint is effective.
In the former situation, where it is X whose strategies are

changing (e.g., among ZD strategies that set Y’s score), things
are not as crisp. Because X must be basing her decisions on Y’s
behavior, which only becomes evident with averaging over time,
the possibility of a race condition between X’s and Y’s responses
is present with or without Markov equilibration. This reason is
sufficient for X to vary her strategy only slowly. If X chooses
components of p in Eqs. 9 and 8 that are bounded away from the
extreme values 0 and 1, then the Markov equilibration time will
not be long and thus not a consideration. In short, a deliberate X
still has the upper hand.

The extortionate ZD strategies have the peculiar property of
sharply distinguishing between “sentient” players, who have
a theory of mind about their opponents, and “evolutionary”
players, who may be arbitrarily good at exploring a fitness
landscape (either locally or globally), but who have no theory of
mind. The distinction does not depend on the details of any
particular theory of mind, but only on Y’s ability to impute to X
an ability to alter her strategy.
If X alone is witting of ZD strategies, then IPD reduces to one

of two cases, depending on whether Y has a theory of mind. If Y
has a theory of mind, then IPD is simply an ultimatum game (15,
16), where X proposes an unfair division and Y can either accept
or reject the proposal. If he does not (or if, equivalently, X has
fixed her strategy and then gone to lunch), then the game is di-
lemma-free for Y. He can maximize his own score only by giving
X even more; there is no benefit to him in defecting.
If X and Y are both witting of ZD, then they may choose to

negotiate to each set the other’s score to the maximum co-
operative value. Unlike naive PD, there is no advantage in de-
fection, because neither can affect his or her own score and each
can punish any irrational defection by the other. Nor is this
equivalent to the classical TFT strategy (7), which produces in-
determinate scores if played by both players.
To summarize, player X, witting of ZD strategies, sees IPD as

a very different game from how it is conventionally viewed. She
chooses an extortion factor χ, say 3, and commences play. Now,
if she thinks that Y has no theory of mind about her (13) (e.g.,
he is an evolutionary player), then she should go to lunch
leaving her fixed strategy mindlessly in place. Y’s evolution will
bestow a disproportionate reward on her. However, if she
imputes to Y a theory of mind about herself, then she should
remain engaged and watch for evidence of Y’s refusing the ul-
timatum (e.g., lack of evolution favorable to both). If she finds
such evidence, then her options are those of the ultimatum
game (16). For example, she may reduce the value of χ, perhaps
to its “fair” value of 1.
Now consider Y’s perspective, if he has a theory of mind about

X. His only alternative to accepting positive, but meager, rewards
is to refuse them, hurting both himself and X. He does this in the
hope that X will eventually reduce her extortion factor. How-
ever, if she has gone to lunch, then his resistance is futile.
It is worth contemplating that, though an evolutionary player

Y is so easily beaten within the confines of the IPD game, it is
exactly evolution, on the hugely larger canvas of DNA-based life,
that ultimately has produced X, the player with the mind.

Appendix A: Shortest-Memory Player Sets the Rules of the Game. In
iterated play of a fixed game, one might have thought that
a player Y with longer memory of past outcomes has the ad-
vantage over a more forgetful player X. For example, one might
have thought that player Y could devise an intricate strategy that
uses X’s last 1,000 plays as input data in a decision algorithm,
and that can then beat X’s strategy, conditioned on only the last
one iteration. However, that is not the case when the same game
(same allowed moves and same payoff matrices) is indefinitely
repeated. In fact, for any strategy of the longer-memory player
Y, X’s score is exactly the same as if Y had played a certain
shorter-memory strategy (roughly, the marginalization of Y’s
long-memory strategy), disregarding any history in excess of that
shared with X.
Let X and Y be random variables with values x and y that are

the players’ respective moves on a given iteration. Because their
scores depend only on ðx; yÞ separately at each time, a sufficient
statistic is the expectation of the joint probability of ðX ;Y Þ over
past histories H (of course in their proportion seen). Let
H ¼ ½H0;H1�, where H0 is the recent history shared by both X
and Y, and H1 is the older history seen only by Y. Then
a straightforward calculation is,

0 1000 2000
0

1

2

3

4

5

step number

sc
or

es

Fig. 3. Evolution of X’s score (blue) and Y’s score (red) in 10 instances.
X plays a fixed extortionate strategy with extortion factor χ ¼ 5. Y evolves
by making small steps in a gradient direction that increases his score.
The 10 instances show different choices for the weights that Y as-
signs to different components of the gradient, i.e., how easily he can
evolve along each. In all cases, X achieves her maximum possible (extor-
tionate) score.
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hPðx; yjH0;H1ÞiH0 ; H1
¼

X
H0; H1

Pðx; yjH0;H1ÞPðH0;H1Þ

¼
X
H0 ; H1

PðxjH0ÞPðyjH0;H1ÞPðH0;H1Þ

¼
X
H0

PðxjH0Þ
"X

H1

PðyjH0;H1ÞPðH1jH0ÞPðH0Þ
#

¼
X
H0

PðxjH0Þ
"X

H1

Pðy;H1jH0Þ
#
PðH0Þ

¼
X
H0

PðxjH0ÞPðyjH0ÞPðH0Þ
¼ hPðx; yjH0ÞiH0

[18]

Here, the first line makes explicit the expectation, and the second
line expresses conditional independence.
Thus, the result is a game conditioned only on H0, where Y

plays the marginalized strategy

PðyjH0Þ ≡
X
H1

Pðy;H1jH0Þ: [19]

Because this strategy depends on H0 only, it is a short-memory
strategy that produces exactly the same game results as Y’s
original long-memory strategy.
Note that if Y actually wants to compute the short-memory

strategy equivalent to his long-memory strategy, he has to play or
simulate the game long enough to compute the above expect-
ations over the histories that would have occurred for his long-
memory strategy. Then, knowing these expectations, he can, if he
wants, switch to the equivalent short-memory strategy.
To understand this result intuitively, we can view the game

from the forgetful player X’s perspective: If X thinks that Y’s
memory is the same as her own, she imputes to Y a vector of
probabilities the same length as his own. Because the score for
the play at time t depends only on expectations over the players’
conditionally independent moves at that time, Y’s use of a longer
history, from X’s perspective, is merely a peculiar kind of ran-
dom number generator whose use does not affect either player.
So Y’s switching between a long- and short-memory strategy is
completely undetectable (and irrelevant) to X.
The importance of this result is that the player with the

shortest memory in effect sets the rules of the game. A player
with a good memory-one strategy can force the game to be
played, effectively, as memory-one. She cannot be undone by
another player’s longer-memory strategy.

Appendix B: ZD Strategies Succeed Without Markov Equilibrium. We
here prove that Y cannot evade X’s ZD strategy by changing his
own strategy on a short timescale—even arbitrarily on every
move of the game. The point is that Y cannot usefully “keep the
game out of Markov equilibrium” or play “inside the Markov
equilibration time scale.”

For arbitrary p and q, the Markov matrix is as shown in Fig.
2A. We suppose that X is playing a ZD strategy with some fixed
pz and write MðqÞ≡Mðpz; qÞ. The key point is that each row of
MðqÞ is linear in exactly one component of q. Thus, the average
of any number of different MðqiÞ’s satisfies

hMðqiÞii ¼ M
�hqiii�: [20]

Now consider the result of N consecutive plays, i ¼ 1; 2; . . . ;N;
where N is a large number. The game goes through N states αi,
with α∈ fcc; cd; dc; ddg. Comparing times i and iþ 1, the game
goes from state αi to state αiþ1 by a draw from the four proba-
bilities Mαiαiþ1ðqiαi Þ, αiþ1 ∈ fcc; cd; dc; ddg, where qiαi is the αi th
component of qi (at time i). So the expected number of times
that the game is in state β is

	
Nβ


 ¼ XN
i¼1

Mαiβ
�
qiαi

�
¼

X
α

X
ijα

MαβðqiαÞ

¼
X
α

Nα
	
MαβðqiαÞ



ijα

¼
X
α

NαMαβ
�hqiαiijα�

[21]

Here the notation ijα is to be read as “for values of i such that
αi ¼ α.”
Now taking the (ensemble) expectation of the right-hand side

and defining probabilities

Pα ¼ 1
N
hNαi; [22]

Eq. 21 becomes

Pβ ¼
X
α

PαMαβ
�hqiαiijα�: [23]

This result shows that a distribution of states identical to those
actually observed would be the stationary distribution of Y’s
playing the fixed strategy qα ¼ hqiαiijα. Because X’s ZD strategy is
independent of any fixed strategy of Y’s, we have shown that, for
large N, X’s strategy is not spoiled by Y’s move-to-move
strategy changes.
That the proofs in Appendix A and Appendix B have a similar

flavor is not coincidental; both exemplify situations where Y
devises a supposedly intricate strategy that an oblivious X au-
tomatically marginalizes over.
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