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Random	Graphs

“A	mathematician	is	a	device	for	turning		
coffee	into	theorems”

~1,500	publications	(1	every	2	weeks,	35	in	1985)

Pál (Paul)	Erdõs (1931-1996)
Hungarian	Mathematician
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World	Wide	Web

• The	web	is	a	graph	with	pages	as	
nodes	and	links	to	pages	as	edges

• In	1999	the	expectation	was	that	the	
distribution	of	links	to	pages	would	
be	normally	distributed



Interstate	Road	Map
Each	city	is	a	node,	each	interstate	is
An	edge.

The	degree	distribution	is	Normal

P (k) ⇡ e�k2P (k) =
1
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World	Wide	Web

• The	web	is	a	graph	with	pages	as	
nodes	and	links	to	pages	as	edges

• In	1999	the	expectation	was	that	the	
distribution	of	links	to	pages	would	
be	normally	distributed

P (k) ⇡ e�k2



The	World	Wide	Web

Albert,	Réka,	Hawoong Jeong,	and	Albert-László Barabási.	"Internet:	Diameter	of	the	world-wide	
web." nature 401.6749	(1999):	130-131.

• Actually	found

P (k) ⇡ k��



The	function	is	different.	So	what?



Looks	much	more	like	the	structure	of	airline	traffic

Nodes	are	airports

Edges	are	routes

Most	airports	are	tiny

Some	are	huge



The	function	is	different.	So	what?

The	vast	majority	of	pages
Few	people	care	about

A	few	pages	are	very	popular

Scale	free	network

Why	it	matters…



yeast protein protein interaction network
Institute of Integrated Bioinformedicine and Translational 
Science



A	management	case	study	(true	story)

• A	company	is	having	a	problem
• The	management	discovers	that	the	things	the	employees	are	doing	
are	unrelated	to	the	directives	from	management.

Taken	from	“Networks	are	Everywhere,”	Albert	Barabasi



Management	Case	Study

• The	company	hires	Barabasi to	help	(an	author	of	the	Nature	WWW	
scaling	paper)

• All	the	employees	list	the	people	they	get	assignments	from,	who	
they	delegate	assignments	to,	and	who	they	get	information	from

• This	reveals	the	network	structure	of	the	company

Taken	from	“Networks	are	Everywhere,”	Albert	Barabasi



A	management	case	study

The	network	is	scale	free.

A	few	employees	are	information	
hubs

Most	employees	have	low	degree

Taken	from	“Networks	are	Everywhere,”	Albert	Barabasi



A	management	case	study

The	network	is	scale	free.

A	few	employees	are	information	
hubs

Most	employees	have	low	degree

Color the	nodes	by	the	hierarchical	
org	chart

Taken	from	“Networks	are	Everywhere,”	Albert	Barabasi



A	management	case	study

Color the	nodes	
by	their	seniority	in	the
company	org	chart	

Taken	from	“Networks	are	Everywhere,”	Albert	Barabasi



A	management	case	study
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by	their	seniority	in	the
company	org	chart

This	is	the	company
director	
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A	management	case	study

Color the	nodes	
by	their	seniority	in	the
company	org	chart

This	is	the	company
director	

Who	is	this??
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A	management	case	study

Color the	nodes	
by	their	seniority	in	the
company	org	chart

This	is	the	company
director	

Who	is	this??

The	safety	officer	who
visits	all	the	departments
frequently	but	almost	never
talks	to	management.

Taken	from	“Networks	are	Everywhere,”	Albert	Barabasi



A	management	case	study

The	safety	officer	who
visits	all	the	departments
frequenty but	almost	never
talks	to	management.

This	is	who	is	really
running	the	company

Taken	from	“Networks	are	Everywhere,”	Albert	Barabasi



Institute of Integrated Bioinformedicine and Translational 
Science



Zoom



Andrei	Kashcha,	Code	Galaxies,	Debian



Fedora



Python



Millenium Simulation, 10^9 agents (each agent is 10^9 
solar masses, 2 billion l.y. cube)

Cosmic Web
Max	Planck	Society
Supercomputing	Centre

Sloan Sky Survey



Small	world	networks

• Closely	related	to	scale-free	networks
• The	distance	between	any	two	nodes	for	a	graph	of	size	N	is	

• For	example	a	million	node	graph	would	have	an	expected	distance	
between	any	two	nodes	of	13.

L / log(N)



Where	do	scale	free	networks	come	from?

• So	the	WWW	has	the	same	underlying	mathematical	structure	as	the	
cellular	reaction	networks	evolution	discovered…		!

• Or…	what	is	wrong	with	the	Erdõs-Renyi graphs?



Where	do	scale	free	networks	come	from?

• So	the	WWW	has	the	same	underlying	mathematical	structure	as	the	
cellular	reaction	networks	evolution	discovered…		!

• Or…	what	is	wrong	with	the	Erdõs-Renyi graphs?

• Two	assumptions	are	not	realistic	for	the	systems	we	see:

1) Real	graphs	are	dynamic.	Nodes	are	added	over	time.
2) Existing	nodes	influence	the	connections	of	new	nodes.



Preferential	attachment	is	one	way

• If	the	probability	of	adding	a	link	between	a	new	node	and	an	existing	
one	is	biased	by	the	number	of	edges	the	existing	node	has	a	scale	
free	network	results.

⇧(kj) =
kj

⌃jkj

The	probability	of	connecting
to	an	existing	node	is	proportional
to	its	degree.	

Positive	feedback	loop.





Preferential	Attachment

• Cell	protein	interactions
• The	WWW
• Cosmic	structures
• Information	flow	in	a	company
• Economics	(income	distribution)
• Disease	propagation



Do	we	see	why	it	matters	yet?

• We	have	an	explanation	for	how	it	happens

• But	why	does	it	happen?	Why	are	they	preserved	rather	than	fought	
against?

• Scale	free	networks	are	robust
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Robustness

• At	any	given	moment:

• Millions	of	failures	are	occurring	in	your	cell	biology
• Thousands	of	routers	on	the	internet	are	down	or	producing	errors



Robustness

• Consider	knocking	out	nodes	in	networks
• For	Erdõs-Renyi graphs	and	grids	there	are	critical	points	where	once	
enough	nodes	are	removed	the	network	collapses	suddenly
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• Consider	knocking	out	nodes	in	networks
• For	Erdõs-Renyi graphs	and	grids	there	are	critical	points	where	once	
enough	nodes	are	removed	the	network	collapses	suddenly

• Not	true	for	scale-free	networks
• This	is	because	the	chance	of	hitting	an	important	hub	is	tiny



Robustness

• Consider	knocking	out	nodes	in	networks
• For	Erdõs-Renyi graphs	and	grids	there	are	critical	points	where	once	
enough	nodes	are	removed	the	network	collapses	suddenly

• Not	true	for	scale-free	networks
• This	is	because	the	chance	of	hitting	an	important	hub	is	tiny

• What	is	the	obvious	vulnerability	with	scale-free	networks?

• Not	robust	to	targeted	attack.



Network	Control	

• How	can	we	use	the	topologies	of	networks	to	control	them?



Graph	Theory	and	Real	World	Networks

• Social	Networks	- Stanley	Milgram	performed	a	by	now	famous	
experiment	in	the	1960s.	He	distributed	a	number	of	letters	
addressed	to	a	stockbroker	in	Boston	to	a	random	selection	of	people	
in	Nebraska.	The	task	was	to	send	these	letters	to	the	addressee	(the	
stockbroker)	via	mail	to	an	acquaintance	of	the	respective	sender.	In	
other	words,	the	letters	were	to	be	sent	via	a	social	network.	



Graph	Theory	and	Real	World	Networks

• Social	Networks	–
Stanley	Milgram	performed	a	by	now	famous	experiment	in	the	1960s.	He	
distributed	a	number	of	letters	addressed	to	a	stockbroker	in	Boston	to	a	random	
selection	of	people	in	Nebraska.	The	task	was	to	send	these	letters	to	the	
addressee	(the	stockbroker)	via	mail	to	an	acquaintance	of	the	respective	sender.	In	
other	words,	the	letters	were	to	be	sent	via	a	social	network.	

• Six	Degrees	of	Separation	
About	20%	of	Milgram’s	letters	did	eventually	reach	their	destination.	Milgram	
found	that	it	had	only	taken	an	average	of	six	steps	for	a	letter	to	get	from	Nebraska	
to	Boston.	This	result	is	by	now	dubbed	“six	degrees	of	separation”	and	it	is	
possible	to	connect	any	two	persons	living	on	earth	via	the	social	network	in	a	
similar	number	of	steps.	



The	Small-World	Effect

• The	“small-world	effect”	denotes	the	result	that	the	average	distance	
linking	two	nodes	belonging	to	the	same	network	can	be	orders	of	
magnitude	smaller	than	the	number	of	nodes	making	up	the	network.	



Foundations:	Thermodynamic	Limit

• Mathematical	graph	theory	is	often	concerned	with	the	
thermodynamic	limit.	

• The	Thermodynamic	Limit.	The	limit	where	the	number	of	elements	
making	up	a	system	diverges	to	infinity	is	called	the	“thermodynamic	
limit”	in	physics.	

• A	quantity	is	extensive	if	it	is	proportional	to	the	number	of	
constituting	elements

• intensive	if	it	scales	to	a	constant	in	the	thermodynamic	limit.	



Foundations

• Coordination	Number is	the	average	degree	of	the	nodes
• This	along	with	the	number	of	nodes,	N,	in	the	graph	characterise	
random	graphs



Foundations

• Coordination	Number is	the	average	degree	of	the	nodes
• This	along	with	the	number	of	nodes,	N,	in	the	graph	characterise	
random	graphs

• Alternatively	the	Connection	Probability is	the	probability,	p,	that	an	
edge	occurs	between	a	pair	of	nodes.



Foundations

• For	Erdös-Renyi Random	graphs:

p =
zN

2

2

N(N � 1)

p =
z

N � 1



Network	Diameter

• The	network	diameter	is	the	maximum	degree	of	separation	between	
all	pairs	of	vertices.	



Network	Diameter

• The	network	diameter	is	the	maximum	degree	of	separation	between	
all	pairs	of	vertices.	

• For	a	random	network	with	N	vertices	and	coordination	number	z	we	
have	

• Since	any	node	has	 neighbors,							next-nearest	neighbors,	etc.
• D is	the	network	diameter	

zD ⇡ N

z z2



Network	Diameter

• The	network	diameter	is	the	maximum	degree	of	separation	between	
all	pairs	of	vertices.	

• For	a	random	network	with	N	vertices	and	coordination	number	z	we	
have	

zD ⇡ N

D / logN

log z



Average	Distance

• Average	Distance.	The	average	distance				is	the	average	of	the	mini-
mal	path	length	between	all	pairs	of	nodes	of	a	network.	

l



Average	Distance

• Average	Distance.	The	average	distance				is	the	average	of	the	mini-
mal	path	length	between	all	pairs	of	nodes	of	a	network.	

• The	average	distance				is	generally	closely	related	to	the	diameter	D;	
it	has	the	same	scaling	as	the	number	of	nodes	N.	

l

l



Clustering

• Real	networks	have	strong	local	recurrent	connections.	Recall	the	
cellular	chemical	reaction	networks	and	Debian package	networks.

• This	leads	to	topological	features	such	as	loops	and	clusters.



Clustering

• The	Clustering	Coefficient.	The	clustering	coefficient	C	is	the	average	
fraction	of	pairs	of	neighbors	of	a	node	that	are	also	neighbors	of	
each	other.	
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• The	Clustering	Coefficient.	The	clustering	coefficient	C	is	the	average	
fraction	of	pairs	of	neighbors	of	a	node	that	are	also	neighbors	of	
each	other.	

• The	clustering	coefficient	is	a	normalized	measure	of	loops	of	length	3	



Clustering

• The	Clustering	Coefficient.	The	clustering	coefficient	C	is	the	average	
fraction	of	pairs	of	neighbors	of	a	node	that	are	also	neighbors	of	each	
other.	

• The	clustering	coefficient	is	a	normalized	measure	of	loops	of	length	3.

• In	a	Erdös-Renyi random	graph	a	typical	site	has	z(z	1)/2	pairs	of	neighbors.	
• The	probability	of	an	edge	to	be	present	between	a	given	pair	of	neighbors	
is	p	=	z/(N	- 1)	



Clustering

• In	a	Erdös-Renyi random	graph	a	typical	site	has	z(z	1)/2	pairs	of	
neighbors.	

• The	probability	of	an	edge	to	be	present	between	a	given	pair	of	
neighbors	is	p	=	z/(N	- 1)	

Crand =
z

N � 1
⇡ z

N



Clustering

• In	a	Erdös-Renyi random	graph	a	typical	site	has	z(z	1)/2	pairs	of	neighbors.	
• The	probability	of	an	edge	to	be	present	between	a	given	pair	of	neighbors	
is	p	=	z/(N	- 1)	

• This	scales	to	zero	in	the	thermodynamic	limit.

• Since	the	clustering	coefficient	is	just	the	probability	of	a	pair	of	neighbors	
being	interconnected.

Crand =
z

N � 1
⇡ z

N

lim
N!0

Crand ! 0



Cliques	and	Communities

• Cliques.	A	clique	is	a	set	of	vertices	for	which	(a)	every	node	is	
connected	by	an	edge	to	every	other	member	of	the	clique	and	(b)	no	
node	outside	the	clique	is	connected	to	all	members	of	the	clique.	



Cliques	and	Communities

• The	term	“clique”	comes	from	social	networks.	A	clique	is	a	group	of	
friends	where	everybody	knows	everybody	else.	

• The	number	of	cliques	of	size	K	in	an	Erdös–Renyi graph	with	N	
vertices	and	linking	probability	p:

✓
N

K

◆
pK(K�1)/2(1� pK)N�K



Communities

• Collections	of	strongly	connected	cliques	are	called	communities.

Network N l C Crand
Movie	actors	
collaborations

225226	 3.65	 0.79 0.00027

Neural	
Network	of	
C.	elegans

282 2.65 0.28 0.05

US	Western	
Power grid

4941 18.7 0.08 0.0005

Watts	and	Strogatz,	1998	Small	values	of	l indicate	these	are	small	world	networks



Graph	Spectra

• Any	graph	G	with	N	nodes	can	be	represented	by	a	matrix	encoding	
the	topology	of	the	network,	the	adjacency	matrix.	

• The	Adjacency	Matrix.	The	N	⇥ N	adjacency	matrix	A has	elements	Aij
=1	if	nodes	I	and	j	are	connected	and	Aij =0	if	they	are	not	connected.	

This	matrix	has	N	eigenvalues.

In	matlab use	the	eig function	to
calculate	the	eigenvalues.



Graph	Spectra

• The	Spectrum	of	a	Graph.	The	spectrum	of	a	graph	G	is	given	by	the	
set	of	eigenvalues	 of	the	adjacency	matrix	A.

This	matrix	has	N	eigenvalues.

In	matlab use	the	eig function	to
calculate	the	eigenvalues.

�i



Application	Example

• The	largest	eigenvalue					plays	an	important	role	in	modelling	virus	
propagation	in	computer	networks.	

• The	smaller	the	largest	eigenvalue,	the	larger	the	robustness	of	a	
network	against	the	spread	of	viruses.	

• In	fact,	it	was	shown	in	that	the	epidemic	threshold	in	spreading	
viruses	is	proportional	to	1/

• This	allows	the	design	of	graphs	with	minimal					given	numbers	of	
vertices	and	edges,	and	having	a	given	diameter,	D

�

�

Wang Y., Chakrabarti D., Wang C., Faloutsos C., Epidemic spreading in real networks: An eigenvalue viewpoint, 22nd Symp. 
Reliable Distributed Computing, Florence, Italy, Oct. 6–8, 2003.

�



Robustness	in	Scale	Free	Graphs

Removing	a	fraction	greater	than	fc
of	highest	degree	vertices	from	a	scale-free
network,	with	a	power-law	degree	distribution

drives	the	network	below	the	percolation	limit.	

pk / k�↵

Newman	2002



Boolean	Networks

Stuart	Kauffman

• Problem	in	the	1960s.	How	can	a	single	
genome	give	rise	to	multiple	cell	types.

• Organisms	have	one	set	of	genes	but	
produce	liver	cells,	skin	cells,	T	cells,	
neurons,	etc.	…



Boolean	Networks

Stuart	Kauffman

• Kauffman	built	Boolean	networks	as	sets	of	
switches	with	lightbulbs.

• The	lightbulbs	were	connected	randomly	
with	wire.
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• Kauffman	built	Boolean	networks	as	sets	of	
switches	with	lightbulbs.

• The	lightbulbs	were	connected	randomly	
with	wire.

• The	network	is	updated	synchronously.
• The	on/off	state	of	the	lightbulb	depends	on	
the	incoming	signals	from	neighbouring	
nodes.



Boolean	Networks

Stuart	Kauffman

• Kauffman	built	Boolean	networks	as	sets	of	
switches	with	lightbulbs.

• The	lightbulbs	were	connected	randomly	
with	wire.

• The	network	is	updated	synchronously.
• The	on/off	state	of	the	lightbulb	depends	on	
the	incoming	signals	from	neighbouring	
nodes.

• Each	node	has	a	random	Boolean	function	
that	maps	its	input	to	its	state	(or,	and,	etc).



Boolean	Networks

Stuart	Kauffman

• These	are	also	called	N-K	networks	because	
they	are	defined	by,	N,	the	number	of	nodes	
and	K,	the	degree	of	the	nodes	(recall	the	
coordination	number).



Boolean	Networks

Stuart	Kauffman

• Boolean	networks	are	a	generalisation	of	
cellular	automata.

• The	can	exhibit	many	of	the	same	dynamics	
(attractors,	chaos,	criticality,	order,	etc.)

• Though	there	are	only	2N possible	states	for	
the	the	network.	Once	any	one	of	those	
states	is	repeated	the	whole	history	repeats.



Boolean	Networks

Stuart	Kauffman

• The	dynamic	on/off	patterns	in	the	same	
Boolean	network	initialised	with	slightly	
different	values	can	vary	greatly.

• Some	networks	fall	into	patterns	of	
activation	that	are	stable	over	time	
(dynamical	attractors).

• This	is	exactly	how	we	now	understand	gene	
regulatory	networks	to	operate.



Boolean	Variables	and	Graph	Topologies

• Boolean	Variables.	A	Boolean	or	binary	variable	has	two	possible	
values,	typically	0	and	1.	

• Boolean	Coupling	Functions.	A	Boolean	function	{0,	1}K ->	{0,	1}	maps	
K	Boolean	variables	onto	a	single	one.	

• The	dynamics	has	discrete	time	(map	not	a	flow).



Boolean	Variables	and	Graph	Topologies

• Boolean	Variables.	A	Boolean	or	binary	variable	has	two	possible	
values,	typically	0	and	1.	

• Boolean	Coupling	Functions.	A	Boolean	function	{0,	1}K ->	{0,	1}	maps	
K	boolean variables	onto	a	single	one.	

• The	dynamics	has	discrete	time	(map	not	a	flow).
• The	Boolean	Network.	The	set	of	Boolean	coupling	functions	inter-
connecting	the	N	Boolean	variables	can	be	represented	graphically	by	
a	directed	network,	the	Boolean	network.	



Dubrova, Elena, Maxim Teslenko, and Andres Martinelli. "Kauffman networks: Analysis and 
applications." Proceedings of the 2005 IEEE/ACM International conference on Computer-aided design. IEEE 
Computer Society, 2005.

They	use	“·”,	“+”	and	“ʹ”	to	denote	
the	Boolean	operations	AND,	OR	
and	NOT,	respectively.	



Dubrova, Elena, Maxim Teslenko, and Andres Martinelli. "Kauffman networks: Analysis and 
applications." Proceedings of the 2005 IEEE/ACM International conference on Computer-aided design. IEEE 
Computer Society, 2005.

They	use	“·”,	“+”	and	“ʹ”	to	denote	
the	Boolean	operations	AND,	OR	
and	NOT,	respectively.	

Reduce	the	network	by	removing
Redundant	states.



State	Transition	Graph

We	define	another	graph	that	shows	
the	possible	states	and	transitions	of	
the	reduced	Boolean	network.

Each	node	of	this	network	is	a	5-tuple
corresponding	to	the	state	of	the
nodes	in	the	Boolean	graph.



N-K	Network	Criticality

In	Boolean	networks	we	can	define	a	value	p.

p is	the	mean	Boolean	output	of	the	Boolean
functions	over	all	the	nodes.

For	p	near	0.5	there	is	a	critical	region	of	Boolean	networks.

This	critical	region	is	the	phase	transition	from	stability	
to	chaos.

Hawick, K. A., H. A. James, and C. J. Scogings. "Circuits, 
attractors and reachability in mixed-k kauffman networks." arXiv
preprint arXiv:0711.2426(2007).



N-K	Network	Sim

../Code/kauffman/kauffman.html



https://www.youtube.com/watch?v=GFEgB_ytDZY



Reduced	Network	in	Yeast	Life	Cycle

• Gene	expression	
network.

• Dashed	arrows	are	
inhibitory	(not	gates)

• Solid	arrows	are	
excitatory	(true)



State	Transition	Graph	in	Yeast	Life	Cycle

• Gene	expression	
network.

• As	genes	are	swtiched
on	and	off	the	blue	
arrows	show	
transitions	to	the	G1	
attractor.

• Green:	1764	gene	
expression	states

G1	State	- 1	cell

G1	State	– 2	cells


