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Introduction

• Cellular Automata
• Applications
• Types of Cellular Automata
• Irreversibility
• Limiting Entropy
• Information Propagation
• Formal Language Theory
• Complexity
• Computation Theory
• Thermodynamics
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A mathematical system constructed from many 
identical components.

A grid of binary values (or values 0,...,k-1) that 
update according to a deterministic rule depending 
on a neighborhood

Complex behavior can arise from simple rules

Cellular Automata

https://www.cs.rit.edu/~ark/calarge.png



Cellular automata may serve as suitable models for a 
wide range of natural systems such as:

• The growth of dendritic crystals (snowflakes)

• Pigmentation patterns on mollusk shells

This paper concentrates on general mathematical 
features of behavior – not specific applications

Applications

http://ca.olin.edu/2005/cellular_au
tomata/crystalization_example.gif
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Four classes of automata:
1. Disappears with time – Fixed homogenous state
2. Evolves to a fixed finite size – Limiting cycles
3. Grows indefinitely at a fixed speed – chaotic, aperiodic pattern
4. Grows and contracts irregularly – Complex localized structures

Cellular Automata



Different configurations may evolve to the same 
configuration, thus initial configurations cannot be 
recalculated

Irreversibility



A generalized Measure of the density of 
configurations generated

Limiting Entropy =

N(X) gives the number of distinct sequences of X site 
values that appear

d(x) = 0 for class 1 and 2 due to them reaching a limit 
set

For class 3 the limiting entropy decreases in time, 
suggesting a fractal subset of all possible 
configurations occurs

Limiting Entropy 
(Dimension)



Characterized by the stability of predictability of their 
behavior under small changes in initial conditions

Information propagation rates:
• Finite distance in class 1 and 2
• Infinite distance at fixed speed in class 3
• Irregular propagation over an infinite range in 

class 4

Information Propagation



• The degree of sensitivity to initial conditions 
shows us degrees of predictability for the cellular 
automation:

• Class 1 – Entirely predictable, independent of 
initial state

• Class 2– Local behavior predictable from local 
initial state

• Class 3 – Behavior depends on an ever-increasing 
initial region

• Class 4 – behavior effectively unpredictable

Information Propagation



Formal Language Theory

• What is formal language?
• Set of symbols/strings over some finite alphabet + set of rules (grammar).
• Recognized by idealized computers with a CPU containing a finite number of 

internal states + memory

• Types of formal languages:
• Regular languages (computation model -> Finite State Automaton): No memory 

required
• Context-free languages (computation model -> Non-deterministic Pushdown 

Automaton): Need LIFO stack
• Context-sensitive languages: memory size = input word size
• Unrestricted languages (Turning Machine): Large memory required



Why Formal Language 
Theory? 

• Quantities like entropy and dimension (Information theory) give 
rough characterization of cellular automaton behavior.

• Computation theory gives complete description of self-organization in cellular 
automaton

• Sets of cellular automaton configurations = Formal Languages
• Consists of symbols (site values) + set of rules (grammar)

• Set of all possible initial configurations = Trivial formal language

• Set of configurations after any finite number of time steps = Regular language



Formal Language Theory 

• Set of configurations generated in the first few time steps of evolution 
according to a class 3 cellular automaton rule.



Observations from graph 

• Possible configurations = possible paths, beginning at the encircled 
node.

• All possible configurations are allowed at t=0. As time grows, less 
configurations are generated.

• Set of all possible configurations at each time step forms regular 
language.

• Number of nodes in the smallest graph = Regular language complexity 
of the set of configurations.
• Larger the number of nodes = more complicated sets. E.g. t=3, 

complexity=107 and t=4, complexity = 2867



Complexity

• Regular language complexity for the sets generated by cellular 
automaton evolution is non-decreasing with time.
• Complexity represents fundamental property of self-organizing systems 

because higher complexity means increasing self-organization.

• Class 1 and 2 cellular automata limiting sets = Regular languages

• Class 3 and 4 cellular automata limiting sets != Regular languages.
• Class 3 cellular automata = context-sensitive languages.

• Class 4 cellular automata = unrestricted languages(TM).



Computation theory

• Cellular automaton evolution can be viewed as computation.

• Dynamic systems theory can be used to define class 1 ,2, and 3 cellular automata; but not for class 4.

• Computational theory needed to define class 4 cellular automata.

• Class 4 cellular automata rules can be used to implement arbitrary information processing operations.
• Capable of universal computation

• Evolution can implement any finite algorithm for a given initial conditions



Computation theory

• A short-cut needed for computing the outcome of cellular automaton 
evolution:
• Class 1 and 2 need simple computation for future prediction

• Class 3 and 4 may not allow short-cuts
• Explicit observation or simulation needed for future prediction.

• For class 4, simulation is needed for almost all initial configurations. For class 3, some 
initial configurations might not need simulation.

• Infinite time limiting behavior will be undecidable (halting problem).

• Large time limit of entropy can't be computed.



Computation theory

• For class 3 and 4:
• the occurrence of a particular length n site value sequence in infinite time is 

undecidable.
• Decidable in finite time considering initial sequence length n0= n+ 2rt 

• Large n or t will make computation difficult.

• Finding possible sequences generated by class 3 and 4 is an NP-complete 
problem.
• Both NP an NP-hard
• Can't be solved in any time polynomial in n or t.

• Undecidability and intractability are common problems in almost all non-
linear systems.
• No simple formulae for the behavior of such systems (e.g. natural systems)
• Only simulation and observation are effective for future prediction.



Thermodynamics

• Entropy in conventional thermodynamics (reversible evolution):
• Fine-grained:

• Remains constant with time 

• Coarse-grained:
• Always non-decreasing with time

• Very little impact on the measures of self-organization structures in long time

• Set of configurations with low coarse-grained entropy
• Value of every 5th site highly constrained.

• Arbitrary value for the intervening sites allowed



Thermodynamics

• Cellular Automata Rules:
• Reversible:

• Conventional Thermodynamics can be applied
• Every configuration has a unique predecessor in evolution
• Spatial entropy and dimension remain constant with time

• Irreversible:
• Spatial entropy and dimension decrease with time
• Coarse-grained entropy typically increases for a short time, but 

then decreases to follow the fine-grained entropy
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