

A Self-Replicating System of
Ribosome and Replisome Factories

Lance R. Williams
Dept. of Computer Science
University of New Mexico

An Obscure Game invented by John
von Neumann

● Two parts

– design a virtual world

– design a self-
replicating system with
a non-trivial
construction space in
that world

● Two pitfalls

– make the world too
abstract

– make the primitives too
complex

Non-Trivial Construction Space

programmable
 constructor
a.k.a. elephant

elephant DNA

mammoth DNA

Complex Primitives

Von Neumann Replicator

data

program

decode(data)

copy(data)

Von Neumann Replicator

● Span – non-trivial construction space size
● Modularity – relative complexity of a system's

parts and whole
● Regularity – reuse of complex parts
● Parallelism – concurrent construction

subprocesses
● Hierarchy – complex parts comprised of simpler

parts

Mechanism and Product of
Evolution

Avoiding Excess Abstraction

● A bespoke physics (Ackley '14) is a software
interface that
– defines basic units embedded in space

– dynamical laws that describe how the units move
and interact

– is subject to meta-laws including
● indefinite scalability
● global-non-determinism.

– computations can be compiled to asynchronous
cellular automata (ACA).

Avoiding Complex Primitives

● Use (admittedly) complex primitives to build
parts that are still more complex.

● Interactions among parts result in the
construction of more of these same parts.

● Systems like this are strongly constructive
(Dittrich et al. '01).

Object-Oriented Combinator
Chemistry

● An artificial chemistry is a dynamical system of
constructable objects (Fontana and Buss '96).

● Object-Oriented Combinator Chemistry (OOCC)
– An artificial chemistry with composition devices

borrowed from the field of programming languages
● Object-Oriented programming

– association of programs with the data they operate on
● Functional programming

– programs comprised of combinators

– A bespoke physics with an additional meta-law
● Conservation of mass

Basic Units: Actors

● Actors occupy sites on a 2D grid.
● Computations progress when actors interact

with other actors in their 8 neighborhoods.

Three Kinds of Actors
● Combinators

– the building blocks of programs

● Methods
– programs constructed from combinators

● Objects

– can contain other actors (including other objects).

Actor

Comb. Method Object

compose

isa isa

isa

parent

quote

Group

member

unquote

Actor

prev

next

Actor
hand

Actor Datatype

Information = Mass

● Primitive combinators have unit mass.
● The mass of a composite combinator is the sum

of the mass of the combinators of which it is
composed.

● The mass of an object is the sum of the masses
of the actors it contains.

Movability

● Movable aggregates of complex automata
introduced in Arbib '66
– Aggregrate automata have increased area.

– Arbitrarily large aggregates assumed to move O(1)
distance in O(1) time.

● Object-Oriented Combinator Chemistry
– Composed actors have increased mass.

– Composite actor of mass m can be moved O(1)
distance in O(m) time.

Dynamics: Diffusion

● Actors are subject to random 2D motion.
● An actor's diffusion constant is inversely

proportional to its mass.
● This reflects cost of data transport in ACA

substrate.

Bonds

● Actors can create bonds with other actors in
their neighborhoods.

● Bonds are relative addresses which are
– short

– symmetric

– updated as actors move

● The movement of actors is restricted by bonds.
● Bonds can be either directed or undirected.

Groups
● Actors can join and quit groups.
● An actor is a member of exactly one group.
● Actors in a group

– occupy a single site

– diffuse as a unit

– share a single finite time resource

Actors' Persistent States

● Defined solely by
– composition

– containment

– bonds

– groups

Monadic Style
● Control idioms like iteration and backtracking

require loops and function calls in conventional
programming.
– Both require address operands.

● No need for address operands in monadic code
– Control is implicit in the datatype of the return value.

– Programs exhibiting complex control idioms can be
implemented by combinator sequences.

Non-Deterministic Choice

● Sets can be converted to superpositions using
McCarthy's non-deterministic choice operator:

From Comprehensions to Combinators

desugaring / unifying data types

compiling

×

1..

=

A

S

amb- 1 A1..

1.. 1..- 1 A A 1 0× = S0 1

1..

1..

 - 1

A 1 0× = S

0

1

1,2,3

4

3
4

3

3
4

2

3
4

1

2
4

2

2
4

1

1
4

1

3
4

1,2,3

2
4

1,2

1
4

1

3

4

4

4

3
4

3

2
4

2

1
4

1

3
4

9
4

3
4

6
4

3
4

3
4

2
4

4
4

2
4

2
4

1
4

1
41

4

2

4

3

4

3
4

3
3

3
4

2
3

3
4

1
3

2
4

2
2

2
4

1
2

1
4

1
1

3
4

9

3
4

6

3
4

3

2
4

4

2
4

2

1
4

1

3
4

3
4

3
4

2
4

4

2
4

1
4

4
1..A

1 0× = S

1
A

1 0× = S

1..

1 0× = S

1 1 0× = S

1 0× = S

A

2

4

Non-deterministic Evaluation

1..

1..

 - 1

A 1 0× = S

0

1

1,2,3

4

3
4

3

3
4

2

3
4

1

2
4

2

2
4

1

1
4

1

3
4

1,2,3

2
4

1,2

1
4

1

3

4

4

4

3
4

3

2
4

2

1
4

1

3
4

9
4

3
4

6
4

3
4

3
4

2
4

4
4

2
4

2
4

1
4

1
41

4

2

4

3

4

3
4

3
3

3
4

2
3

3
4

1
3

2
4

2
2

2
4

1
2

1
4

1
1

3
4

9

3
4

6

3
4

3

2
4

4

2
4

2

1
4

1

3
4

3
4

3
4

2
4

4

2
4

1
4

4
1..A

1 0× = S

1
A

1 0× = S

1..

1 0× = S

1 1 0× = S

1 0× = S

A

2

4

Non-deterministic Evaluation

Primitive Combinators

● amb introduces non-determinism.

● bonds, members, contents, neighbors
reference actors using bonds, groups,
containment and neighborhood.

● similar, same, different compare
actors' identities and types.

● some and none allow methods to conditionally
succeed or fail.

● grab, drop, join, quit, compose,
unquote change actors' persistent states.

Visual Spock / Spock / Spasm
ribE = \m -> do {
 p <- amb =<< parents =<< m;
 q <- amb =<< others p;
 none =<< contents q;
 r <- amb =<< nexts q;
 n <- amb =<< neighbors p;
 some =<< similar n r;
 none =<< bonds n;
 c <- amb =<< contents p;
 compose c n;
 join r =<< quit p
}

parents >=> amb >=> x0 >=> others >=> amb >=> x1 >=> contents >=> none
 >=> x1 >=> nexts >=> amb >=> x0 >=> neighbors >=> amb >=> x2 >=> x3
 >=> similar >=> some >=> x3 >=> bonds >=> none >=> x0 >=> contents
 >=> amb >=> x3 >=> x4 >=> compose >=> x0 >=> quit >=> x2 >=> join

Time = Energy

● Methods require different amounts of time to
do their work.

● Actors are serviced at rates which are the
inverses of these times.

● Actors which use more time are serviced less
often.

● Constant rate of energy use per site per unit
time in ACA substrate.

Fundamental Dogma of Molecular
Biology

 repli-
some

tRNA
 synth-

esis

ribo-
some

 proteo-
some

 trans-
cription

mRNA

DNA

tRNA

nucleotides
 (4)

polypeptides

amino acids
 (20)

DNA

replication

translationproteolysis

© 2011 David S. Goodsell

Mycoplasma mycoides

Self-Replicating System of
Ribosome and Replisome Factories

ribosome factories

 repli-
some

 ribo-
some

genome

genome

replisomes

combinators (31)

 rib.
factory

replication

translation rep.
factory

methods

methods

ribosomes

assembly

assemblyreplisome factories

● Span – non-trivial construction space
● Modularity – relative complexity of a system's

parts and whole
● Regularity – reuse of complex parts
● Parallelism – concurrent construction

subprocesses
● Hierarchy – complex parts comprised of simpler

parts

Self-Replicating System of
Ribosome and Replisome Factories

Computational Ribosome

^

^> ^> @ ^> @@

@

AA A

@

Computational Replisome

+^
^ +^

@

@ @

+

+

+

A A

+

Ribosome-factory

Self-Replicating System of Ribosome and
Replisome Factories

ribosome factories

Q

R

plasmids

P
17

replisomes

combinators (31)

F
R

replication

translation F
Q

methods

methods

ribosomes

assembly

assemblyreplisome factories

Self-Replicating System of
Ribosome and Replisome Factories

31 different combinators

17 genes

580 genome + 1160 phenome = 1740 total

Populations vs. Time

Near Term Goals

● Cell membrane
– import / export

– growth

– binary fission

● Differential gene expression rates
● Homeostasis
● Cell cycle

Long Term Goal

evolution

Conclusion

● A novel artificial chemistry with composition
devices borrowed from modern programming
languages

● A self-replicating system modeled in part on the
living cell

This work powered by Haskell

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

