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Organisms span an enormous range of sizes

A whale is
100 000 000 000 000 000 000
times bigger than an
E. coli




Metabolic Scaling
A striking universal(?) pattern

Metabolic rate scales sub-linearly with mass Metabolism is the rate of energy use
Measured as
Oxygen in, or CO, out
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Analyzing Scaling Relationships

B = cM3/4
The scaling exponent is the slope
on log-log plot D
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log(B) = % log(M) + log(c) i«é
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Metabolic Rate adjusted to 20° C (watts)

Meaningful variation around a mean of %

Metabolic Rate in Growing Fish Metabolic Rate in Mammalian Orders
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Log,, (temperature-corrected

individual biomass production)

Biomass Production: P oc M3/4
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log (heart rate (beats/min))

log, 0Normalized Gestation Time
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Physiological Rates ~ M -1/4
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Physiological Times ~ M1/4

Whole animal: B ~ M3/4

Mass-specific Scaling
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Mice live fast and die young



Universal Growth Curve
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How has evolution produced foraging strategies that scale up to
millions of ants?

~20 Ants

~20,000,000 Ants

B

Ants are
Abundant, Diverse, Dominant

14,000 species
101 ants

15% of terrestrial animal
biomass

Foraging strategies
adapt to a variety of environments
from simple behaviors
with no central control



Metabolic rate and body mass for resting unitary insects and whole colonies.
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Reproductive Rate vs. Metabolism:
Humans and other mammals
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10

0.1

Annual fertility rate (births per female per yr)

0.01 1

Biological or Industrial Metabolism (W)

Each North American consumes the energy
of a 30,000 kg primate

Reproductive rates have dropped accordingly



Log births per year

Log life expectancy, years
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Per capita energy consumption (watts)
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Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore's Law
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photovoltaic module prices
& ULS. nuclear electricity prices
+ U.K. Hinkley Point price in 2023
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Fig. 1. A comparison of long-term price trends for coal, nuclear power and solar photovoltaic modules. Prices for coal and nuclear
power are costs in the US in dollars per kilowatt hour (scale on the left) whereas solar modules are in dollars per watt-peak, i....
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And why is it everywhere?
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“We must envisage a living organism as a special kind of system to
which the general laws of physics and chemistry apply.

And because of the prevalence of homologies of organization,
we may well suppose, as D’Arcy Thompson has done, that
certain physical processes are of very general occurrence...”

attributed to Alan Turing by Evelyn Fox Keller in Making Sense of Life




Energy and time determine scaling in
biological and computer designs

Melanie Moses"%3, George Bezerra', Benjamin Edwards', James Brown??
and Stephanie Forrest!23

Bits delivered by “interconnect”

Ener oxygen) transported . .
gy( ve ) P on microprocessors to transistors
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to mitochondria
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Figure 1. Idealized branching models in biology (a) and computers (c). (a) A cardiovascular tree with branching factor A = 2, H = 5 hierarchical branchings and
N = 32 terminal branches at level 0 that represent capillaries. (b) The radius and length of successive branches: D, defines the relative radius and D, defines the
relative length of pipe or wire between successive hierarchical levels (i and i + 1) in both biology (a) and computers (c). (c) The semi-hierarchical branching of logic
wires on a computer chip. Each module within a hierarchical level is shaded the same colour. The purple, red, green and blue (thinnest to thickest) wires cross 0, 1, 2
and 3 modules, respectively. The wire lengths and widths increase as they cross more levels according to D, and D,. D,, defines the number of wires, determined by
the ratio of internal (intra-module) communication per node to external (inter-module) communication per node. Here D,, = 2 so that a node is connected to all
nodes within a module (in this case only 1) by a purple wire, 1/2 of the nodes in the next hierarchical level by red wires, 1/4 of the nodes in the next level by green
wires, and 1/8 of the nodes in the next level by blue wires.



tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript ¢) (Fig.
1C). A typical branch at some intermedi-
ate level k has length [, radius 7, and
pressure drop Ap, (Fig. 1D). The volume
rate of flow is Q, = mrju, where u, is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into ny smaller ones (12), so
the total number of branches at level k is
N, = ngn, . . . n,. Because fluid is con-
served as it flows through the system

Qo = NiQ = Ny, = Nemr it (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so r_, [, %, and, consequently,
Ap, are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Qq  B; thus, if B « M* (where
a will later be determined to be 3/4), then
Q, o M* Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, N_ o« M?.

To characterize the branching, we in-
troduce scale factors B, =1, /r, and y, =
Ly i/l We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that B, = B, v, =
7y, and n, = n, all independent of k (an
important exception is B, in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (N, = n¥) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because N_ = nV, the number of gener-
ations of branches scales only logarithmi-
cally with size

N aln(M/M,) 3)
Inn
where M, is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume V) is

N

N,
Vy, = E NV, = ka arpln®

Y
NS
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x
I

0 1 2 3 4...N

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k = 0) and ending with the capil-
lary (k = N); and (D) parameters of
1 a typical tube at the kth level.

Model Parameters

2-NE D g
= %ﬂ“’vc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that V, & M. Because nyp? <
1 and N >> 1, a good approximation to Eq.
4is Vi, = Vo/(1 — nyB?) = V.(yB) ™M/
(1 — nyB?). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (yB?) ™™ = M. Using this relation
in Eq. 3 then gives
Inn 5

STy ®
To make further progress requires knowl-
edge of y and B. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because 1, << [, and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/37(L,/2)°N,. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3w(L,/2)°N, =~ 4/3w(l,.,/2)’N,,,. This
relation gives v}, = (I, /l,)’ =~ NN, =
1/n, showing that y, =~ n~ ' ~ y must be
independent of k. This result for v, is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so mf = nmf, . Thus,
By =1,/ = n~ "2 = B, independent of k.
When the area-preserving branching rela-
tion, B = n~ "2 is combined with the
space-filling result for v, Eq. 5 yields a =
3/4, so B o« M**. Many other scaling laws
follow. For example, for the aorta, r, =
B M. = N and Iy = y™Nr = N1,
yielding 7, o M*® and I, « M. This
derivation of the a = 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN7¥ elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities y and B play a dual scaling role: they
determine not only how quantities scale
from level O (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

http://www.sciencemag.org * SCIENCE ¢ VOL. 276 * 4 APRIL 1997 123

Networks & Diminishing Returns

Downloaded from www.sciencemag.org on July 24, 2012

WBE 1997



Fractal Networks Generate 3/4 powers

—
Centralized hierarchical, fractal branching
1. Constant branching ratio,

2. Area preserving

3. Space filling

4. Invariant terminal units

-Capillaries same length, radius & delivery capacity
-Metabolism proportional to # of capillaries

5. Network volume proportional to mass
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Fractal Networks Generate 3/4 powers

Centralized hierarchical, fractal branching
1. Constant branching ratio, },

2. Area preserving N, A, =c

3. Space filling ﬁ EATE
lk
4. Invariant terminal units
-Capillaries same length, radius & delivery capacity
-Metabolism proportional to # of capillaries

5. Network volume proportional to mass



Metabolic Rate is proportional to the number of capillaries

To double metabolic rate, double the number of capillaries

ﬁ

Additional network (black)
is needed to connect the 2 smaller networks

k
k i/3
Vnet = Eb Acap lcap E b
i=0

R

Viper OC (bK)(4/3)

Vet OC Ncap(4/3) oc B(4/3)

v

Increasing Volume 100 times increases metabolic delivery 30 times

B o Vnet3/4

Diminishing returns: Network size grows faster than network delivery rate




Dec Alpha H-tree (1994), a 2D WBE fractal network

Isochronic Area
A centralized network that
delivered a timing signal

Wire lengths and radii follow
WBE predictions in 2D

Allowed unprecedented
speed (300 MHz)

Clock speed is limited by the
isochronic area (last mile)

Clock area ~ A 32

The clock consumed 40% of
the chip’s power

Diminishing Returns




Scaling in Information Networks:
Increasing Returns in Information Exchange

S5
o
7
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If you have an apple and | have an apple and we exchange apples
then you and | will still each have one apple.
But if you have an idea and | have an idea and we exchange these ideas,
then each of us will have two ideas.
--George Bernard Shaw




Partially Decentralized Intel Itanium 2 H-tree (2004)

Information can be copied

Amplifiers regenerate
clock signal at each branch

Decentralized communication
generates linear scaling

of clock power & area

with chip area

Synchronize more transistors
with less power




Microprocessors: Fractal Networks, different scaling

Centralized, hierarchical, fractal branching networks

Efficient networks: Max. energy delivery, min. energy
dissipation

Assumptions

1. Constant branching ratio )

2. Space filling (becomes 2D area filling ) l’€_+1 =p'?
k

3. Area preserving branching: No—Rent’s rule

4. Invariant terminal units: No
-Transistors (service volumes) shrink as network grows
-Throughput proportional to # of transistors

5. Network volume proportional to mass:
No, Metal layers accommodate extra wire



Assumptions

Living systems and computer chips are designed to maximize
the rate at which resources are delivered to terminal nodes of a
network and to minimize the energy dissipated as it is delivered
and processed.

— Minimize Energy dissipation & Delivery Time
(Minimize the energy-time product)

— Explicitly consider energy & time in the network AND nodes
— matching supply and demand (pipelining)

Biology: minimize energy dissipated in the network & maximize
metabolic rate

Computers: minimize total energy consumption on the chip and
maximize rate that bits are processed (MIPS)



energy —time

general minimization
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Energy dissipation in the network is minimized when D, = 2 (area preserving branching)

D,=24/11 =2.18. We predict the optimal D, given that
* blood must slow (D, > 2)

* match the delivery rate of oxygen by the
network to the consumption rate in the nodes

%ﬁ (both invariant wrt N)



Relax area preserving assumption
Minimize time & energy dissipation: D, = 2.18
Consider energy to drive network + energy processed in nodes

energy—time minimization theory: D = 24/11
104F metabolic scaling theory: B oc M3/4
----- best fit: D_=2.50

BMR (kJh™)
=
(\©)

1 10 102 103 10 10> 10 107



Power vs Size on Chips
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energy—time minimization theory: P o< N9

best fit: P o< NU-495
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“Hegemony of the network”
Linear scaling between throughput and # of transistors
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Power scaling: Increasing returns
Thousand-fold increase in power, Million-fold increase in MIPS
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3 0.1 -
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Power requirement (W)

1970 2005
In 1970, 100 Watts powered 15 MIPS. In 2005, 6700 MIPS

Transistors perform computations
Power consumption is dominated by wires



Metabolic Scaling
A striking universal(?) pattern

Metabolic rate scales sub-linearly with mass Metabolism is the rate of energy use
Measured as
Oxygen in, or CO, out

100 -

¢ Homeotherms Food consumption

10° —

(for non-growing animals)

= > IR Metabolism governs
p Physiology
g " Growth
R Reproduction
Lifespan
10-2 Photosynthesis & carbon flux
1 L ! Ecosystem dynamics...
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log metabolic rate

Scaling intercepts and slopes shift after evolutionary innovations

multicellular eukaryotes

unicellular eukaryotes

@
prokaryotes '

multicellularity

bndosymbiosis
D

Delong et al PNAS 2010

Sociality??

”?



log metabolic rate

Scaling intercepts and slopes shift after evolutionary & technological innovations

* Innovations in chip design mimic innovation in the evolution of bacteria
» Single-core chip scaling mimics unicellular protists (single cells with a nucleus)
* Multi-core chips echo the transition to multicellularity
 Computer scaling deviates from biological scaling in important ways
* Decentralized designs dominate in the transition to sociality

multicellular 272
o | g Moore’s Law
The Fifth Paradigm
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Kurzweil Singularity



Take home messages

Approximate % power scaling is ubiquitous in biology
Scaling patterns when animals aggregate in social groups are similar to
scaling patterns when cells aggregate in bodies (with notable exceptions)

Analogous designs in microprocessor interconnect and cardiovascular
network

— Fractal branching to terminal service volumes

Differences between scaling of energy & information

— Information can be copied; energy can not; reduces energy dissipated to
transmit a bit

— Decentralization through communication locality (Rent’s rule)
% scaling (with curvature) arises from
— Minimizing energy disipation and delivery time

— matching supply and demand in the last mile for a variety of network
topologies

Network scaling framework predicts properties of engineered systems &
offers a new perspective on societal infrastructure and human ecology



