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Between order and chaos
James P. Crutchfield

What is a pattern? How dowe come to recognize patterns never seen before? Quantifying the notion of pattern and formalizing
the process of pattern discovery go right to the heart of physical science. Over the past few decades physics’ view of nature’s
lack of structure—its unpredictability—underwent a major renovation with the discovery of deterministic chaos, overthrowing
two centuries of Laplace’s strict determinism in classical physics. Behind the veil of apparent randomness, though, many
processes are highly ordered, following simple rules. Tools adapted from the theories of information and computation have
brought physical science to the brink of automatically discovering hidden patterns and quantifying their structural complexity.

One designs clocks to be as regular as physically possible. So
much so that they are the very instruments of determinism.
The coin flip plays a similar role; it expresses our ideal of

the utterly unpredictable. Randomness is as necessary to physics
as determinism—think of the essential role that ‘molecular chaos’
plays in establishing the existence of thermodynamic states. The
clock and the coin flip, as such, are mathematical ideals to which
reality is often unkind. The extreme difficulties of engineering the
perfect clock1 and implementing a source of randomness as pure as
the fair coin testify to the fact that determinism and randomness are
two inherent aspects of all physical processes.

In 1927, van der Pol, a Dutch engineer, listened to the tones
produced by a neon glow lamp coupled to an oscillating electrical
circuit. Lacking modern electronic test equipment, he monitored
the circuit’s behaviour by listening through a telephone ear piece.
In what is probably one of the earlier experiments on electronic
music, he discovered that, by tuning the circuit as if it were a
musical instrument, fractions or subharmonics of a fundamental
tone could be produced. This is markedly unlike common musical
instruments—such as the flute, which is known for its purity of
harmonics, or multiples of a fundamental tone. As van der Pol
and a colleague reported in Nature that year2, ‘the turning of the
condenser in the region of the third to the sixth subharmonic
strongly reminds one of the tunes of a bag pipe’.

Presciently, the experimenters noted that when tuning the circuit
‘often an irregular noise is heard in the telephone receivers before
the frequency jumps to the next lower value’.We nowknow that van
der Pol had listened to deterministic chaos: the noise was produced
in an entirely lawful, ordered way by the circuit itself. The Nature
report stands as one of its first experimental discoveries. Van der Pol
and his colleague van der Mark apparently were unaware that the
deterministic mechanisms underlying the noises they had heard
had been rather keenly analysed three decades earlier by the French
mathematician Poincaré in his efforts to establish the orderliness of
planetary motion3–5. Poincaré failed at this, but went on to establish
that determinism and randomness are essential and unavoidable
twins6. Indeed, this duality is succinctly expressed in the two
familiar phrases ‘statisticalmechanics’ and ‘deterministic chaos’.

Complicated yes, but is it complex?
As for van der Pol and van der Mark, much of our appreciation
of nature depends on whether our minds—or, more typically these
days, our computers—are prepared to discern its intricacies. When
confronted by a phenomenon for which we are ill-prepared, we
often simply fail to see it, although we may be looking directly at it.
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Perception is made all the more problematic when the phenomena
of interest arise in systems that spontaneously organize.

Spontaneous organization, as a common phenomenon, reminds
us of a more basic, nagging puzzle. If, as Poincaré found, chaos is
endemic to dynamics, why is the world not a mass of randomness?
The world is, in fact, quite structured, and we now know several
of the mechanisms that shape microscopic fluctuations as they
are amplified to macroscopic patterns. Critical phenomena in
statistical mechanics7 and pattern formation in dynamics8,9 are
two arenas that explain in predictive detail how spontaneous
organization works. Moreover, everyday experience shows us that
nature inherently organizes; it generates pattern. Pattern is as much
the fabric of life as life’s unpredictability.

In contrast to patterns, the outcome of an observation of
a random system is unexpected. We are surprised at the next
measurement. That surprise gives us information about the system.
We must keep observing the system to see how it is evolving. This
insight about the connection between randomness and surprise
was made operational, and formed the basis of the modern theory
of communication, by Shannon in the 1940s (ref. 10). Given a
source of random events and their probabilities, Shannon defined a
particular event’s degree of surprise as the negative logarithm of its
probability: the event’s self-information is Ii=−log2pi. (The units
when using the base-2 logarithm are bits.) In this way, an event,
say i, that is certain (pi = 1) is not surprising: Ii = 0 bits. Repeated
measurements are not informative. Conversely, a flip of a fair coin
(pHeads= 1/2) is maximally informative: for example, IHeads= 1 bit.
With each observation we learn in which of two orientations the
coin is, as it lays on the table.

The theory describes an information source: a random variable
X consisting of a set {i = 0, 1, ... , k} of events and their
probabilities {pi}. Shannon showed that the averaged uncertainty
H [X ] =

∑
i piIi—the source entropy rate—is a fundamental

property that determines how compressible an information
source’s outcomes are.

With information defined, Shannon laid out the basic principles
of communication11. He defined a communication channel that
accepts messages from an information source X and transmits
them, perhaps corrupting them, to a receiver who observes the
channel output Y . To monitor the accuracy of the transmission,
he introduced the mutual information I [X ;Y ] =H [X ]−H [X |Y ]
between the input and output variables. The first term is the
information available at the channel’s input. The second term,
subtracted, is the uncertainty in the incoming message, if the
receiver knows the output. If the channel completely corrupts, so
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that none of the source messages accurately appears at the channel’s
output, then knowing the output Y tells you nothing about the
input and H [X |Y ] = H [X ]. In other words, the variables are
statistically independent and so the mutual information vanishes.
If the channel has perfect fidelity, then the input and output
variables are identical; what goes in, comes out. The mutual
information is the largest possible: I [X ;Y ] = H [X ], because
H [X |Y ] = 0. The maximum input–output mutual information,
over all possible input sources, characterizes the channel itself and
is called the channel capacity:

C =max
{P(X)}

I [X ;Y ]

Shannon’s most famous and enduring discovery though—one
that launched much of the information revolution—is that as
long as a (potentially noisy) channel’s capacity C is larger than
the information source’s entropy rate H [X ], there is way to
encode the incoming messages such that they can be transmitted
error free11. Thus, information and how it is communicated were
given firm foundation.

How does information theory apply to physical systems? Let
us set the stage. The system to which we refer is simply the
entity we seek to understand by way of making observations.
The collection of the system’s temporal behaviours is the process
it generates. We denote a particular realization by a time series
of measurements: ...x−2x−1x0x1 ... . The values xt taken at each
time can be continuous or discrete. The associated bi-infinite
chain of random variables is similarly denoted, except using
uppercase: ...X−2X−1X0X1 .... At each time t the chain has a past
Xt : = ...Xt−2Xt−1 and a future X:=XtXt+1 ....We will also refer to
blocksXt ′:=XtXt+1 ...Xt ′−1,t< t ′. The upper index is exclusive.

To apply information theory to general stationary processes, one
uses Kolmogorov’s extension of the source entropy rate12,13. This
is the growth rate hµ:

hµ= lim
`→∞

H (`)
`

where H (`)=−
∑
{x:`}Pr(x:`)log2Pr(x:`) is the block entropy—the

Shannon entropy of the length-` word distribution Pr(x:`). hµ
gives the source’s intrinsic randomness, discounting correlations
that occur over any length scale. Its units are bits per symbol,
and it partly elucidates one aspect of complexity—the randomness
generated by physical systems.

We now think of randomness as surprise and measure its degree
using Shannon’s entropy rate. By the same token, can we say
what ‘pattern’ is? This is more challenging, although we know
organization when we see it.

Perhaps one of the more compelling cases of organization is
the hierarchy of distinctly structured matter that separates the
sciences—quarks, nucleons, atoms, molecules, materials and so on.
This puzzle interested Philip Anderson, who in his early essay ‘More
is different’14, notes that new levels of organization are built out of
the elements at a lower level and that the new ‘emergent’ properties
are distinct. They are not directly determined by the physics of the
lower level. They have their own ‘physics’.

This suggestion too raises questions, what is a ‘level’ and
how different do two levels need to be? Anderson suggested that
organization at a given level is related to the history or the amount
of effort required to produce it from the lower level. As we will see,
this can be made operational.

Complexities
To arrive at that destination we make two main assumptions. First,
we borrowheavily fromShannon: every process is a communication
channel. In particular, we posit that any system is a channel that

communicates its past to its future through its present. Second, we
take into account the context of interpretation. We view building
models as akin to decrypting nature’s secrets. How do we come
to understand a system’s randomness and organization, given only
the available, indirect measurements that an instrument provides?
To answer this, we borrow again from Shannon, viewing model
building also in terms of a channel: one experimentalist attempts
to explain her results to another.

The following first reviews an approach to complexity that
models system behaviours using exact deterministic representa-
tions. This leads to the deterministic complexity and we will
see how it allows us to measure degrees of randomness. After
describing its features and pointing out several limitations, these
ideas are extended to measuring the complexity of ensembles of
behaviours—to what we now call statistical complexity. As we
will see, it measures degrees of structural organization. Despite
their different goals, the deterministic and statistical complexities
are related and we will see how they are essentially complemen-
tary in physical systems.

Solving Hilbert’s famous Entscheidungsproblem challenge to
automate testing the truth of mathematical statements, Turing
introduced a mechanistic approach to an effective procedure
that could decide their validity15. The model of computation
he introduced, now called the Turing machine, consists of an
infinite tape that stores symbols and a finite-state controller that
sequentially reads symbols from the tape and writes symbols to it.
Turing’s machine is deterministic in the particular sense that the
tape contents exactly determine the machine’s behaviour. Given
the present state of the controller and the next symbol read off the
tape, the controller goes to a unique next state, writing at most
one symbol to the tape. The input determines the next step of the
machine and, in fact, the tape input determines the entire sequence
of steps the Turing machine goes through.

Turing’s surprising result was that there existed a Turing
machine that could compute any input–output function—it was
universal. The deterministic universal Turing machine (UTM) thus
became a benchmark for computational processes.

Perhaps not surprisingly, this raised a new puzzle for the origins
of randomness. Operating from a fixed input, could a UTM
generate randomness, orwould its deterministic nature always show
through, leading to outputs that were probabilistically deficient?
More ambitiously, could probability theory itself be framed in terms
of this new constructive theory of computation? In the early 1960s
these and related questions led a number of mathematicians—
Solomonoff16,17 (an early presentation of his ideas appears in
ref. 18), Chaitin19, Kolmogorov20 andMartin-Löf21—todevelop the
algorithmic foundations of randomness.

The central question was how to define the probability of a single
object. More formally, could a UTM generate a string of symbols
that satisfied the statistical properties of randomness? The approach
declares that models M should be expressed in the language of
UTM programs. This led to the Kolmogorov–Chaitin complexity
KC(x) of a string x. The Kolmogorov–Chaitin complexity is the
size of the minimal program P that generates x running on
a UTM (refs 19,20):

KC(x)= argmin{|P| :UTM ◦P = x}

One consequence of this should sound quite familiar by now.
It means that a string is random when it cannot be compressed: a
random string is its own minimal program. The Turing machine
simply prints it out. A string that repeats a fixed block of letters,
in contrast, has small Kolmogorov–Chaitin complexity. The Turing
machine program consists of the block and the number of times it
is to be printed. Its Kolmogorov–Chaitin complexity is logarithmic
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in the desired string length, because there is only one variable part
of P and it stores log ` digits of the repetition count `.

Unfortunately, there are a number of deep problems with
deploying this theory in a way that is useful to describing the
complexity of physical systems.

First, Kolmogorov–Chaitin complexity is not a measure of
structure. It requires exact replication of the target string. Therefore,
KC(x) inherits the property of being dominated by the randomness
in x. Specifically, many of the UTM instructions that get executed
in generating x are devoted to producing the ‘random’ bits of x. The
conclusion is that Kolmogorov–Chaitin complexity is a measure of
randomness, not a measure of structure. One solution, familiar in
the physical sciences, is to discount for randomness by describing
the complexity in ensembles of behaviours.

Furthermore, focusing on single objects was a feature, not a
bug, of Kolmogorov–Chaitin complexity. In the physical sciences,
however, this is a prescription for confusion. We often have
access only to a system’s typical properties, and even if we had
access to microscopic, detailed observations, listing the positions
and momenta of molecules is simply too huge, and so useless, a
description of a box of gas. In most cases, it is better to know the
temperature, pressure and volume.

The issue is more fundamental than sheer system size, arising
evenwith a few degrees of freedom. Concretely, the unpredictability
of deterministic chaos forces the ensemble approach on us.

The solution to the Kolmogorov–Chaitin complexity’s focus on
single objects is to define the complexity of a system’s process—the
ensemble of its behaviours22. Consider an information source
that produces collections of strings of arbitrary length. Given
a realization x:` of length `, we have its Kolmogorov–Chaitin
complexity KC(x:`), of course, but what can we say about the
Kolmogorov–Chaitin complexity of the ensemble {x:`}? First, define
its average in terms of samples {x i

:` : i=1,...,M }:

KC(`)=〈KC(x:`)〉= lim
M→∞

1
M

M∑
i=1

KC(x i
:`)

How does the Kolmogorov–Chaitin complexity grow as a function
of increasing string length? For almost all infinite sequences pro-
duced by a stationary process the growth rate of the Kolmogorov–
Chaitin complexity is the Shannon entropy rate23:

hµ= lim
`→∞

KC(`)
`

As a measure—that is, a number used to quantify a system
property—Kolmogorov–Chaitin complexity is uncomputable24,25.
There is no algorithm that, taking in the string, computes its
Kolmogorov–Chaitin complexity. Fortunately, this problem is
easily diagnosed. The essential uncomputability of Kolmogorov–
Chaitin complexity derives directly from the theory’s clever choice
of a UTM as themodel class, which is so powerful that it can express
undecidable statements.

One approach to making a complexity measure constructive
is to select a less capable (specifically, non-universal) class of
computationalmodels.We can declare the representations to be, for
example, the class of stochastic finite-state automata26,27. The result
is a measure of randomness that is calibrated relative to this choice.
Thus, what one gains in constructiveness, one looses in generality.

Beyond uncomputability, there is the more vexing issue of
how well that choice matches a physical system of interest. Even
if, as just described, one removes uncomputability by choosing
a less capable representational class, one still must validate that
these, now rather specific, choices are appropriate to the physical
system one is analysing.

At themost basic level, the Turingmachine uses discrete symbols
and advances in discrete time steps. Are these representational
choices appropriate to the complexity of physical systems? What
about systems that are inherently noisy, those whose variables
are continuous or are quantum mechanical? Appropriate theories
of computation have been developed for each of these cases28,29,
although the original model goes back to Shannon30. More to
the point, though, do the elementary components of the chosen
representational scheme match those out of which the system
itself is built? If not, then the resulting measure of complexity
will be misleading.

Is there a way to extract the appropriate representation from the
system’s behaviour, rather than having to impose it? The answer
comes, not from computation and information theories, as above,
but from dynamical systems theory.

Dynamical systems theory—Poincaré’s qualitative dynamics—
emerged from the patent uselessness of offering up an explicit list
of an ensemble of trajectories, as a description of a chaotic system.
It led to the invention of methods to extract the system’s ‘geometry
from a time series’. One goal was to test the strange-attractor
hypothesis put forward byRuelle andTakens to explain the complex
motions of turbulent fluids31.

How does one find the chaotic attractor given a measurement
time series from only a single observable? Packard and others
proposed developing the reconstructed state space from successive
time derivatives of the signal32. Given a scalar time series
x(t ), the reconstructed state space uses coordinates y1(t )= x(t ),
y2(t ) = dx(t )/dt , ... , ym(t ) = dmx(t )/dtm. Here, m + 1 is the
embedding dimension, chosen large enough that the dynamic in
the reconstructed state space is deterministic. An alternative is to
take successive time delays in x(t ) (ref. 33). Using these methods
the strange attractor hypothesis was eventually verified34.

It is a short step, once one has reconstructed the state space
underlying a chaotic signal, to determine whether you can also
extract the equations of motion themselves. That is, does the signal
tell you which differential equations it obeys? The answer is yes35.
This sound works quite well if, and this will be familiar, one
has made the right choice of representation for the ‘right-hand
side’ of the differential equations. Should one use polynomial,
Fourier or wavelet basis functions; or an artificial neural net?
Guess the right representation and estimating the equations of
motion reduces to statistical quadrature: parameter estimation
and a search to find the lowest embedding dimension. Guess
wrong, though, and there is little or no clue about how to
update your choice.

The answer to this conundrum became the starting point for an
alternative approach to complexity—onemore suitable for physical
systems. The answer is articulated in computational mechanics36,
an extension of statistical mechanics that describes not only a
system’s statistical properties but also how it stores and processes
information—how it computes.

The theory begins simply by focusing on predicting a time series
...X−2X−1X0X1 ... . In the most general setting, a prediction is a
distribution Pr(Xt :|x:t ) of futures Xt : = XtXt+1Xt+2 ... conditioned
on a particular past x:t = ...xt−3xt−2xt−1. Given these conditional
distributions one can predict everything that is predictable
about the system.

At root, extracting a process’s representation is a very straight-
forward notion: do not distinguish histories that make the same
predictions. Once we group histories in this way, the groups them-
selves capture the relevant information for predicting the future.
This leads directly to the central definition of a process’s effective
states. They are determined by the equivalence relation:

x:t ∼ x:t ′⇔Pr(Xt :|x:t )=Pr(Xt :|x:t ′)
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The equivalence classes of the relation ∼ are the process’s
causal states S—literally, its reconstructed state space, and the
induced state-to-state transitions are the process’s dynamic T —its
equations of motion. Together, the statesS and dynamic T give the
process’s so-called ε-machine.

Why should one use the ε-machine representation of a
process? First, there are three optimality theorems that say it
captures all of the process’s properties36–38: prediction: a process’s
ε-machine is its optimal predictor; minimality: compared with
all other optimal predictors, a process’s ε-machine is its minimal
representation; uniqueness: any minimal optimal predictor is
equivalent to the ε-machine.

Second, we can immediately (and accurately) calculate the
system’s degree of randomness. That is, the Shannon entropy rate
is given directly in terms of the ε-machine:

hµ=−
∑
σ∈S

Pr(σ )
∑
{x}

Pr(x|σ )log2Pr(x|σ )

where Pr(σ ) is the distribution over causal states and Pr(x|σ ) is the
probability of transitioning from state σ onmeasurement x .

Third, the ε-machine gives us a new property—the statistical
complexity—and it, too, is directly calculated from the ε-machine:

Cµ=−
∑
σ∈S

Pr(σ )log2Pr(σ )

The units are bits. This is the amount of information the process
stores in its causal states.

Fourth, perhaps the most important property is that the
ε-machine gives all of a process’s patterns. The ε-machine itself—
states plus dynamic—gives the symmetries and regularities of
the system. Mathematically, it forms a semi-group39. Just as
groups characterize the exact symmetries in a system, the
ε-machine captures those and also ‘partial’ or noisy symmetries.

Finally, there is one more unique improvement the statistical
complexity makes over Kolmogorov–Chaitin complexity theory.
The statistical complexity has an essential kind of representational
independence. The causal equivalence relation, in effect, extracts
the representation from a process’s behaviour. Causal equivalence
can be applied to any class of system—continuous, quantum,
stochastic or discrete.

Independence from selecting a representation achieves the
intuitive goal of using UTMs in algorithmic information theory—
the choice that, in the end, was the latter’s undoing. The
ε-machine does not suffer from the latter’s problems. In this sense,
computational mechanics is less subjective than any ‘complexity’
theory that per force chooses a particular representational scheme.

To summarize, the statistical complexity defined in terms of the
ε-machine solves the main problems of the Kolmogorov–Chaitin
complexity by being representation independent, constructive, the
complexity of an ensemble, and ameasure of structure.

In these ways, the ε-machine gives a baseline against which
any measures of complexity or modelling, in general, should be
compared. It is a minimal sufficient statistic38.

To address one remaining question, let us make explicit the
connection between the deterministic complexity framework and
that of computational mechanics and its statistical complexity.
Consider realizations {x:`} from a given information source. Break
the minimal UTM program P for each into two components:
one that does not change, call it the ‘model’ M ; and one that
does change from input to input, E , the ‘random’ bits not
generated by M . Then, an object’s ‘sophistication’ is the length
of M (refs 40,41):

SOPH(x:`)= argmin{|M | : P =M+E,x:`=UTM ◦P}

1.0|H 0.5|H0.5|T
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1.0|T

1.0|H

A B

a

c

b

d

A

B

D

C

Figure 1 | ε-machines for four information sources. a, The all-heads
process is modelled with a single state and a single transition. The
transition is labelled p|x, where p∈ [0;1] is the probability of the transition
and x is the symbol emitted. b, The fair-coin process is also modelled by a
single state, but with two transitions each chosen with equal probability.
c, The period-2 process is perhaps surprisingly more involved. It has three
states and several transitions. d, The uncountable set of causal states for a
generic four-state HMM. The causal states here are distributions
Pr(A;B;C;D) over the HMM’s internal states and so are plotted as points in
a 4-simplex spanned by the vectors that give each state unit probability.
Panel d reproduced with permission from ref. 44, © 1994 Elsevier.

As done with the Kolmogorov–Chaitin complexity, we can
define the ensemble-averaged sophistication 〈SOPH〉 of ‘typical’
realizations generated by the source. The result is that the average
sophistication of an information source is proportional to its
process’s statistical complexity42:

KC(`)∝Cµ+hµ`
That is, 〈SOPH〉∝Cµ.

Notice how far we come in computational mechanics by
positing only the causal equivalence relation. From it alone, we
derive many of the desired, sometimes assumed, features of other
complexity frameworks. We have a canonical representational
scheme. It is minimal and so Ockham’s razor43 is a consequence,
not an assumption. We capture a system’s pattern in the algebraic
structure of the ε-machine. We define randomness as a process’s
ε-machine Shannon-entropy rate. We define the amount of
organization in a process with its ε-machine’s statistical complexity.
In addition, we also see how the framework of deterministic
complexity relates to computational mechanics.

Applications
Let us address the question of usefulness of the foregoing
by way of examples.

Let’s start with the Prediction Game, an interactive pedagogical
tool that intuitively introduces the basic ideas of statistical
complexity and how it differs from randomness. The first step
presents a data sample, usually a binary times series. The second asks
someone to predict the future, on the basis of that data. The final
step asks someone to posit a state-based model of the mechanism
that generated the data.

The first data set to consider is x:0 = ...HHHHHHH—the
all-heads process. The answer to the prediction question comes
to mind immediately: the future will be all Hs, x: =HHHHH....
Similarly, a guess at a state-based model of the generating
mechanism is also easy. It is a single state with a transition
labelled with the output symbol H (Fig. 1a). A simple model
for a simple process. The process is exactly predictable: hµ = 0
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Figure 2 | Structure versus randomness. a, In the period-doubling route to chaos. b, In the two-dimensional Ising-spinsystem. Reproduced with permission
from: a, ref. 36, © 1989 APS; b, ref. 61, © 2008 AIP.

bits per symbol. Furthermore, it is not complex; it has vanishing
complexity: Cµ= 0 bits.

The second data set is, for example, x:0 = ...THTHTTHTHH.
What I have done here is simply flip a coin several times and report
the results. Shifting frombeing confident and perhaps slightly bored
with the previous example, people take notice and spend a good deal
more time pondering the data than in the first case.

The prediction question now brings up a number of issues. One
cannot exactly predict the future. At best, one will be right only
half of the time. Therefore, a legitimate prediction is simply to give
another series of flips from a fair coin. In terms of monitoring
only errors in prediction, one could also respond with a series of
all Hs. Trivially right half the time, too. However, this answer gets
other properties wrong, such as the simple facts that Ts occur and
occur in equal number.

The answer to the modelling question helps articulate these
issues with predicting (Fig. 1b). The model has a single state,
now with two transitions: one labelled with a T and one with
an H. They are taken with equal probability. There are several
points to emphasize. Unlike the all-heads process, this one is
maximally unpredictable: hµ = 1 bit/symbol. Like the all-heads
process, though, it is simple: Cµ= 0 bits again. Note that the model
is minimal. One cannot remove a single ‘component’, state or
transition, and still do prediction. The fair coin is an example of an
independent, identically distributed process. For all independent,
identically distributed processes,Cµ=0 bits.

In the third example, the past data are x:0 = ...HTHTHTHTH.
This is the period-2 process. Prediction is relatively easy, once one
has discerned the repeated template word w =TH. The prediction
is x: = THTHTHTH.... The subtlety now comes in answering the
modelling question (Fig. 1c).

There are three causal states. This requires some explanation.
The state at the top has a double circle. This indicates that it is a start
state—the state in which the process starts or, from an observer’s
point of view, the state in which the observer is before it begins
measuring. We see that its outgoing transitions are chosen with
equal probability and so, on the first step, a T or an H is produced
with equal likelihood. An observer has no ability to predict which.
That is, initially it looks like the fair-coin process. The observer
receives 1 bit of information. In this case, once this start state is left,
it is never visited again. It is a transient causal state.

Beyond the first measurement, though, the ‘phase’ of the
period-2 oscillation is determined, and the process has moved
into its two recurrent causal states. If an H occurred, then it

is in state A and a T will be produced next with probability
1. Conversely, if a T was generated, it is in state B and then
an H will be generated. From this point forward, the process
is exactly predictable: hµ = 0 bits per symbol. In contrast to the
first two cases, it is a structurally complex process: Cµ= 1 bit.
Conditioning on histories of increasing length gives the distinct
future conditional distributions corresponding to these three
states. Generally, for p-periodic processes hµ = 0 bits symbol−1

and Cµ= log2p bits.
Finally, Fig. 1d gives the ε-machine for a process generated

by a generic hidden-Markov model (HMM). This example helps
dispel the impression given by the Prediction Game examples
that ε-machines are merely stochastic finite-state machines. This
example shows that there can be a fractional dimension set of causal
states. It also illustrates the general case for HMMs. The statistical
complexity diverges and so we measure its rate of divergence—the
causal states’ information dimension44.

As a second example, let us consider a concrete experimental
application of computational mechanics to one of the venerable
fields of twentieth-century physics—crystallography: how to find
structure in disordered materials. The possibility of turbulent
crystals had been proposed a number of years ago by Ruelle53.
Using the ε-machine we recently reduced this idea to practice by
developing a crystallography for complexmaterials54–57.

Describing the structure of solids—simply meaning the
placement of atoms in (say) a crystal—is essential to a detailed
understanding of material properties. Crystallography has long
used the sharp Bragg peaks in X-ray diffraction spectra to infer
crystal structure. For those cases where there is diffuse scattering,
however, finding—let alone describing—the structure of a solid
has been more difficult58. Indeed, it is known that without the
assumption of crystallinity, the inference problem has no unique
solution59. Moreover, diffuse scattering implies that a solid’s
structure deviates from strict crystallinity. Such deviations can
come in many forms—Schottky defects, substitution impurities,
line dislocations and planar disorder, to name a few.

The application of computational mechanics solved the
longstanding problem—determining structural information for
disordered materials from their diffraction spectra—for the special
case of planar disorder in close-packed structures in polytypes60.
The solution provides the most complete statistical description
of the disorder and, from it, one could estimate the minimum
effective memory length for stacking sequences in close-packed
structures. This approach was contrasted with the so-called fault
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Figure 3 | Complexity–entropy diagrams. a, The one-dimensional, spin-1/2 antiferromagnetic Ising model with nearest- and next-nearest-neighbour
interactions. Reproduced with permission from ref. 61, © 2008 AIP. b, Complexity–entropy pairs (hµ,Cµ) for all topological binary-alphabet
ε-machines with n= 1,...,6 states. For details, see refs 61 and 63.

model by comparing the structures inferred using both approaches
on two previously published zinc sulphide diffraction spectra. The
net result was that having an operational concept of pattern led to a
predictive theory of structure in disorderedmaterials.

As a further example, let us explore the nature of the interplay
between randomness and structure across a range of processes.
As a direct way to address this, let us examine two families of
controlled system—systems that exhibit phase transitions. Consider
the randomness and structure in two now-familiar systems: one
from nonlinear dynamics—the period-doubling route to chaos;
and the other from statistical mechanics—the two-dimensional
Ising-spin model. The results are shown in the complexity–entropy
diagrams of Fig. 2. They plot a measure of complexity (Cµ and E)
versus the randomness (H (16)/16 and hµ, respectively).

One conclusion is that, in these two families at least, the intrinsic
computational capacity is maximized at a phase transition: the
onset of chaos and the critical temperature. The occurrence of this
behaviour in such prototype systems led a number of researchers
to conjecture that this was a universal interdependence between
randomness and structure. For quite some time, in fact, there
was hope that there was a single, universal complexity–entropy
function—coined the ‘edge of chaos’ (but consider the issues raised
in ref. 62). We now know that although this may occur in particular
classes of system, it is not universal.

It turned out, though, that the general situation is much more
interesting61. Complexity–entropy diagrams for two other process
families are given in Fig. 3. These are rather less universal looking.
The diversity of complexity–entropy behaviours might seem to
indicate an unhelpful level of complication. However, we now see
that this is quite useful. The conclusion is that there is a wide
range of intrinsic computation available to nature to exploit and
available to us to engineer.

Finally, let us return to address Anderson’s proposal for nature’s
organizational hierarchy. The idea was that a new, ‘higher’ level is
built out of properties that emerge from a relatively ‘lower’ level’s
behaviour. He was particularly interested to emphasize that the new
level had a new ‘physics’ not present at lower levels. However, what
is a ‘level’ and how different should a higher level be from a lower
one to be seen as new?

We can address these questions now having a concrete notion of
structure, captured by the ε-machine, and a way to measure it, the
statistical complexity Cµ. In line with the theme so far, let us answer
these seemingly abstract questions by example. In turns out that
we already saw an example of hierarchy, when discussing intrinsic
computational at phase transitions.

Specifically, higher-level computation emerges at the onset
of chaos through period-doubling—a countably infinite state
ε-machine42—at the peak of Cµ in Fig. 2a.

How is this hierarchical? We answer this using a generalization
of the causal equivalence relation. The lowest level of description is
the raw behaviour of the system at the onset of chaos. Appealing to
symbolic dynamics64, this is completely described by an infinitely
long binary string. We move to a new level when we attempt to
determine its ε-machine. We find, at this ‘state’ level, a countably
infinite number of causal states. Although faithful representations,
models with an infinite number of components are not only
cumbersome, but not insightful. The solution is to apply causal
equivalence yet again—to the ε-machine’s causal states themselves.
This produces a new model, consisting of ‘meta-causal states’,
that predicts the behaviour of the causal states themselves. This
procedure is called hierarchical ε-machine reconstruction45, and it
leads to a finite representation—a nested-stack automaton42. From
this representation we can directly calculate many properties that
appear at the onset of chaos.

Notice, though, that in this prescription the statistical complexity
at the ‘state’ level diverges. Careful reflection shows that this
also occurred in going from the raw symbol data, which were
an infinite non-repeating string (of binary ‘measurement states’),
to the causal states. Conversely, in the case of an infinitely
repeated block, there is no need to move up to the level of causal
states. At the period-doubling onset of chaos the behaviour is
aperiodic, although not chaotic. The descriptional complexity (the
ε-machine) diverged in size and that forced us to move up to the
meta- ε-machine level.

This supports a general principle that makes Anderson’s notion
of hierarchy operational: the different scales in the natural world are
delineated by a succession of divergences in statistical complexity
of lower levels. On the mathematical side, this is reflected in the
fact that hierarchical ε-machine reconstruction induces its own
hierarchy of intrinsic computation45, the direct analogue of the
Chomsky hierarchy in discrete computation theory65.

Closing remarks
Stepping back, one sees that many domains face the confounding
problems of detecting randomness and pattern. I argued that these
tasks translate into measuring intrinsic computation in processes
and that the answers give us insights into hownature computes.

Causal equivalence can be adapted to process classes from
many domains. These include discrete and continuous-output
HMMs (refs 45,66,67), symbolic dynamics of chaotic systems45,
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molecular dynamics68, single-molecule spectroscopy67,69, quantum
dynamics70, dripping taps71, geomagnetic dynamics72 and
spatiotemporal complexity found in cellular automata73–75 and in
one- and two-dimensional spin systems76,77. Even then, there are
many remaining areas of application.

Specialists in the areas of complex systems and measures of
complexity will miss a number of topics above: more advanced
analyses of stored information, intrinsic semantics, irreversibility
and emergence46–52; the role of complexity in a wide range of
application fields, including biological evolution78–83 and neural
information-processing systems84–86, to mention only two of
the very interesting, active application areas; the emergence of
information flow in spatially extended and network systems74,87–89;
the close relationship to the theory of statistical inference85,90–95;
and the role of algorithms from modern machine learning for
nonlinear modelling and estimating complexity measures. Each
topic is worthy of its own review. Indeed, the ideas discussed here
have engaged many minds for centuries. A short and necessarily
focused review such as this cannot comprehensively cite the
literature that has arisen even recently; not so much for its
size, as for its diversity.

I argued that the contemporary fascination with complexity
continues a long-lived research programme that goes back to the
origins of dynamical systems and the foundations of mathematics
over a century ago. It also finds its roots in the first days of
cybernetics, a half century ago. I also showed that, at its core, the
questions its study entails bear on some of the most basic issues in
the sciences and in engineering: spontaneous organization, origins
of randomness, and emergence.

The lessons are clear. We now know that complexity arises
in a middle ground—often at the order–disorder border. Natural
systems that evolve with and learn from interaction with their im-
mediate environment exhibit both structural order and dynamical
chaos.Order is the foundation of communication between elements
at any level of organization, whether that refers to a population of
neurons, bees or humans. For an organismorder is the distillation of
regularities abstracted from observations. An organism’s very form
is a functional manifestation of its ancestor’s evolutionary and its
own developmental memories.

A completely ordered universe, however, would be dead. Chaos
is necessary for life. Behavioural diversity, to take an example, is
fundamental to an organism’s survival. No organism canmodel the
environment in its entirety. Approximation becomes essential to
any system with finite resources. Chaos, as we now understand it,
is the dynamical mechanism by which nature develops constrained
and useful randomness. From it follow diversity and the ability to
anticipate the uncertain future.

There is a tendency, whose laws we are beginning to
comprehend, for natural systems to balance order and chaos, to
move to the interface between predictability and uncertainty. The
result is increased structural complexity. This often appears as
a change in a system’s intrinsic computational capability. The
present state of evolutionary progress indicates that one needs
to go even further and postulate a force that drives in time
towards successively more sophisticated and qualitatively different
intrinsic computation. We can look back to times in which
there were no systems that attempted to model themselves, as
we do now. This is certainly one of the outstanding puzzles96:
how can lifeless and disorganized matter exhibit such a drive?
The question goes to the heart of many disciplines, ranging
from philosophy and cognitive science to evolutionary and
developmental biology and particle astrophysics96. The dynamics
of chaos, the appearance of pattern and organization, and
the complexity quantified by computation will be inseparable
components in its resolution.
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