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An Obscure Game invented by John
von Neumann

● Two parts

– design a virtual world

– design a self-
replicating system with
a non-trivial
construction space in
that world

● Two pitfalls

– make the world too
abstract

– make the primitives too
complex



  

Non-Trivial Construction Space

programmable 
  constructor
a.k.a. elephant

elephant DNA

mammoth DNA



  

Complex Primitives



  

Von Neumann Replicator

data

program

decode(data)

copy(data)



  

Von Neumann Replicator

● Span – non-trivial construction space size
● Modularity – relative complexity of a system's

parts and whole
● Regularity – reuse of complex parts
● Parallelism – concurrent construction

subprocesses  
● Hierarchy – complex parts comprised of simpler

parts



  

Mechanism and Product of
Evolution



  

Avoiding Excess Abstraction

● A bespoke physics (Ackley '14) is a software
interface that
– defines basic units embedded in space

– dynamical laws that describe how the units move
and interact

– is subject to meta-laws including
● indefinite scalability
● global-non-determinism.

– computations can be compiled to asynchronous
cellular automata (ACA).



  

Avoiding Complex Primitives

● Use (admittedly) complex primitives to build
parts that are still more complex.

● Interactions among parts result in the
construction of more of these same parts.

● Systems like this are strongly constructive
(Dittrich et al. '01).



  

Object-Oriented Combinator
Chemistry

● An artificial chemistry is a dynamical system of
constructable objects (Fontana and Buss '96).

● Object-Oriented Combinator Chemistry (OOCC)
– An artificial chemistry with composition devices

borrowed from the field of programming languages
● Object-Oriented programming

– association of programs with the data they operate on
● Functional programming

– programs comprised of combinators

– A bespoke physics with an additional meta-law
●  Conservation of mass



  

Basic Units: Actors

● Actors occupy sites on a 2D grid.
● Computations progress when actors interact

with other actors in their 8 neighborhoods.



  

Three Kinds of Actors
● Combinators

– the building blocks of programs

● Methods 
– programs constructed from combinators

● Objects 

– can contain other actors (including other objects).



  

Actor

Comb. Method Object

compose

isa isa

isa

parent

quote

Group

member

unquote

Actor

prev

next

Actor
hand

Actor Datatype



  

Information = Mass

● Primitive combinators have unit mass.
● The mass of a composite combinator is the sum

of the mass of the combinators of which it is
composed.

● The mass of an object is the sum of the masses
of the actors it contains.



  

Movability

● Movable aggregates of complex automata
introduced in Arbib '66
– Aggregrate automata have increased area.

– Arbitrarily large aggregates assumed to move O(1)
distance in O(1) time.

● Object-Oriented Combinator Chemistry
– Composed actors have increased mass.

– Composite actor of mass m can be moved O(1) 
distance in O(m) time.



  

Dynamics: Diffusion

● Actors are subject to random 2D motion.
● An actor's diffusion constant is inversely

proportional to its mass.
● This reflects cost of data transport in ACA

substrate.



  

Bonds

● Actors can create bonds with other actors in
their neighborhoods.

● Bonds are relative addresses which are
– short

– symmetric

– updated as actors move

● The movement of actors is restricted by bonds.
● Bonds can be either directed or undirected.



  

Groups
● Actors can join and quit groups.
● An actor is a member of exactly one group.
● Actors in a group

– occupy a single site

– diffuse as a unit

– share a single finite time resource



  

Actors' Persistent States

● Defined solely by
– composition

– containment

– bonds

– groups



  

Monadic Style
● Control idioms like iteration and backtracking

require loops and function calls in conventional
programming.
– Both require address operands.

● No need for address operands in monadic code
– Control is implicit in the datatype of the return value.

– Programs exhibiting complex control idioms can be
implemented by combinator sequences.



  

Non-Deterministic Choice

● Sets can be converted to superpositions using
McCarthy's non-deterministic choice operator:



  

From Comprehensions to Combinators

desugaring / unifying data types

compiling
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Primitive Combinators

● amb introduces non-determinism.

● bonds, members, contents, neighbors 
reference actors using bonds, groups,
containment and neighborhood.

● similar, same, different compare
actors' identities and types.

● some and none allow methods to conditionally
succeed or fail.

● grab, drop, join, quit, compose,
unquote change actors' persistent states.



  

Visual Spock / Spock / Spasm
ribE = \m -> do {
  p <- amb =<< parents =<< m;
  q <- amb =<< others p;
  none =<< contents q;
  r <- amb =<< nexts q;
  n <- amb =<< neighbors p;
  some =<< similar n r;
  none =<< bonds n;
  c <- amb =<< contents p;
  compose c n;
  join r =<< quit p
}

parents >=> amb >=> x0 >=> others >=> amb >=> x1 >=> contents >=> none
  >=> x1 >=> nexts >=> amb >=> x0 >=> neighbors >=> amb >=> x2 >=> x3
  >=> similar >=> some >=> x3 >=> bonds >=> none >=> x0 >=> contents
  >=> amb >=> x3 >=> x4 >=> compose >=> x0 >=> quit >=> x2 >=> join



  

Time = Energy

● Methods require different amounts of time to
do their work.

● Actors are serviced at rates which are the
inverses of these times.

● Actors which use more time are serviced less
often.

● Constant rate of energy use per site per unit
time in ACA substrate.



  

Fundamental Dogma of Molecular
Biology
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Self-Replicating System of
Ribosome and Replisome Factories

ribosome factories

 repli-
some

 ribo-
some

genome

genome

replisomes

combinators (31)

 rib.
factory

replication

translation rep.
factory

methods

methods

ribosomes

assembly

assemblyreplisome factories



  

● Span – non-trivial construction space
● Modularity – relative complexity of a system's

parts and whole
● Regularity – reuse of complex parts
● Parallelism – concurrent construction

subprocesses  
● Hierarchy – complex parts comprised of simpler

parts

Self-Replicating System of
Ribosome and Replisome Factories



  

Computational Ribosome
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Ribosome-factory



  

Self-Replicating System of Ribosome and
Replisome Factories

ribosome factories
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Self-Replicating System of
Ribosome and Replisome Factories

31 different combinators

17 genes

580 genome + 1160 phenome = 1740 total



  

Populations vs. Time



  

Near Term Goals

● Cell membrane
– import / export

– growth

– binary fission

● Differential gene expression rates
● Homeostasis
● Cell cycle



  

Long Term Goal

evolution



  

Conclusion

● A novel artificial chemistry with composition
devices borrowed from modern programming
languages

● A self-replicating system modeled in part on the
living cell



  

This work powered by Haskell
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