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Computer immunology

Summary: This review describes a body of work on computational
immune systems that behave analogously to the natural immune system.
These artificial immune systems (AIS) simulate the behavior of the natural
immune system and in some cases have been used to solve practical
engineering problems such as computer security. AIS have several strengths
that can complement wet lab immunology. It is easier to conduct
simulation experiments and to vary experimental conditions, for example,
to rule out hypotheses; it is easier to isolate a single mechanism to test
hypotheses about how it functions; agent-based models of the immune
system can integrate data from several different experiments into a single in
silico experimental system.

Keywords: artificial immune system, agent-based models, in silico modeling,
computational immunology

Introduction

This article reviews a body of work that takes a synthetic or

constructive approach to immunology, engineering artificial

immune systems (AIS) in computational settings. In AIS, both

the components of the immune system and their environments

are defined as computations. In some cases, the AIS simulate

immune system function in digital environments (as in all

computer simulations), and in others they are practical

solutions to real problems such as computer security. A

common thread, however, is that hypotheses about compo-

nents and mechanisms are expressed mechanistically as

computer programs. When the programs are executed, their

behavior is observed and, in the case of models, compared with

the behavior of the real system. In practical applications, system

behavior is evaluated by how well it solves the specified

problem. The motivation is to engineer a system that can

operate successfully in an environment with constraints similar

to those faced by the natural immune system, thereby learning

the functional significance of different components and

analyzing how they interact with one another. The engineering

process, like natural selection, leads to designs that are adapted

to the constraints of their environments. Engineered systems

can be studied and analyzed more easily than their biological
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counterparts, in some cases revealing phenomena that would be

difficult to discover experimentally.

In contrast to other theoreticalmodels of immunology, AIS are

usually constructed as agent-based models (ABM) (1). In ABM,

entities in the model are represented explicitly. For example,

each individual cell might be represented rather than each

different cell type, as is common in other approaches such as

differential equations. An essential feature of ABM is the ability to

observe how behavior at different spatial and temporal scales

arises from localmechanisms. This requires studying interactions

among large numbers of components, and thus ABM exclude

much biological detail by design. The trick is to define themodel

components at a proper level of abstraction, neither including

irrelevant or incorrect detail nor leaving out essential features.

The behavior and interactions of the entities in the model are

encoded as computer programs. Consequently, experimental

findings and hypotheses can be incorporated directly, evenwhen

they are not easily characterized as mathematical equations. The

low-level components and interactions of an ABM are specified

as programs, the simulation is run, and high-level behaviors are

observed. For example, in a biological simulation, the high-level

behavior might show how cell populations change over time.

This is known as a bottom-up approach tomodeling. In ABM, the

simulation can be run repeatedly, with slightly different initial

conditions, showing a distribution of outcomes rather than

a single average behavior. For some immunological phenomena,

this is relevant to understanding why some individuals become

ill and others do not.

This review first gives an overview of ABM techniques as they

are typically applied to immunology. It then describes

representative examples of how ABM have been used to

develop models of immunological phenomena. Next, it

describes how similar methods have been used in engineering

applications, where the abstractions and techniques that

succeeded inmodeling biology also work for computer security

and other applications. Then, returning to natural immunology,

it discusses examples of AIS applied to problems of biomedical

significance. Finally, we speculate about the future prospects

and the usefulness of engineered immune systems.

Agent-based modeling for immunology

In the past two decades, many methods have been used to

model the immune system. Differential equation models are

perhaps the most common, typically simulating how concen-

trations (cells, antibodies, cytokines, etc.) change over time and

identifying critical parameters of an immune response (2, 3).

Neural networks were used to model Jerne’s immune network

theory (4–6), and genetic algorithms were used to model the

evolution of diversity (7, 8). The concept of ‘shape space’ (9–

11), proposed as an abstraction of receptor/ligand binding,

provided a convenient formalism for many subsequent models,

and many immune systemmodels still use some form of shape-

space abstraction. More comprehensive and general immune

system simulators use ABM techniques, incorporating signifi-

cant amounts of immune detail (12–17).

In ABM the approach to immunology, each entity, or agent,

represents a single cell or pathogen, and a computer program

encodes its behavior and rules for interacting with other agents.

Some common behaviors include cell death (usually by deleting

the cell from the simulation), division (by making a copy of

the dividing cell), or changing an internal state variable (for

example, to model cell activation or differentiation). An agent

in an ABM is a designated region of computer memory, similar

to a variable, that contains details about the particular cell. This

information can include its size, location, age, what receptors it

has on its surface, and so forth. The agents can move through

space, interacting locally with other agents at nearby locations,

following a set of predefined rules. Thus, the behavior of the

low-level agents is prespecified, and the simulation is run to

observe global behaviors, such as determining an epidemic

threshold. ABM specify local interactions in terms of simple

mechanisms, which give rise to the large-scale complex

dynamics of interest.

Why is ABM an appropriate method for studying immunol-

ogy? First, the agent behaviors can directly incorporate

biological knowledge or hypotheses about low-level compo-

nents, even if they cannot be expressedmathematically. Second,

data from multiple experiments can be combined into a single

simulation, to test for consistency across experiments or to

identify gaps in our knowledge. In the future, integrative

methods such as ABM will probably be essential tools for

comprehending and aggregating vast amounts of experimental

data. Third, the immune system is a complex biological system

with many different interacting mechanisms, and many

biologically relevant values cannot be measured directly. For

example, there are too many different protein/protein and

virus/protein interactions to expect that we can isolate all of

them experimentally. In an ABM, it is relatively easy to disable

mechanisms altogether, adjust their relative contributions, and

perform sensitivity testing of parameters. Through its func-

tional specifications of cell behavior, ABM can thus help to

bridge the current gap between intracellular descriptions and

multicellular infection dynamics. Variation among individuals,

each making different amounts of innate proteins that almost

certainly impact the trajectory of an infection, is an important
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complication. These effects can be studied using ABM by

incorporating a distribution of parameter values in the agent

population. Finally, there are important spatial and temporal

interactions easily studied in ABM, for example, paracellular

signaling between infected and uninfected cells.

Most ABM models of immunology represent receptors and

ligands as character strings (Fig. 1) and use a string matching

rule to model affinity. This clever idea was introduced by

Farmer et al. (18) as a way to perform calculations for

determining molecular complementarity and predicting the

optimal size of an epitope. An overview of the calculation is

given in Perelson and Weisbuch (19). The strings use an

alphabet of m characters where each character corresponds, for

example, to a given amino acid. In the most common case,

however, m ¼ 2, although larger alphabets have also been

studied. In immunology, binding is a threshold effect

consisting of two components: the affinity of a single receptor

and ligand, and the total binding, or avidity of multiple binding

pairs. Most models focus on affinity by simply counting the

number of positions in the string where the symbols are

identical. Many variations of this basic scheme have been

proposed, including different-sized alphabets, different num-

bers of symbols in the string, and many string matching rules.

Smith et al. (20) reviewed some of the variations. The strings,

together with some internal state information (e.g. the age of

the cell), are the ‘agents’ in an immune system ABM. Fig. 1

illustrates this modeling strategy.

This fundamental modeling abstraction ignores nearly all of

the physical details that determine receptor/ligand interactions.

Careful modeling of a single interaction, say using a molecular

dynamics simulation, is expensive computationally. By adopt-

ing character strings, many binding events can be simulated

quickly, making it feasible to study large-scale properties of the

immune system. Although character strings are unphysical,

they can produce surprisingly accurate models when bench-

marked to experiment (21), suggesting that the abstraction

captures important features of receptor/ligand binding.

Interactions between agents and between agents and their

digital environment determine the dynamics of an ABM. In

immune modeling, most interactions are mediated by receptor/

ligand binding. So, when strings bind above the threshold value,

the simulated cells may be stimulated to proliferate, increase their

mutation rates,migrate to a new location, die, or secrete simulated

molecules. Antigen can be added to the system in various

locations, in varying doses, and at different times. The model is

then ‘run’, and the dynamics of the infection are observed.

As computers became more powerful and less expensive,

ABM became a practical method for studying complex systems

such as the immune system. The following sections review

a representative sample of conceptually important systems. The

models were highly simplified and abstract in the beginning,

but over time they gained sophistication as more was learned

about the immune system, and advances in computation made

it feasible to construct more complexmodels. Thus, the original

models were one dimensional, and since then, there has been

a progression to two- and now three-dimensional simulations.

However, more detail is not always desirable as it can be

difficult to interpret results from an overly complex model. A

simple model that isolates a few relevant phenomena so that

they can be studied in detail is often more illuminating than an

overly complicated one with many extraneous features. Thus,

there is a tension between incorporating everything that is

known and abstracting away from the physical details to capture

general principles. The most compelling and influential ABM

have been those where just enough detail was included to show

a phenomenon of interest.

Immune system modeling with ABM

Early host–pathogen immune models consisted of simple one-

dimensional binary networks of automata (22, 23). Each

network contained a set of nodes, where each node represented

a cell population (e.g. B cells or T cells) that could be in one of

the two states: 0 ¼ population is absent or 1 ¼ present at high

levels. The nodes contained rules specifying how connected

populations would interact. For example, the presence of

antigen might trigger a high level of B cells in neighboring

populations. The networks were initialized by setting certain

populations (nodes) to 0 or 1, and then simulating the network

to find, for example, attractor states that could be interpreted in

terms of an immune response. Perelson and Weisbuch (19)

provide more details about these early models.

Fig. 1. Receptors and ligands modeled as strings. Illustrated on the
left is an example of a T-cell receptor binding to a MHC/peptide
complex. Binding is modeled by a string matching rule, for example, by
counting the number of positions in the string at which the symbols are
complementary (known as Hamming distance). Repertoires are
represented in the model as sets of strings, shown on the right.
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Early ABM of the immune system focused on immune

network theory and were often implemented as cellular

automata (CA) (24–26). Each site of the CA grid represented

an idiotype or clone, and the state of the site represented the

concentration of that particular clone. The dimensionality of the

grid (e.g. one or two dimensional) represented the variable

characteristics of the clone (e.g. geometric shape and electric

charge), and the size of the grid represented the number of

different possible values (e.g. the number of different shapes

that were possible). The interaction rules specified that a clone

situated at x! ¼ ðx1; x2.xNÞ, where N is the dimensionality of

the grid, could stimulate the proliferation of clones that were

nearby, thus simulating the phenomenon of cross-reactivity.

When these models were simulated, they produced complex

patterns resembling immune activity, with stable patterns

corresponding to memory, and changing patterns attributed to

perturbations caused by new antigens. A variation of this

approach represented the network of idiotypic interactions

using a classifier system, in which each classifier rule specified

a particular interaction, and its strength represented the

concentration of the idiotype (18). As interest in Jerne’s

network theory waned, so did the use of such models.

The next generation of computational immune models was

more ambitious, incorporating significantly more immuno-

logical detail (13, 27, 28). The CA grid was used to represent

physical space, rather than abstract properties of clones. The

simulators incorporated enough detail that one model could be

used to study several aspects of immune dynamics or disease.

In the following, we discuss two examples of CA systems,

IMMSIM and ma_immune. We then describe two three-

dimensional models that incorporate molecular modeling as

well as cellular modeling, Simmune and CyCells. Finally, we

describe more recent work that emphasizes graphical visuali-

zation of immunological processes. IMMSIM is a canonical

example of the ABM approach applied to immunology, so we

describe it in more detail than the other systems. These general

models are useful on their own as ameans of organizing specific

hypothesized mechanisms and studying how they interconnect

– the value of this synthesis is shown by the many extensions

developed for specific purposes.

IMMSIM

An early CAmodel of the immune system introduced in 1992 is

IMMSIM (13, 27). The original version modeled the humoral

response (13) and contained bit string representations of T

cells, B cells, and other antigen-presenting cells (APC), as well

as antigen and antibody molecules. Later versions added cyto-

toxic and helper T cells, epithelial cells, and cellular responses

(29, 30).

The original version of IMMSIMwaswritten in APL2with the

IBMAPL2 runtime environment. Bernaschi and Castiglione later

developed a parallel version called ParImm and later CIMMSIM

(15). Finally, a Cþþ tutorial version of IMMSIM based on

CIMMSIM was developed by Kleinstein and Seiden (14).

Most simulations were run on small grids, typically a 15& 15

hexagonal grid, and the size of the bit string, N, was typically

eight, yielding 28 ¼ 256 different possible clones. The time

scale of a simulation is not always specified, but Kleinstein and

Seiden (14) suggest that one time step in the simulation

corresponded roughly to the time for a single B-cell division.

Representing receptor-specific interaction

Fig. 2 illustrates the schematics of cells and molecules in an

IMMSIM model using eight-bit strings. As in most AIS, immune

components are characterized by their receptors, and each

receptor is represented as a character string. Typically (and this

differs among the various implementations of IMMSIM), a B cell

is composed of a single receptor and a single major histocom-

patibility complex class II (MHC II) molecule, each represented

by a binary string. Among the B-cell population, for example, the

simulations typically consider only one or two different MHC II

types. Antibody molecules are represented as a single receptor.

Finally, antigen molecules consist of segments of two different

types: B-cell epitopes and presentable peptide strings.

Interaction rules

Interactions between agents are specified by a set of interaction

rules. For example, a B-cell receptor interacts with the ‘bare’

part of an antigen. A T-cell receptor interacts with the pair made

Fig. 2. Schematic representation of IMMSIM. The figure depicts T
cells, B cells and other APCs, antibodies, and antigen molecules. On
antigen, epitopes are shown exposed and the presentable peptides are
boxed. Receptors, MHCs, epitopes, and peptides are numbered
according to the decimal value of their eight-bit string. For example,
the B cell’s receptor 57 is represented as (00111001), with zeroes and
ones depicted as short and long blocks, respectively. Adapted from
Seiden and Celada (13).
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up of an antigen peptide and theMHC II of a B cell. To determine

binding, the receptor strings are compared symbol by symbol,

looking for mismatches, using a variant of Hamming distance.

Two bits match if they are complementary. Thus, 0 matches 1

and vice versa. Fig. 2 illustrates this approach, where there is a

two-bit mismatch between the B-cell receptor 57 (00111001)

and the epitope (bare part) of antigen 228 (11100100). If the

number of matches is above the binding threshold, which is

a parameter of the simulation, then the agents interact.

On any given step of the simulation, the set of potential

interactions for each agent (a cell or antigen) is determined, and

out of this set, one action is chosen for each agent

probabilistically. Then, each agent’s state (naive or activated)

is updated synchronously. Possible actions include cell death,

cell division, and antibody production. If, for example, an

antigen–antibody interaction is successful, they are considered

to have formed a complex, and both are removed from the

simulation. Finally, the entities diffuse to a randomly chosen

neighboring grid site and that concludes one time step of the

simulation.

IMMSIM studies

The IMMSIM models were used to investigate immunological

phenomena such as affinity maturation and hypermutation in

the humoral response (12), the rheumatoid factor paradox

(31), transitions between immune and disease states and the

relative contributions from the different branches of the

immune system (29, 30), vaccine efficiency (32), and the

dynamics of human immunodeficiency virus (HIV) infection

(33). IMMSIMwas a conceptually important advance, because it

developed a general modeling framework that could be used for

multiple studies. It incorporated enough immunological detail

to support studies involving real immunological problems.

IMMSIM also illustrates the use of bit string representations of

receptors and ligands.

ma_immune

Amore recent example of CA used formodeling immunology is

ma_immune (34). ma_immune is implemented on a two-

dimensional grid, representing a tissue that is patrolled by

generic immune cells. ma_immune was designed as a simu-

lation platform for localized tissue infection, where the cells

affected by pathogen are immobile, tightly packed, and the

infection spreads to immediate neighbors. The simulation

considers two cell types: tissue cells that are immobile, and

generic immune cells that move randomly to neighboring

locations. The simulation platform, called ma_immune,

together with the supporting visualization software MASYV, is

documented and freely available (35).

The model was used to study how the spatial distribution of

agents affects the dynamics of an infection (36), something that

is difficult to assess in a differential equationmodel. Differential

equationmodels normally assume that populations (target cells,

infected cells, virions, etc.) are uniformly distributed in space.

Consequently, the rate at which target cells become infected, for

example, is proportional to the total abundance of target cells

and virions, without regard for the spatial localization of the

target cells and virions. Beauchemin (36) showed that grouping

the initially infected cells into patches rather than distributing

them uniformly on the grid reduced the infection rate, because

only cells on the perimeter of the patch have healthy neighbors

to infect. This approach yielded a better fit to experimental

influenza A infection data than the equivalent non-spatial

model. ma_immune is conceptually important, because it

isolates the effect of spatial localization and provides an elegant

explanation of how spatial localization can change infection

dynamics.

Multipurpose modeling frameworks

Two recent modeling frameworks, Simmune and CyCells, are

significantly more general than earlier systems and represent

a conceptual advance in immune systemmodeling. Simmune is

a two-level immune system simulator (17, 37, 38). At the lower

level, molecules such as cytokines are defined as continuous

quantities, and their dynamics are modeled using differential

equations. At the higher level, cells are modeled as discrete

computational agents. Thus, Simmune is a hybrid of continuous

and ABM techniques. The basic framework is defined generally

enough that it could in principle model almost any kind of cell

population.

Different types of cells can be defined by the user (e.g. T cells

and B cells), and the user specifies rules for how cells move

between locations on the grid. Because molecules are

represented as continuous quantities, theymove using diffusion

rules, whose parameters are also specified by the user. Simmune

is run on a three-dimensional grid. The user defines different

compartments (e.g. lymph nodes and thymus) and specifies

properties for each compartment within the simulation such as

its dimension, diffusion rates for each molecular type, which

types of cells are in each compartment, and their initial

concentrations. The exchange of agents between the different

compartments can be regulated, for example, which kinds of

agents are allowed to pass from one compartment to another

and at what rate. In Simmune, a cell’s action depends on the
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stimuli it senses from its environment, known as a cellular

stimulus response mechanism.

CyCells is a similar modeling framework, but its functions

and usage are better documented (39) and its source code is

available online (40). Similar to Simmune, it represents

molecular concentrations continuously and cells discretely.

CyCells is implemented on a three-dimensional square grid. In

CyCells, models are defined by specifying initial numbers of

cells, cell types (e.g. B cells and macrophages), and molecular

signals (e.g. cytokines). Each cell of each cell type is represented

explicitly, and the molecular signals are represented as real-

valued concentrations at each site. For each type of molecular

signal, the modeler supplies a decay and/or diffusion rate.

CyCells uses the ‘sense-process-act’ abstraction for cell

behavior. For each cell type, the modeler specifies its attributes

and associates with it sensing, processing, and/or action

procedures. An attribute might contain the cell’s diameter,

a sensing procedure could respond to a particular molecular

concentration, the processing function might specify that the

cell is activated when it senses the molecular concentration

above a threshold, and the action could be death, division,

migration, or the secretion of amolecular substance. Hence, the

framework is highly flexible, allowing both simple and

complex models to be implemented in a single framework.

Warrender et al. (16) used CyCells to investigate two

hypotheses about the maintenance of peripheral macrophage

population sizes in the lung. Under the first hypothesis,

macrophage proliferation was local and caused by the division

of resident macrophages. Under the second hypothesis,

proliferation was the result of influx of circulating blood

monocytes. Although either scenario was plausible, the model

showed that the influx-driven system is inherently more stable

and that a proliferation-driven system requires lower cell death

and efflux rates than an influx-driven model. CyCells was also

used to model early infection dynamics of Mycobacterium

tuberculosis (Mtb) bacteria (41).

These models were conceptually important, because they

introduced more realistic treatment of cytokines and the other

molecular players in the immune response. By combining

continuous models of molecular diffusion on a grid with ABM

of cells, these hybrid models represented an important step in

ABM approaches to immune modeling. Other hybrid models

combine continuous and ABM methods in different ways, for

example, as in Chao et al. (42), where a cytotoxic T-cell life cycle

is divided into stages, and all individuals in a given stage are

assumed to be identical. A single integer represents the

individuals in a given stage, rather than one data structure per

individual required in a pure ABM approach.

Representing large repertoires in immune system models

Running an ABM that explicitly represents a realistic number of

cells can be computationally expensive. An estimated 107

unique clones comprise an individual’s B-cell (43) and T-cell

(44) repertoires. Simulations containing this many clones have

become feasible with recent increases in computing power (15,

45), although running simulations of this size is still time-

consuming. Thus, most immunology simulations use artifi-

cially small immune cell repertoires that contain tens or

hundreds of clones. This number is sufficient for studying some

immunological phenomena but not sufficient to address issues

such as cross-reactivity (46, 47) and alloreactivity (48)

quantitatively. Because most cells in the repertoire are not

involved in any given immune response, only a small fraction of

cells needs to be updated on any given time step. This

observation led to the use of ‘lazy evaluation’, a computational

technique in which only the computations that need to be

performed are actually carried out (49). Rather than create, for

example, 107 explicit B-cell clones, the majority of which

would not respond to a given infection, the lazy evaluation

version of an ABM would not create any clones until the

simulated infection began, then it would produce only the

102'103 that have sufficient affinity to participate in the given

immune response. Although using lazy evaluation complicates

the software implementation, it can reduce the memory and

running time by orders of magnitude without affecting

simulation results. This strategy has been applied to B-cell

(49) and T-cell (42) models.

Statecharts and visualization

Efroni et al. (50) developed an immune system programming

framework based on the visual language of Statecharts and

describe the structure of a statechart model for the thymus.

Statecharts, introduced by Harel in 1987 (51), are a method for

representing complex computational processes in terms of

states and the events that cause transitions between states. It also

considers substates and orthogonal states. For example, a cell’s

orthogonal states could be its expression of different receptors,

and the substates could be the conditions or substates under

which the cell expresses a particular receptor. Although the

terminology and motivation are different from that of agent-

based or CA models, they share many features, and we discuss

them briefly.

Agents in the model are the moving thymocytes and the

stationary epithelial cells of the thymus. A thymocyte’s motion

depends on the gradient of the various cytokines and the
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thymocyte’s expression of the markers that detect these

gradients. The simulation consists of four types of cytokines

and seven thymocyte markers, five of which have binary values

(expressed or unexpressed) and two of which have three values

(expressed, unexpressed, and an intermediate low level of

expression). Then, for example, based on which of the 25 & 32

¼ 288 different possible marker states the thymocyte is in, it is

sensitive to a particular set of cytokines, and its movement is

determined by the cytokine set.

The diagrammatic representation of statecharts is intended to

be easier to understand for people from various disciplines, thus

facilitating collaboration between modelers and experimen-

talists. In addition, the model’s interactive graphical user

interface allows the user to see the agents move and interact,

navigate the simulation by clicking on particular agents, and

either retrieve or set information about the agent’s state and

decision process (Fig. 3). Because immunological knowledge is

often incomplete, the model lets the user define different

hypotheses for the outcomes of interactions and choose which

instance of the available hypotheses will be executed on a given

run, thus supporting exploration of different hypotheses.

An even more sophisticated visualization tool is PathSim

(Pathogen Simulation), a simulator developed for displaying

three-dimensional-anatomical models of host–pathogen inter-

actions (52). PathSim’s programming framework is described

briefly in Polys et al. (53). As more detailed information

becomes available about how individual immune cells move

through tissue (54–56), visualization packages such as the

Statechart system and PathSim will probably play a more central

role in immunological modeling.

Engineering an immune system

This section examines a body of work that translated the

mechanisms and organizational principles of the immune

system into algorithms for solving computational problems

(57, 58). It is surprising that the abstractions and concepts

discovered through immune system modeling are general

enough to form the basis of non-biological engineered systems.

However, AIS methods have been applied to a wide range of

problems, including control engineering, robotics scheduling,

fault tolerance, and bioinformatics. Themost prevalent example

Fig. 3. A screenshot of the Statecharts graphical interface during
execution. Figure reproduced with permission from Efroni et al.

Genome Research, copyright 2003, Cold Spring Harbor Laboratory
Press (50).
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has been in computer security, and we focus on that example in

the following subsections.

A computer security system should protect a computer or

network of computers from unauthorized intruders, which is

analogous in functionality to the immune system protecting the

body from invasion by foreign pathogen. Further, a computer

security system should protect against insider attacks, malfunc-

tioning software (analogous to misbehaving cells), and other

internal errors, maintaining the computer within normal

operating tolerances. The similarities between the computer

security problem and the problem of protecting a body against

damage from internally and externally generated threats are

compelling, and they were recognized as early as 1987, when

the term computer virus was introduced by Adelman (59).

Later, Spafford (60) argued that computer viruses are a form of

artificial life, and several authors (61–64) investigated the

analogy between epidemiology and the spread of computer

viruses across networks. The connection to immunology then

was made explicitly (65, 66), and since that time the ideas have

been extended to incorporate significant amounts of immu-

nology and to tackle ambitious computer security problems,

including computer virus detection (65, 66), spam filtering

(67), and computer forensics (68).

Many different aspects of the immune system have been used

as inspiration for engineering applications. In addition to the

examples given below, there has been work on danger theory

(69), idiotypic networks (70–72), affinity maturation through

somatic mutation (73, 74), V-region libraries (75, 76), and the

innate immune system (77, 78). Nearly all of the applications

exploit analogies with the pattern matching and learning

mechanisms of the immune system to perform desired

computations. The studies illustrate how immunological pro-

cesses of interest can be defined computationally and studied in

detail to understand their functional significance. As discussed

in earlier sections, most computational realizations of immu-

nology focus on the adaptive immune response, and that is true

in the computer security domain as well, although some recent

work emphasizes the innate response.

Elements of a computer immune system

If we set out to engineer a computer immune system to solve

problems in computer security, what functional components

wouldwe need? Similar to the natural immune system, there are

computer defenses that correspond to non-specific and specific

responses. Firewalls evolved to prevent unwanted communi-

cation between computer networks; access controls (e.g. logins

and passwords) were developed to control how much access

users have to computers and data. These generic defenses

correspond to the immune system’s non-specific response.

Specific responses, known as intrusion-detection systems (IDS),

recognize active intrusions, including those that may not have

been seen before. An IDS continuously monitors the dynamic

behavior of a computer system to determine if a security

violation or denial-of-service attack has occurred. Such viola-

tions include injected foreign code (as in the case of viruses) or

exploitation of vulnerabilities in existing code by illegitimate

users. There are two broad classes of IDS, loosely corresponding

to primary and secondary responses in natural immunology.

Similar to the primary response, ‘anomaly’ IDS can detect novel

forms of attack, while signature detection systems respond only

to known attacks, corresponding to a secondary response.

Finally, some systems have an automated response component

that corresponds to the effector side of the immune system, such

as inflammatory processes or cytotoxic T cells.

In earlier sections, we saw how immune systems aremodeled

using computational agents, with receptors and ligands

represented as short strings of symbols, death implemented

by deleting agents from the simulation, and proliferation and

cell division implemented by copying agents. These abstrac-

tions are used in the computer security domain as well, but

additional decisions must be made. These decisions include

identifying what data will be observed to detect infection (e.g.

what corresponds to normal peptides of the body), devising

a scheme for generating a diverse repertoire of detectors,

specifying the details of the adaptive response (how will new

infections be noticed and remembered), and determining what

actions the immune system will take to control infections once

they have been identified. In the following, we review each of

these elements briefly.

Defining self

Protecting computers involves activities such as detecting

unauthorized use of computer accounts, maintaining the

integrity of data files, mitigating denial-of-service attacks, and

detecting and eliminating computer viruses and spyware. These

activities can be viewed as instances of the more general

problem of distinguishing self (legitimate users, uncorrupted

data, etc.) from dangerous non-self (unauthorized users,

viruses, and other malicious agents). Just as the natural immune

system evolved to monitor certain observables in the body,

notably peptides, so must AIS be designed to monitor particular

aspects of a computer.

Thus, the first step in designing a computer immune system

is decidingwhat data or activity patterns will play the role of self
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and what entities will correspond to pathogens. Despite debate

in the immunological literature about the role of self, we accept

the notion that proteins and peptides are a fundamental unit of

recognition for the immune system. To build a computer

immune system, a computational analog to the protein must be

found. Researchers typically make this choice with regard to

a particular class of threats in which they are interested. As the

threats of interest have evolved, so have the computer immune

systems that protect against them.

When computer immune systems were introduced, the

primary threats were computer viruses that infected user files

(file infector viruses) or the code used to boot up the operating

system (boot sector viruses). The viruses consisted of short

sections of computer code attached to another program. When

the host program ran (was executed), control passed to the virus

code, which searched for other uninfected files and copied itself

into them. Consequently, early systems tried to protect the

integrity of programs stored on disk, either by preprogrammed

databases of virus signatures (as in popular anti-viral software)

or by change-detection programs (65, 66). Change-detection

programs are analogous to a biological system that checks for

genetic damage, noticing changes to the genetic codes that

control biological processes. This approach is limited, because

most of the data and code stored on computer disks are never

used. Because computer viruses do not cause damage until they

are executed, it is more efficient to protect executing programs

or data being copied across a network.

The second generation of computer immune systems

explored the possibility of protecting executing programs

(79, 80). Here, the unit of protection (organism) is a single

computer, and each executing process is roughly analogous to

a cell. Discrimination between normal and abnormal behavior

is based on what functions (or subroutines) are normally

invoked by the running program, in particular, the requests

issued to the operating system from the running program,

known as system calls (79, 81). As a single program executes,

it might make several million system calls in a short period of

time, and this signature of normal behavior is sufficient to

distinguish between normal behavior and many attacks. A

record is kept of the system-call history, and the list is split up

into shorter ‘peptides’ (typically 6–10 system calls long),

which define the normal behavior of the program. Most

attacks trick the victim program into executing infrequently

used code paths, which in turn leads to anomalous patterns of

system calls. This approach defends against intrusions that

target a single computer, themost prevalent example being the

buffer overflow attack (82). This more dynamic approach

resembles the kind of ‘run-time’ checking performed by RNA

interference in cells that are actively translating genetic

information into proteins.

A large number of researchers adopted the system-call

approach, some seeking to improve on the original methods

(83–87), some applying its method to other problems (88–

90), and some attempting to defeat the system (91). Sana

Security developed a product known as ‘Primary Response’

based on this technology and is actively marketing it to protect

servers. At this writing, the system-call method is the most

mature application of the immunology analogy to computer

security.

As the Internet expanded and information exchange became

routine between computers around the world, protecting

against widespread network attacks such as e-mail viruses and

worms becamemore important.We use the term ‘virus’ to refer

to malicious software that requires help from computer users to

spread to other computers. E-mail viruses, for instance, require

someone to read an e-mail message or open an attached file in

order to spread. We use the term ‘worm’ for infections that

spread without user intervention. Because they spread unaided,

worms can often spread much faster than viruses.

Immunological mechanisms have been employed to protect

computer networks (92). The equivalent of an organism is

a local area network (LAN) of computers. Transmission control

protocol over internet protocol (TCP/IP) is the most common

communication protocol used to connect computers, and the

behavior of the protected system can be characterized by its

normally occurring TCP/IP connections (93). The connection

is represented by the source IP address, the destination IP

address, and the program used to make the connection

(represented as an eight-bit number). This information

specifies a network connection. The analog of a peptide is

a binary string representing the connection (by concatenating

the source, the destination, and program type) (Fig. 4). All

normally observed and acceptable connections, both those

within the LAN and those connecting the outside world to the

LAN, form the set of self-patterns, and all others (potentially an

enormous number) form the set of non-self patterns.

To summarize, there has been an evolution of threats, which

has forced a progression frommethods that protect the integrity

of a computer program, to methods that detect when an

executing program behaves abnormally, to more recent

methods that protect networks of computers. All of these levels

of protection are important, and the progression has led to

dynamical definitions of self that are quite different from those

taken by traditional anti-virus software, which looks for specific

patterns in files stored on hard disks. The distinction is roughly

analogous to that between gene products and genes themselves.

Forrest & Beauchemin ! Computer immunology

184 Immunological Reviews 216/2007

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight

melaniem
Highlight



If the immune system had evolved to inspect directly the

genomes of all cells for irregularities, we would have a system

more closely analogous to anti-viral software. Instead, the

immune system monitors gene products. Anti-virus software

has recently adopted several features analogous to the innate

immune system (detecting general patterns that are harmful),

but most commercial products do not yet have the adaptive

immune system’s ability to address novel threats.

Negative and positive selection

With any of the above schemes, a strategy is needed for

generating the immune cells (called detectors) that detect

abnormalities. Similar to the natural immune system, this can be

achieved with either positive or negative representations

(analogous to positive and negative selection of T cells) (94).

The negative selection algorithm (65, 95) is based on one aspect

of the multistage maturational process of T cells in the thymus,

where they are censored against the body’s normally occurring

peptide patterns. T cells that react too strongly with self are

deleted before they can become active and cause autoimmunity.

Although mature T cells have survived at least two other

censoring operations, genetic rearrangements and positive

selection, we focus on the negative selection aspect here.

The translation of this process into an algorithm for

computers is straightforward. First, we assume that the anomaly

detection problem is posed as a set RS (real-self) of strings s, all

of fixed-length l of which we can access only a sample S at any

given time. The universe of all l-length strings is referred to asU,

and the set of anomalous patterns to be detected is the set U–RS.

Candidate detectors (strings) are generated randomly and

censored against S; those that fail to match the strings in S

(analogous to expressed peptides in the thymus) are retained as

active detectors. Such detectors are known as ‘negative

detectors’, and if S is a good sample of RS, each negative

detector will cover (match) a subset of non-self without

matching self. By generating sufficient numbers of independent

detectors, good coverage of the non-self set is obtained. Fig. 5

shows the relationship of these sets.

Since its introduction in Forrest et al. (65), interest in negative

detection has continued, especially for applications where

noticing anomalous patterns is important, including computer

virus detection (96, 97), intrusion detection (92, 98–100), and

industrial milling operations (101). Recently, other categories

of applications have been proposed, including color image

classification (102), collaborative filtering and evolutionary

design (103), and privacy (104, 105).

Analysis of the computational properties of the negative

selection algorithm and its descendents showed several ad-

vantages (95, 106). One advantage is that negative representa-

tions require virtually no communication among the individual

detectors. Negative selection is thus an important mechanism,

because it allows detection to be distributed rather than

Fig. 4. Architecture of the LISYS intrusion-
detection system (92). The shaded area shows
the LAN of computers to be protected, although
the network may have connections with
external computers. Normally occurring
connections between computers are indicated
by directed arrows. Each computer in the LAN
contains its own detector set (collection of
immune cells). Each detector represents a single
connection consisting of the source computer
for the connection, the destination computer,
and the port number for the program that
initiates the connection. Binding between
detectors and new connections is measured
using the r-contiguous bits matching rule (10)
(not shown).

Fig. 5. Self–non-self discrimination. A universe U of data points
inside the black border is partitioned into two sets: self (shown in blue)
and non-self (everything else). The points in the space correspond to
features of the problem domain, for example, fragments of computer
code or individual network connections. Negative detectors analogous
to T cells are generated randomly. Those that overlap with self (shown
in red) are deleted by the negative selection algorithm. This leaves a set
of detectors (shown in black) that collectively cover most of non-self.
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centrally controlled. Once censored by the negative-selection

process, each detector can function independently of other

detectors. This independence is because each detector covers

part of non-self. Thus, a set of detectors can be split up over

multiple sites, reducing the coverage at any given site but

providing good system-wide coverage. To achieve similar

coverage using detectors that match self would be computa-

tionally inefficient, because each positive detector would have

to check with all other positive detectors to confirm amismatch.

This property allows several forms of distributed processing:

checking small sections of a large object independently, several

independent detector sets (Fig. 4), or independent evaluation of

each detector in a single detector set. Indeed, the natural

immune system uses negative detection in a massively

distributed environment – the body.

A second advantage of negative representations is the ability

to conceal information about the system it is protecting (104,

107). Thus, in some negative representations, it is provably

difficult to infer the original (positive) set from the negative

information alone. This is analogous to the problem of trying to

infer all of the normal self-proteins in the body simply by

inspecting all of the mature lymphocytes. Although not

necessarily important for the natural immune system, it may

have application in computing for enhancing the privacy of

sensitive information.

Affinity maturation

The immune system uses affinity maturation to evolve B cells

that respond to foreign antigen, and so do some computer

immune systems. ‘Clonal selection’ algorithms automatically

construct detectors tailored to observed patterns (108). This is

a more focused learning process than that achieved through

negative selection alone. This approach has been applied to

intrusion detection (109), where the clonal selection algorithm

mimics the processes of somatic mutation and proliferation,

evolving detectors toward non-self network patterns. In this

work, detectors were defined as IF/THEN rules, which

classified new patterns either as normal or abnormal. The

antecedent (IF part) of each rule specified the conditions to be

tested, and the consequent (THEN) described the class label

(normal or abnormal) assigned to the rule.

The algorithm proceeds as follows. First, a set of detector

rules is generated randomly, and each rule’s ‘fitness’ is

initialized to 0. A sample of rules is randomly selected from

the initial set. Each detector (rule) in the sample is tested against

an existing corpus of non-self patterns, and the detector in the

sample with the highest score has its fitness increased (110).

This process is repeated (with new random samples) until each

detector in the population is evaluated in several contexts. Then

the genetic algorithm (111) operators of mutation and

crossover are applied to the more fit individuals to produce

new candidate detectors. Finally, the new candidate detectors

undergo negative selection against a corpus of known self-

patterns to prevent autoimmunity (false positives). Detectors

that pass this test then enter the population, replacing an

existing detector. The algorithm departs from known biology in

two ways: first, by using recombination in an algorithm

mimicking somatic mutation and second, by applying negative

selection after somatic mutation. However, it is effective at

evolving good sets of detectors, and it has been applied to

several different problems.

Controlling autoimmunity

Early experiments with simple AIS for computer network

security showed high false-positive rates (112), corresponding

to autoimmunity. False positives have been a persistent problem

for anomaly IDS, preventing their widespread adoption for

computer security. Within the computer immunology frame-

work, several mechanisms have been introduced for controlling

autoimmunity that are similar in spirit to immunological

processes. Two examples are avidity and second signaling,

described below.

A single anomalous connection in the network does not

necessarily signal an attack, so a parameter known as the

‘activation threshold’ was introduced (92). A detector is

required to accumulate enoughmatches to exceed the activation

threshold to become active. This simple modification reduced

autoimmunity significantly, and of the various methods that

were tested for controlling autoimmunity, it had the most

dramatic effect. Activation thresholds are analogous to avidity in

the natural immune system, where multiple receptors on the

lymphocyte must be bound simultaneously in order for it to

become activated. Here, the integration of signals takes place

over time instead of in space.

Hofmeyr and Forrest (92) introduced a mechanism similar to

the costimulation that a B cell must receive from a T-helper cell.

Originally, the second costimulatory signal was provided by

a human observer, although Begnum and Burgess (113) provide

an interesting extension. In the original system, a detector that

survived negative selection became mature and was matched

against all new connections in the network. If it matched enough

connections to exceed the activation threshold, it was activated.

However, if an activated detector did not receive a costimulatory

signal within a given period (typically 24 h), it died and was
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deleted. If it received costimulation, it entered a competition to

become a memory detector. Once a memory detector, it lived

indefinitely, requiring only a single match for activation, thus

capturing the idea of a secondary response.

Costimulation automatically eliminates detectors responsible

for false positives, and a human must intervene to confirm

true positives. This process allows adaptation to incomplete or

evolving definitions of self, both of which are common in the

intrusion-detection domain. It also allows for shorter matura-

tion periods in the negative selection phase, by providing

a backup in case the maturing detector does not encounter all

possible self-patterns. Costimulation in the natural immune

system presumably has similar benefits, as well as protecting

against inappropriate somatic mutations. The costimulation

process is inefficient computationally, and the ideal system

from an engineering point of view is one where most

tolerization is centralized, and peripheral tolerization addresses

issues of perpetual novelty, incomplete descriptions of self, and

somatic mutation. There have been debates in immunology

about the relative roles of tolerization in the thymus and

peripheral tolerization; our experiences suggest that both are

essential, as they play complementary roles.

MHC and diversity

Generalization is an important tool in resource-limited environ-

ments. If each detector can match multiple non-self patterns,

fewer detectors are needed. However, generalization introduces

potential discrimination errors, especially those caused by

overgeneralization, in which foreign patterns that resemble self

are categorized as normal. These are known as false negatives. As

the generality of detectors increases (and specificity decreases),

the potential for overgeneralization also increases.

Using a diverse set of representations for detectors proved to

be effective at reducing the overall number of false negatives

(92). Representation diversity was achieved by permuting the

bits in a detector, thus moving some co-located bits away from

one another and placing others together. Because detector

matching was based on adjacent matches in the string (10), the

different permutations effectively changed the structure of the

self-set for each detector. Consequently, where one detector

failed to detect a pattern, a permuted version of it might

succeed. This strategy was particularly effective at reducing the

number of false negatives when the non-self patterns were

similar to self-patterns.

The immune system also has limited resources, and it appears

to use both generalization and diversity. Generalization is

a consequence of the fact that a monoclonal lymphocyte can

bind to a set of structurally similar peptides. It is not

unreasonable to assume that generalized detection also leads

to coverage gaps (false negatives), and if so, pathogens would

evolve away from detection toward the gaps. We speculate that

each different MHC allele can be regarded as a different way of

presenting a protein (depending onwhich peptides it presents).

Hence, varying the MHC varies which coverage gaps exist. This

idea is illustrated by the existence of diseases, such as leprosy,

that are strongly affected by MHC types.

Effectors

The previous subsections outlined a mature and growing body

of work defining computational abstractions that correspond to

the immune system’s ability to detect and remember foreign

pathogens. Much less effort has been devoted to the effector arm

of the immune response. Early work on immune-based

approaches to control and robotics (71, 114) incorporated

effectors, but most engineering applications emphasize detec-

tion. This lacuna was emphasized by several publications (115–

117), which hypothesized a complex feedback control system

controlled by cytokine signaling. This is an exciting and

important direction for future work in computer immunology.

In computer security applications to date, most approaches

emphasize low-level generic actions (e.g. homeostasis), rather

than targeted killing (e.g. cytotoxic T lymphocytes) or repair. In

the first such example, a system called ‘process Homeostasis’

(pH) was developed for a single computer (80). In pH, the

computer autonomously monitors its own activities at the

system-call level (described above), making small corrections to

maintain itself in a normal state. In particular, when an executing

program is determined to be behaving abnormally (by the

detection apparatus), pH slows down the program by delaying

the execution of system calls. The more anomalies detected, the

more aggressively pH slows the program down. This graduated

response has the advantage that small delays (possibly corre-

sponding to false positives) are imperceptible to users,while long

delays trigger timeout mechanisms at network and application

levels, effectively killing the misbehaving process.

This basic approach of ‘throttling’ misbehaving systems was

extended to computer networks and was used for controlling

the spread of e-mail viruses and worms (118, 119). In virus

throttling, a hard limit is placed on the rate at which a single

computer can initiate new connections to other computers.

When the limit is exceeded, new connection requests are simply

dropped. This simple effector mechanism was integrated with

immune-like detectors that could discriminate between

different classes of connections (e.g. web requests and e-mail
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messages), adaptively setting the appropriate threshold for

each detector (120).

Putting it all together

The previous subsections reviewed computational analogs of

several immunological processes and described how they

contribute to computer security applications. The computational

mechanisms are crude compared with the details of natural

biology, and in many cases it is only the highest level concepts

that have been borrowed. Negative selection allows the system to

operate without central coordination, affinity maturation

provides a directed learning process, avidity and costimulation

help control autoimmunity, representation diversity (analogous

to allelic diversity in MHC) compensates for gaps in coverage

(false negatives), and homeostatic mechanisms help the system

to achieve a graduated response to perturbations. To date,

however, no system incorporates all of these elements into

a single functioning system. Some of the more comprehensive

implementations include LISYS (92), CDIS (97, 121), pH (80),

andmore recently, a system developed formobile ad hoc networks

(100), although this latter system was tested only in simulation.

Fig. 6 illustrates how the components were combined in the

LISYS system using the setup shown in Fig. 4.

Applications to biomedicine

ABM methods for modeling immunology were described

above. This section describes how these methods have been

used to study immune responses to specific infections: HIV,

tuberculosis, influenza, and the primary immune response in

lymph nodes.

Models of HIV

HIV has beenmodeled extensively usingmathematical methods

(3), and there have been several ABM as well, including the two

CA models of HIV in lymph nodes described below.

Modeling multiple time scales

Zorzenon dos Santos and Coutinho (122) introduced a CA

model that reproduces the two time scales of an HIV infection:

the short time scale (weeks) associated with the primary

response and the long one (years) associated with the clinical

latency period and the onset of acquired immunodeficiency

syndrome (AIDS) (122). The studies suggest that mean-field

ordinary differential equation (ODE) models fail to reproduce

the two-scale dynamics of HIV, because the initial immune

response in the lymphoid organs is localized. Experimental

results illustrating the two-scale dynamics of HIV along with

results from CA simulations are reproduced in Fig. 7.

In the model, each site in the two-dimensional square grid

represents a target cell for HIV, namely a CD4þ T cell or

amonocyte. A cell’s neighbors consist of the eight adjacent cells.

Each target cell can be in one of four states: healthy, infected A1,

infected A2, or dead. An infected-A1 cell corresponds to an

infected cell that is capable of spreading the infection. An

infected-A2 cell corresponds to an infected cell in its final stage

before apoptosis. Infected-A2 cells can infect healthy cells only

when other infected-A2 cells are present in sufficient concen-

Fig. 6. Detector life cycle in a computer immune system. Detectors
corresponding to network connections are generated with random bit
patterns. Each detector is immature for two days while it undergoes
negative selection (analogous to T cells in the thymus). During this
time, it is matched against all new network connections, and if it
matches even a single connection, it is deleted and replaced by a new
randomly created detector. After 2 days, the detector is labeled
‘mature’. For the next 7 days it is matched against all new network
connections. If during this time, the activation threshold is exceeded,

the detector is activated, and otherwise it dies (analogous to B cells).
Once activated, the detector must receive costimulation from a human
operator within 24 h (analogous to T-cell help), otherwise it dies.
There is no effector arm in this system. Activated detectors that receive
costimulation signal an alarm rather than taking autonomous action.
After costimulation, the activated detectors enter the memory pool,
living indefinitely. Figure adapted with permission from Hofmeyr and
Forrest (92). Copyright ª 2000 by the Massachusetts Institute of
Technology.
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trations. The rules for the CA simulation are the following:

a healthy cell becomes infected A1 in the next time step if any of

its eight neighbors are infected A1 or if at least 2 < R < 8 of its

neighbors are infected A2; an infected-A1 cell becomes

infected-A2 cell after t time steps; an infected-A2 cell dies in

the next time step; a dead cell is replaced by a healthy cell with

probability prepl and otherwise remains dead in the next time step;

and new cells are created as infected-A1 cells with probability

pinfec, such that the rate at which dead cells are replaced by

infected-A1 cells is pnewinfec ¼ prepl&pinfec. The last rule simulates

the arrival of infected cells, either from other compartments or

from the activation of latent infected cells.

In the model, infection is permanent, because new infected

cells are continually added. These infection seeds lead to the

formation of predictable square waves of infection, as seen in

Fig. 8B,C. In turn, the square waves interact with each other,

ultimately forming a more complex square wave pattern,

illustrated in Fig. 8D.

Spatial effects

Strain et al. (123) described a three-dimensional model of HIV,

which incorporates additional biophysical properties. The

model’s goal was to study the role of spatial effects in viral

propagation. Assuming that virus is released as a single burst by

an infectious cell, the diffusion coefficient was determined, and

an expression derived for the probability Pb(i) that a cell i sites

away from the burst becomes infected. From this determina-

tion, the basic reproduction ratio (R0) was calculated for HIV,

taking into consideration the localized spatial nature of viral

bursts. The calculation predicts that viral propagation is limited

by viral stability at low target cell density, and by geometry

(target cell’s radius) at high cell density.

Each site of the three-dimensional grid can be in one of three

states: empty (E), infected (I), or target (T). The following rules

determine the simulation dynamics: a target cell at site i

becomes infected at the next time step with a probability

+
j 6¼i

Pb
!
i'j

"
; a site containing an infected cell becomes empty in

the next time step (death); and an empty site acquires a target

cell in the next time step with probability sTþ1
n+nndT, where

nn indicates nearest-neighbor lattice sites, and n is the total

number of nearest neighbors [six for the simple cubic lattice

used in Strain et al. (123)]. The terms dT and sT are the rate of
repopulation of empty lattice site, as a result of the division of

immediate neighbors, and influx of cells from peripheral blood

or from the thymus, respectively.

The spatiotemporal dynamics of the model are determined

by propagation efficiency and recovery rate. If the propagation

efficiency causes the reproduction ratio to be less than one, the

infection does not propagate. The long-term dynamics of the

model are determined by the rate of recovery of target cells.

Infection propagates as radial wave fronts, leaving a wake of

empty cells. If cells recover quickly, virus can diffuse from

producer cells in the wave front back across the wake. After the

initial wave propagates to the edge of the grid, the system can

settle into a chaotic attractor in which infected, target, and

empty sites coexist (123). If recovery is slow, the infection

propagates transiently as a unidirectional wave. In this case,

infection can be sustained only if the influx of target cells to

random empty sites of the grid is non-zero (sT 6¼ 0).
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Fig. 7. Experimental HIV data (A) and simulation results from the
CA model (B). (A) The density of CD4þ T cells (open squares) and
virus concentration (full circles) are shown. (B) The density of healthy
(open squares) and infected (full circles) target cells are shown. Fig. 7A
is reproduced and adapted by permission from Pantaleo G, Grazioi C,

Fauci AS. The immunopathogenesis of human immunodeficiency virus
infection. N Engl J Med 1993;328:327–335. Copyright ª 1993
Massachusetts Medical Society. All rights reserved. Fig. 7B is reprinted
with permission from Zorzenon dos Santos and Coutinho (122).
Copyright 2001 by the American Physical Society.
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Summary and comparison

Neither model accounts for target cell motility. This assumption

is more serious in the case of the first model, because the model

simulates HIV dynamics on the scale of several weeks to even

years. Allowing the cells to move, for example, would prevent

the formation of the perfect square waves, and it could

potentially prevent the emergence of the more complicated

square patterns that were interpreted as the onset of AIDS.

The second model is interesting because it highlights how

ABM can be used to study the contribution of spatial effects on

viral propagation and how this contribution can change the

conclusions arrived at using mean-field approaches. Although

the results need to be validated in more realistic models, the

finding that ODE models, such as those proposed in Perelson

et al. (124), might overestimate viral infectiousness by more

than an order of magnitude, is of interest to modelers and

experimentalists alike.

Models of Mtb

We discuss two recent models of Mtb, one special purpose

simulation known as the Segovia-Juarez et al. model (125) and

one using the CyCells simulator (41). Although the models are

similar, there are three key differences. First, the Segovia-Juarez

et al. model simulates a two-dimensional slice of tissue, while

the CyCells model is in three dimensions. The models also treat

cell movement differently. The high density of cells in

granulomas makes accurate treatment of collisions between

cells and cell pressure in overcrowded regions crucial. In the

Segovia-Juarez et al. model, cells move discretely from grid site

to grid site. In the CyCells model, cell positions are defined by

continuous-valued coordinates, and cells adjust their position in

response to pressure from other cells. Cells can overlap to

account for the fact that real cells can deform to pack tightly, but

they are subject to a repulsive force that increases with

increasing overlap (41). Finally, the two models differ in how

they represent extracellular bacteria. In the CyCells model,

extracellular bacteria are modeled explicitly, like T cells and

macrophages, rather than as a continuous-valued concentration

at each site, as in the Segovia et al. model.

Two-dimensional model

The Segovia-Juarez et al. model (125) is defined on a two-

dimensional square grid with toroidal boundary conditions,

representing a cross-section of alveolar lung tissue. The size of

one lattice site matches the diameter of the largest cells in the

model: macrophages, with a diameter of 20 mm. The discrete

Fig. 8. Screenshots from the Zorzenon dos
Santos and Coutinho CA simulation of HIV
infection at (A) 5, (B) 18, (C) 25, and (D)
200 weeks. Colors mark healthy (blue),
infected A1 (yellow), infected A2 (green), and
dead (red) CD4þ T cells or monocytes, the
targets of HIV. Figure is reprinted with
permission from Zorzenon dos Santos and
Coutinho (122). Copyright 2001 by the
American Physical Society.
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agents are macrophages and T cells, both of which move

randomly on the grid biased by cytokine concentration. The

macrophages can be in any of four states: resting, infected,

chronically infected, or activated. Resting macrophages ingest

extracellular bacteria and either kill them and remain in the

resting state, or become infected. Once phagocytosed, the

intracellular bacteria grow according to the logistic equation.

An infected macrophage with only a small number of Mtb

(<Nc) is activated in the presence of T cells. Otherwise, it

becomes chronically infected once the number of intracellular

Mtb exceeds a set threshold. Chronically infected macrophages

die either by bursting (releasing all their Mtb) or from contact

with cytotoxic T cells (releasing a smaller number of Mtb). An

activated macrophage clears all of its intracellular Mtb and kills

most of the extracellular Mtb in the site it occupies.

Extracellular Mtb and cytokines are represented as real-valued

variables that diffuse across the grid. In contrast with the CyCells

model, there is one generic cytokine type, which biases the

random movement of T cells and macrophages. Cytokines are

released by infected, chronically infected, and activated macro-

phages, and they are cleared at a fixed rate. In a real infection, the

immune response can lead to multicellular structures known as

granulomas. In the model, granulomas arise from the attractive

effect of cytokines and because the motility of infected macro-

phages is reduced compared with the resting ones.

The model is distinctive, because its designers conducted an

extensive sensitivity analysis of 12 of the 27 major parameters

using the number of extracellular bacterium and granuloma size

as outcome variables. For example, intracellular growth rate of

Mtb is positively correlated with the number of extracellular

Mtb at early times of the infection and at much later times post-

infection, but it is negatively correlated at intermediate times.

This finding suggests that at early times, a large growth rate is

necessary for the infection to establish itself, while at later times,

a smaller growth rate is more favorable to ensure a large and

lasting infection.

CyCells model of tuberculosis

The second model, built at about the same time using CyCells, is

three dimensional, represents a slightly richer set of cytokines,

and uses more realistic rules for cell movement (41). The

simulation volume is discretized as a three-dimensional cubic

latticewith toroidal boundary conditions. As in the earliermodel,

two cell types aremodeled:macrophages and T cells. The CyCells

model includes tumor necrosis factor (TNF), interleukin-10 (IL-

10), and interferon-g (IFN-g), although the three cytokines act as
surrogates for an even greater array of cytokines. Cytokines

diffuse through the grid with fixed diffusion and clearance rates.

IFN-g has the effect of downregulating IL-10, and it causes newly
infectedmacrophages to activate and clear intracellular bacteria in

the presence of T cells. IL-10 can shut off TNF production by

newly infected macrophages, and TNF increases the chance of

newly infected macrophages to become activated and clear

intracellular bacterium.

Macrophages in the model can be in one of three states:

uninfected, newly infected, and chronically infected. Uninfected

macrophages become newly infected by phagocytosing extracel-

lular Mtb. Newly infected macrophages can produce cytokines

and/or kill their intracellular Mtb, provided that they encounter T

cells and are exposed to the appropriate local cytokine environ-

ment. Over time, infected macrophages lose the ability to acquire

these functions (to activate), and theybecomechronically infected.

The cells in the model can reside at any point in three-

dimensional space. Cell movement follows a persistent random

walk, where each cell type has a speed at which it moves for

a fixed time interval, after which it randomly picks a new

direction. Cells sense the local cytokine concentration at their

grid site, but in some cases they interact with cells from

neighboring sites as well as their own site.

Simulations with this model replicated qualitative outcomes

from several different experiments in murine models of

tuberculosis. These outcomes included the unrestricted growth

of Mtb in the presence of macrophages alone, and restricted

replication following the influx of immune T cells. The model

also qualitatively reproduced experimental results on the effects

of IFN-g, where reduced signaling because of IFN-g leads to

enhanced mycobacterial growth. These results were surprising

because the model is highly simplified. Yet, it captured some of

the contradictory effects of IL-10, which both inhibits

inflammation (reducing macrophage influx) and inhibits

macrophage activation.

Models of influenza

Until recently, there were relatively few mathematical or

computationalmodels of influenza. The first one, dating back to

1976, investigated influenza infection dynamics in mice (126).

It was a simple model, consisting of seven variables (or

compartments) and five rate parameters. The second model in

1994 studied the dynamics of influenza infection in humans

(2). It is more complex, uses ODEs with delays, and consists of

13 variables and 60 parameters.

ABM approaches to influenza date back at least to Smith et al.’s

(46, 127) study of the effect of repeated annual influenza

vaccination. This model focused on cross-reactive memory

by observing that immune memory resembles associative
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memories used in computing, in particular, Kanerva’s Sparse

Distributed Memory (128). In the model, B cells (naive cells,

plasma cells, andmemory cells) and antibodies were represented

as memory elements, and antigens (both vaccines and infectious

strains)were interpreted asmemory probes. All of these elements

were represented as strings of 20 symbols over a four-letter

alphabet, where each symbol could take on one of four different

values. Themodel simulated a realistic-sized B-cell repertoire and

was used to investigate vaccine design for influenza. The results

suggested the antigenic distance hypothesis, that variation in

repeat vaccine efficacy is because of differences in antigenic

distances among vaccine strains and between vaccine strains and

the epidemic strain in particular outbreaks. Since the original

publications, the model has been extended and refined (129,

130), which led to the concept of ‘antigenic cartography’ (21,

131, 132). Antigenic cartography is now a core component of

the human influenza vaccine strain selection process.

A more recent ABM influenza model, the above-mentioned

ma_immune, consists of a two-dimensional square lattice,

where each site corresponds to a ciliated lung epithelial cell that

can be in one of five states: healthy, containing, expressing,

infectious, or dead. Additionally, a population of generic

immune cells patrols the simulated tissue (the grid), moving

randomly from site to site. The simulation is initiated with

a certain fraction of cells containing virions. After 4 h, these cells

start expressing viral peptides, which means that they can be

recognized and killed by the patrolling immune cells. Then, 2 h

later, the expressing epithelial cells also start to infect their

immediate neighbors. Finally, after a cell has been infected for

24 h, it dies. Dead epithelial cells are replaced by healthy cells at

a fixed rate. When a generic immune cell encounters an

epithelial cell expressing viral peptide, it kills that cell, and

recruitment takes place by probabilistically adding a new

immune cell to random locations on the simulation grid.

In Beauchemin et al. (34), the model was calibrated to the

dynamics of an influenza A viral infection, reproducing the

general shape of a response to an uncomplicated viral infection

and giving quantitatively reasonable results when parameter-

ized for a particular viral infection. When the parameter values

were set to biologically plausible values or ranges, only 5 of the

12 parameters could be fit using available experimental data.

Even with these restrictions, the model was able to reproduce

accurately the available dynamical features of influenza A

infection. The model’s agreement with available data also

compares well to the Bocharov and Romanyukha differential

equation model (2). The results obtained with the ma_immune

model suggest that by adding additional details to the model,

such as specific immune cell types, explicit representation of

virions and the appropriate cytokines, ma_immune could

become a useful model of influenza A infection.

Model of a primary immune response in a lymph node

Catron et al. (133) describe an ABM of a primary immune

response induced by antigen in a skin-draining lymph node. The

ABM consists of a two-dimensional plane. The plane corresponds

to a 10 mm slice (approximately one cell diameter) through

a hypothetical spherical lymph node 2 mm in diameter (the side

dimension of the simulation plane). Themodel includes T cells, B

cells, and dendritic cells (DCs). Random motion paths for each

cell in the simulation were designed individually and scaled to

their known approximate speed, based on observations from

two-photon microscopy (54, 55). Additional constraints were

placed on the paths such that B cells would be confined to the

follicles (except 5 h after exposure to antigen when their

movement is restricted to the outer edge of the follicles near the

T-cell area), DCs to the T-cell area, and T cells to the T-cell area

and outer edges of the follicles for 90 and 10% of their paths,

respectively. When a collision occurs between two cells, the

motion of the cells along their respective paths is halted

temporarily to mimic intercellular interaction. This model is

conceptually important, because it was constructed by an

experimentalist, showing that ABM techniques are starting to

bridge the gap between theory and experiment.

Summary and conclusions

The previous sections have reviewed a body of work that seeks to

construct computational immune systems that behave analo-

gously to the natural immune system. Some of the examples

(Immune system modeling with ABM: and Applications to biomedicine) were

developed as models and others (Engineering an immune system) as

practical solutions to engineering problems. In both cases,

computer immunology proceeds by hypothesizing a sufficient

set of mechanisms needed to produce a desired behavior and

implementing them as computer programs. This constructive

approach to understanding immunology differs from experi-

mental methods that selectively remove functionality such as

experiments with knockout mice. Although the computational

mechanisms are crude compared with their biological analogs,

the resulting computer immune systems can show surprisingly

realistic behaviors and sometimes be calibrated closely with

experimental data (Applications to biomedicine). In the context of

engineering problems, it is often possible to analyze the

functional behavior of a given mechanism more rigorously than

what might be achieved experimentally, in some cases providing

insight into the natural immune system.
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The ABM approach to immune modeling (Agent-based modeling

for immunology) led to the comprehensive abstract models

described in Immune system modeling with ABM, which in turn were

used to create specialized models of particular immunological

phenomena (Applications to biomedicine). As computational power

increased, the geometry of the models expanded from one-

dimensional to two-dimensional and now three-dimensional

simulations, as well as incorporating cell movement. In addition,

visualization methods became more sophisticated, simplifying

the task of understanding and specifying the models. This

facilitated the use of models by experimentalists, culminating in

the Catronmodel (Model of a primary immune response in a lymph node) in

which the model itself was developed by an experimentalist. In

the future, we can expect these trends to continue, with even

more ambitious and detailed models, more sophisticated visual-

izations that run in real-time, and more direct involvement by

experimentalists in the model building process.

There are strengths and limitations to this approach. It can be

difficult to identify the proper level of abstraction, decide what

aspects of the immune response are important and what their

proper role or ‘purpose’ is, and how they should be translated

into computation. In spite of these limitations, computational

abstractions and concepts have proved powerful enough to

provide important insights into immunological processes

(Applications to biomedicine) and to solve challenging engineering

problems (Engineering an immune system). By abstracting away from

physical realism, AIS can enhance our understanding of the

large-scale patterns of interaction that occur among themillions

of individual components that comprise a natural immune

system. Efforts to build an immune system tailored for

computer networks have highlighted the crucial roles played

by certain immune system mechanisms.

The synthetic approach to modeling immune system behavior

has generated interest, but there is a question about what an ABM

model contributes to understanding the natural immune system.

There are several ways that the models described in this paper

complement experimentation in ‘wet labs’. First, if a synthetic

computer model captures the relevant phenomena, it is much

easier to perform experiments on the model than on the natural

system. In particular, it is much easier to isolate mechanisms and

test hypotheses about how they function and what their

significance is to the overall system. For example, the Smith

model (46) showed that the antigenic distance hypothesis

provided a parsimonious explanation of complex results on

vaccine effectiveness. Second, in an era when an overwhelming

volume of experimental results have become available, it is no

longer humanly possible to comprehend all of the data thatmight

be relevant to a problem of interest. Synthetic models, such as

CyCells, can be used to integrate specialized models for different

phenomena into one system to see how they interact (e.g. to test

if the assumptions of one specialized model contradict those of

another). Models that can incorporate data and hypotheses from

many different experiments will likely be necessary in the future

to integrate knowledge so that it can be used productively.

Although many of the models described here do not lend

themselves to rigorous mathematical analysis, they encode

assumptions and hypotheses in a precise, mechanical way.

Running models allows researchers to identify gaps and

inconsistencies in their knowledge by making assumptions

explicit, allowing them to make predictions, generate new

hypotheses, and suggest new experiments. By better understand-

ing the functional significance of different components of the

immune system, it may be possible to better predict the effects of

therapeutic interventions. In the future, models similar to those

described in this review may be used to predict efficacy of new

treatments and vaccines, thus avoiding some costly experiments.

The modeling process itself has value. Although we have

focused in this paper on the artifacts that modeling produces,

modeling is not only about building a model. At its best, it

involves an iterative process of model construction, model

analysis, followed by the creation of newmodels determined by

the results of the analysis. An important feature of the models

described here is their flexibility, allowing researchers to try out

variations within the same framework and to add complexity to

the model incrementally. This greatly simplifies the work of

testing alternative hypotheses, designing experiments, and

discovering both necessary and sufficient mechanisms to

explain observed behavior.
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