MAPPING THE ANTIGENIC AND GENETIC EVOLUTION OF INFLUENZA VIRUS

Article: Smith et al.

Presentation: Vanessa Surjadidjaja & Mengqin Cai

BACKGROUND

- Virus: Influenza A (H3N2).
- 2 proteins on the surface of virus: Hemagglutinin (H) and Neuraminidase(N)⁴
- 18 different H subtypes and 11 different N subtypes.¹
- Antigenic evolution: mutation overtime of antigen-binding sites on a virus. When mutated, immune system's antibodies have a harder time detecting the virus.²

INFLUENZA A

Hemagglutinin

Neuraminidase

M2 Ion Channel

https://www.cdc.gov/flu/images/h1n1/3D_Influenza_black_key_pieslice_med.jpg

MAIN POINTS

- Smith et al.'s purpose for mapping the antigenic and genetic evolution:
 - Monitor antigenic difference in vaccine and circulating strains.
 - Estimate the effectiveness of vaccines.
 - May also help predict the success of an emerging strains.
- Create a method that analyzes phenotypes similar to phylogenetic algorithms.

VIROLOGY AND IMMUNOLOGY

- Lapedes and Farber's "shape space": represents antibody/antigen binding.
- Two characteristics considered: coordinates and distance.
- Coordinates in the space represents binding attributes such as geometric shape, charge, hydrophobicity.
- Distance in the spaces between points represents binding affinity. Less space, greater affinity, stronger bind.³

VIROLOGY AND IMMUNOLOGY

- Antigenic drift: small changes in virus's genes that happen over time during replication. Small changes lead to viruses closely related and usually share antigenic properties.
- Antigenic shift: major change in virus. Usually results in hemagglutinin and/or hemagglutinin and neuraminidase protein combination.²
- Glycoprotein Hemagglutinin (HA): Antigen on surface of virus. Antibodies attach to these glycoproteins.
- HA evolves with antigenic drift.

ANTIGENIC MAP

- Different strains of Influenza A organized in clusters.
- Vaccine is updated when there is a 2-unit difference between the vaccine strain and next season's expected strain.
- Reason why each cluster has at least one vaccine strain.

ANTIGENIC AND GENETIC EVOLUTION

•	Correlation between antigenic
	distance and number of
	amino acids was 0.81.

- On average 2.9 amino acid substitutions result in one unit change in distance.
- Rate of antigenic evolution per amino acid substitution was slower within cluster.

Cluster	Genetic distance (aa changes)	Antigenic distance (units)	Genetic antigenic ratio	Cluster-difference substitutions					
transition				Site A	Site B	Site C	Site D	Site E	Othe
K68-EN72	12.1	3.4	3.6	T122N G144D	T155Y* N188D		R207K		
N72-VI75	14.6	4.4	3.3	N137S*† S145N‡	L164Q Q189K S193D‡	N53D I278S	F174S R102K‡ I213V I217V I230V		
175-TX77	14.8	3.4	4.4	S137Y*†	G158E‡ Q164L D193N‡	K50R† D53N	S174F K201R‡ V213I V230I	E82K M260I	
X77-BA79	16.0	3.3	4.8	N133S‡ P143S G146S	K156E‡ T160K O197R‡	N53D N54S	D172G† V217I V244L	162K K82E	
A79-SI87	11.9	4.9	2.4	G124D‡	Y155H* K189R				
187-BE89	6.9	4.6	1.5	N145K‡					
E89-BE92	13.7	7.8	1.8	S133D‡ K145N‡	E156K‡ E190D*‡			T262N‡	
E92-WU95	9.9	4.6	2.2	N145K‡					
/U95-SY97	16.0	4.7	3.4		K156Q‡ E158K‡ V196A†	N276K†		K62E	
Y97-FU02	16.0	3.5	4.5	A131T	H155T* Q156H‡	R50G†		H75Q E83K	L25I V202I W222 G225E
otal verage D	131.9 13.2 2.9	44.6 4.5 1.3	3.2 1.1						

ANTIGENIC AND GENETIC EVOLUTION

 SI87 to BE89 and BE92 to WU95 has one amino acid substitution.

 Suggests that the substitution has a major antigenic effect and can create a cluster transition on its own.

Cluster	Genetic distance (aa changes)	Antigenic distance (units)	Genetic antigenic ratio	Cluster-difference substitutions					
ransition				Site A	Site B	Site C	Site D	Site E	Othe
(68-EN72	12.1	3.4	3.6	T122N G144D	T155Y* N188D		R207K		
172-V175	14.6	4.4	3.3	N137S*† S145N‡	L164Q Q189K S193D‡	N53D I278S	F174S R102K‡ I213V I217V I230V		
175-TX77	14.8	3.4	4.4	S137Y*†	G158E‡ Q164L D193N‡	K50R† D53N	S174F K201R‡ V213I V230I	E82K M260I	
(77-BA79	16.0	3.3	4.8	N133S‡ P143S G146S	K156E‡ T160K O197R‡	N53D N54S	D172G† V217I V244L	162K K82E	
79-5187	11.9	4.9	2.4	G124D‡	Y155H* K189R				
87-BE89	6.9	4.6	1.5	N145K‡					
89-BE92	13.7	7.8	1.8	S133D‡ K145N‡	E156K‡ E190D*‡			T262N‡	
92-WU95	9.9	4.6	2.2	N145K‡					
U95-SY97	16.0	4.7	3.4		K156Q‡ E158K‡ V196A†	N276K†		K62E	
′97-FU02	16.0	3.5	4.5	A131T	H155T* Q156H‡	R50G†		H75Q E83K	L25I V202I W222 G225I
otal	131.9	44.6							
/erade	13.2	45	32						
)	2.9	1.3	1.1						

COMPARING ANTIGENIC AND GENETIC EVOLUTION

- A: phylogenetic tree of HA1 nucleotide sequences.
- B: Genetic map of HA1 amino acid sequences.
- C: Antigenic map (similar to previous map on previous slide)

COMPARING ANTIGENIC AND GENETIC EVOLUTION

- Rate of antigenic evolution was, at times, faster than genetic evolution or vice versa.
- We can calculate the genetic difference between the center of each cluster.

GRADUAL GENETIC EVOLUTION AND PUNCTUATED ANTIGENIC EVOLUTION

• Take note the punctuated nature of the antigenic distance graph and the linear nature of the genetic distance graph.

CONCLUSION

- Antigenic evolution is clustered.
- Higher rate of antigenic evolution between clusters rather than within clusters.
- Antigenic maps can potentially quantify the extent that emerging strains can escape the immune system.

REFERENCES

- 1. "Types of Influenza Viruses," CDC (2016). <u>https://www.cdc.gov/flu/about/viruses/types.htm</u>
- 2. "How the Flu Virus Can Change: 'Drift' and 'Shift'," CDC (2014). https://www.cdc.gov/flu/about/viruses/change.htm
- 3. Lapedes and Farber. "The geometry of shape space: application to influenza." Journal of Theoretical Biology 7.212 (2001): 57-69.
- 4. Liu et al. "Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus." Scientific Reports 5.14171 (2015).
- 5. Smith et al. "Mapping the Antigenic and Genetic Evolution of Influenza Virus," Science 305.371 (2014): 371-376.