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Complex Adaptive Systems



Complex Systems

Systems composed of interacting components



Complex Systems

Systems composed of interacting components

Behavior emerges from interactions among components and between
components and their environment



Complex Systems

Systems composed of interacting components

Structure and behavior emerges from interactions among components and
between components and their environment

Systems are nested and structure/behavior emerges at different scales



Complex (Adaptive) Systems

Systems composed of interacting components

Structure and behavior emerges from interactions among components
and between components and their environment

Systems are nested and structure/behavior emerges at different scales

Systems are dynamic and adapt to internal and external conditions



Complex (Adaptive) Systems

Unifying Idea

Between the world of order and the world of chaos
exist Complex Systems

Complex Systems have emergent properties.

Complex Adaptive Systems can exploit these emergent properties
in order to solve a problem.



A Complex System




A Complicated System

No emergent
properties.

Remove one component and
the whole stops working.

Complicated systems can be :
complex but not all complex systems
are complicated.
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The Immune System
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Financial Markets and Economies
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http://selectusa.commerce.gov/industry-
snapshots/financial-services-industry-united-states
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http://www.atelier.net/en/trends/articles/harnessing-
wisdom-crowds-help-play-financial-markets



Networks

 Generic: Nodes and links

* Network structure
* Degree of a node
* Degree distribution

e Scale free networks
e Same structure at all scales
e Power law distribution

 How are they produced?
* Preferential attachment
e And other mechanisms




Cities
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The Internet




Social Networks
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New Theories about Cities

The Pace of Life in Cities
‘ PREDICTABLE CITIES

METRIC:

http://www.citylab.com/design/2014/11/moving
-toward-an-evolutionary-theory-of-
cities/381839/

' http://www.nature.com/nature/journal/v467/n7318/full/
467912a.html




Cell protein
networks
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Local Interactions Leading to Global
Behaviour

* Slime mold Slime
Mold (Physarum
Finds the Shortest
Path in a Maze),.
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The Edge of Chaos

e Starling

c
O
e
©
| -
S
=
| -
=
=



Swarm Robotics and Ant Algorithms




Sciences of Complexity
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e Goals: |
* Unified theories that describe mahy systems’
* New computational and mathematical tools
e Cross-disciplinary insights

 The Santa Fe Institute (founded in 1984)

* aim is to discover .. the common fundamental principles in
complex physical, computational, biological, and social
systems that underlie many of the most profound problems
facing science and society today.



Basic Concepts of Complexity

* Dynamical Systems
e Systems that change over time.

* Networks
* Relationships matter

* Scaling laws: What changes as systems grow?
 Structures often change systematically at larger/smaller scales
 Self similarity

* Information
* Computation writ large throughout nature

* Adaptation, competition, and evolution



Scaling Laws

* Network capacity limits performance as systems scale
 Metabolism, response times, power consumption

e Universal patterns in system behavior are predictable
from the scaling properties of distribution networks




Scaling Laws

Zipf’s Law: Number of occurrences Avalanches
of words in the book Moby Dick
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BTW: Computational complexity theory studies the scaling of
algorithms
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Adaptation, Competition, Evolution

The elements

-
|
-

Diversity =




Basic Concepts of Complexity

* Dynamical Systems
e Systems that change over time.

* Networks
* Relationships matter

* Scaling laws: What changes as systems grow?
 Structures often change systematically at larger/smaller scales
 Self similarity

* Information
* Computation writ large throughout nature

* Adaptation, competition, and evolution



Genetic Algorithms

e John Holland

* We can use models of complex
adaptive systems such as evolution to
solve optimization problems.




* Genetic Algorithms

* Using models of evolution to
optimize computer solutions

Generation Generation Generation Generation
921
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Deterministic Nonperiodic Flow®

EpwarD N. Lorexz

Meassachusetts Instilute of Technology
(Manuscript received 18 November 1962, in revised form 7 January 1963)

ABSTRACT

Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent
forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in
phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily
unstable with respect to small modifications, so that slightly differing initial states can evolve into consider-
ably different states. Systems with bounded solutions are shown to possess bounded numerical solutions.

A simple system representing cellular convection is solved numerically, All of the solutions are found
to be unstable, and almost all of them are nonperiodic.

The feasibility of very-long-range weather prediction is examined in the light of these results,

1. Introduction

Certain hydrodynamical systems exhibit steady-state
flow patterns, while others oscillate in a regular periodic
fashion. Still others vary in an irregular, seemingly
haphazard manner, and, even when observed for long
periods of time, do not appear to repeat their previous
history.

Thus there are occasions when more than the statistics
of irregular flow are of very real concern,

In this study we shall work with systems of deter-
ministic equations which are idealizations of hydro-
dynamical systems. We shall be interested principally in
nonperiodic solutions, i.e., solutions which never repeat
their past history exactly, and where all approximate
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function [x,y,2z] lorenz(rho, sigma, beta, initial_values, max_time, eps, rate, line_style)
options odeset('RelTol’',eps, 'AbsTol", [eps eps eps/10]);
for t = 1imax_time

[T,X] = oded5(@(T,X) F(T, X, sigma, rho, beta), [®, t], initial_values, options);
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= X(:,1);
= X(:,2);
= X(:,3);
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plot3(x, y, z, line_style)
pause(rate)

drawnow

end
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return
end

—
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function dx = F(T, X, sigma, rho, beta)

dx = zeros(3,1);

dx(1) = sigma=(X(2) -~ X(1));
dx(2) = X(1)=(rho - X(3)) X(2);
dx(3) = X(1)=X(2) - betaxX(3);

Command Window
New to MATLAB? See resources for Getting Started.

Select a file to view details

fg >> lorenz(28, 10, 8/3, [0.02, ©.01, ©.1], 100, 0.001, 0.001,
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Lorenz’s Strange Attractor

e Exists in-between Order and Randomness.

* The movement through the state space is chaotic, but the attractor
imposes some order on the trajectories.

* We cannot predict the trajectories but we can describe the attractor
that confines the trajectories.

* This is what complex adaptive systems are about: we cannot hope to
describe the microscopic behaviour of the system, but we can
describe and exploit the macroscopic behaviour that results.

* the world is fundamentally unpredictable, but the attractor emerges



Models

* Complex adaptive systems were discovered by running computer
models.

 Computational models are the best way to explore the behaviour of
complex systems.

* In this class you will create models of systems in order to:
* Learn about the system.
* Exploit the system to solve problems.



For Monday your homework is:
- read g and b under Section |: Background

- If you are a graduate student think about a paper listed on
the course website to present during the semester.

Some are advanced, be sure you have the background required. Many
require no background.

- Sign up for the mailing list.

- See me in office hours if you are not registered.



