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Organisms	span	an	enormous	range	of	sizes

10-12 g 108	g

A	whale	is	
100	000	000	000	000	000	000	

times	bigger	than	an
E.	coli
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Metabolic	Scaling	
A	striking	universal(?)	pattern

B µM3/4

Metabolic	rate	scales	sub-linearly	with	mass Metabolism is	the	rate	of	energy	use
Measured	as	

Oxygen	in,	or	CO2 out
Food	consumption
(for	non-growing	animals)

Metabolism governs
Physiology
Growth
Reproduction
Lifespan
Photosynthesis	&	carbon	flux
Ecosystem	dynamics…	

Hemmingson 1960



Analyzing	Scaling	Relationships
B =	cM3/4

The	scaling	exponent	is	the	slope
on	log-log	plot

log(B)	=	¾	log(M)	+	log(c)
y	=	mx	+	b

The	intercept	is	log(c)

The	slope	is	¾ 100 101 102 103
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Figure 3: Scaling of metabolic rate with body mass during ontogeny for seven fish species, each of which spans greater than three orders of magnitude
in mass. Metabolic rate is corrected to 20!C following Gillooly et al. (2002). Separate regression lines are shown for each of the seven species that
have a mean slope of 0.78. The slope, a (with 95% confidence interval), is reported for each species. The thick red line gives the interspecific scaling
of metabolism at 20oC with W/g0.8 reported by Peters (1983).B p B p 0.0020

there is meaningful variation in a, both between species
(as is evident in fig. 1, even for large RM) and over the
ontogeny of individual species (as has been shown pre-
viously by Brody [1945], Post and Lee [1996], and Glazier
[2005]). We emphasize that the existence of variation in
a in no way invalidates the study of the central tendency
in a.

These results all suggest that despite some variation, the
canonical value of the scaling exponent for whole-organ-
ism metabolic rate is 3/4, both during ontogeny and
among adults of many different vertebrate species. Thus,
we set the parameter in equation (2) because ita p 3/4
is both theoretically supported (West et al. 1997, 1999;
West and Brown 2005) and the best approximation of
metabolic scaling over a variety of species. Since there may
be meaningful biological variation in a for some species
or during some periods of ontogeny, we also give general
forms for all of our numbered equations valid for any a
(table A1 in the online edition of the American Naturalist).
We also discuss how variation in a affects our parameter
estimates from empirical data. We encourage further in-
vestigations into the causes of variation in a.

Estimating the Metabolic Scaling Exponent,
a, from Growth Times

The OGM predictions closely fit growth curves by assum-
ing that . However, others have pointed out thata p 3/4
plots of mass as a function of time or of growth rate as
a function of mass provide insufficient resolution to dis-
tinguish whether a is closer to 3/4 or 2/3 (Banavar et al.
2002; Makarieva et al. 2004). For example, Banavar et al.
(2002) showed that both and closely fita p 3/4 a p 2/3
the same data (however, that analysis is not dimensionally
consistent [West et al. 2002], and it fails to adjust the B0

parameter to reflect alternative scaling exponents). The
von Bertalanffy growth equation (with , )a p 2/3 b p 1
has provided reasonable fits to large quantities of fishery
data for decades (von Bertalanffy 1957; Beverton and Holt
1959; Charnov 1993). So, fitting models to curves of mass
versus time (or renormalized mass vs. renormalized time)
often cannot distinguish between and .a p 3/4 a p 2/3

Here, we show that it is possible to estimate a more
precisely by analyzing growth times. This is a particularly
powerful method for determining a empirically, because

Moses	et	al	AmNat 2008

Metabolic	Rate	in	Growing	Fish
B µM3/4		(0.6	– 0.9)

Metabolic	Rate	in	Mammalian	Orders
Mean	B µM0.749 (0.7	– 0.8)

Meaningful	variation	around	a	mean	of	¾

log [mass]2) to the fixed part of the model, and then to the
random part. We then added a cubic term to the fixed part
and finally to the random part. At each step, we used LRT to
compare the fit of each new model with the previous one,
using ML fits for pairs of models that differed in the fixed-
effect part of the model, and using REML fits for models
that differed in the random-effect part (following Pinheiro
& Bates 2004).

For the other correlative tests, we estimated order-
specific scaling exponents (bj) from the best-fitting model
(see Appendix S1 for details). To test whether scaling is
more variable among small-bodied orders (Savage et al.
2008), we measured the correlation between mean(log
[mass]) and |bj )0.75|. We tested the cell metabolism
hypothesis by measuring the correlation between bj and
order-specific scaling exponents for genome size (following
Kozlowski et al. 2003), using data from the Animal Genome
Size Database (Gregory 2008). We selected a model of the
genome size allometry using the procedures described
above, with the additional constraint that all candidate
models contained a term for random slopes at the order
level. We then extracted order-specific scaling exponents for
genome size (see Appendix S1 for details) and estimated the
correlation with bj using standardized (reduced) major axis
(Warton et al. 2006).

R E S U L T S

We found strong evidence for heterogeneity in metabolic
scaling. The best universal (single exponent) model is a poor
description of the data when compared with models in
which the slope varies among taxonomic groups (Table 1).
Just 4 ⁄ 27 models have any statistical support (defined as an
Akaike weight > 0.0005), all of which contain a random
slopes term for orders. The best model overall has a
different slope for each order but not other taxonomic
levels. The evidence ratio (Burnham & Anderson 2002)
favouring this model over any universal model is > 1017

(LRT: v2 = 78.5, d.f. = 2, P < 0.0001).
While our models strongly reject the notion that a single

exponent can explain the metabolic scaling of all animals, our
results do support a mean value very close to 3 ⁄ 4 predicted
by West et al. (1997). The model-average slope is 0.749 and
the best-fitting model has a slope of 0.748 (Table 1). Support
for 3 ⁄ 4 power scaling is not dependent on allowing the
exponent to vary among taxa: most universal models have a
slope close to this value. The standard error around the
estimate from the best model is 0.017, with 95% confidence
intervals of 0.71–0.80. Order-specific exponents, however,
exhibit a much larger range of values (Fig. 1): the estimated
variance is 0.0111, indicating that 50% of orders are expected
to have scaling exponents outside the range 0.68–0.82 and
5% outside the range 0.54–0.95.

The conclusion that scaling varies among orders is robust
to several forms of uncertainty. Our findings are qualitatively
unchanged (1) under more conservative assumptions about
the statistical penalties for complex models (Table S1), (2)
when analyses are restricted to ectotherms at 20 !C or the
subset of endotherms that could be standardized to 39 !C
(Table S2) and (3) measurement error in the estimates of
metabolic rate (Fig. S1, see Appendix S1 for details).

We then tested several explanations for why orders vary
in metabolic scaling, starting with predictions from the
generalized version of WBE. We found no correlation
between body size and variability in scaling exponents
among orders (r = 0.02, P = 0.89). We also found no
evidence for curvilinearity in metabolic scaling for the full
dataset (P > 0.2 for all tests), but we did find a significant
quadratic term in some classes. Both mammals (v2 = 6.44,
d.f. = 1, P = 0.011) and the Malacostraca (v2 = 8.47,
d.f. = 1, P = 0.004) show curvilinearity in the opposite
direction to that predicted by WBE: metabolic scaling is
steeper at larger body size. Only insects (v2 = 4.61, d.f. = 1,
P = 0.032) show nonlinear scaling in the direction predicted
by WBE; a simple power law is sufficient to describe scaling
in other classes. We found no evidence that orders with
steeper scaling have lower metabolic rates (the MLB
hypothesis: q = 0.16, v2 = 0.48, d.f. = 1, P = 0.49,
Fig. 2), nor when each of the eight classes are analysed
separately (P > 0.33 in all cases). We also found no
significant differences in the scaling of endotherms vs.
ectotherms (b = 0.06, v2 = 4.28, d.f. = 2, P = 0.12). Con-
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Figure 1 Histogram of metabolic scaling exponents among 54
orders. Values were extracted from the best-fitting model. The blue
lines indicate the mean (vertical bar) and 95% confidence intervals
for the overall mean scaling exponent. The red line indicates the
95% prediction intervals for order-specific exponents.
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Biomass	Production:	P µM3/4

 
Ernest	et	al	2003
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Physiological	Rates	~M -1/4

Physiological	Times	~M1/4

Savage et al 2004
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Mass-specific	Scaling
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Mice	live	fast	and	die	young
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Whole	animal:	B ~	M3/4
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Figure 4: Gestation time (tg) normalized by relative mass at birth versus
adult body mass (M) for 630 species of terrestrial mammals (data from
Ernest 2003). Time tw is the sum of the gestation period and the time
between birth and weaning. The slope of the regression is 0.28 ! 0.01
(95% confidence interval), and the reduced major axis exponent is 0.29.
Both values are distinguishable from 1/4 and 1/3.

general model in which a (and therefore d) can take dif-
ferent values.

Estimating the Energy to Create Biomass (Em)

We define Em as the quantity of metabolic energy required
to create a given quantity of biomass. The Em does not
include the energy content of biomass, only the total met-
abolic work the organism expends to create biomass from
preformed organic molecules. The Em is conceptually im-
portant because it links the fundamental biological cur-
rencies of energy and biomass; however, Em is difficult to
characterize theoretically and very difficult to measure em-
pirically. Empirical measures of Em require separating the
energy used for growth from that used for maintenance.
Since growing organisms also expend energy on mainte-
nance, these allocations of energy are difficult to disen-
tangle. This explains why there is so little literature dis-
cussing this fundamental quantity.

In the original OGM, West et al. (2001) used the energy
content of vertebrate tissue (∼7,000 J/g; Cummins and
Wuycheck 1971; Peters 1983) to estimate Em, but Ma-
karieva et al. (2004) point out that these are not the same.
The energy content of biomass is not necessarily equivalent
to the metabolic energy required to produce that biomass.
Equating these two quantities fails to account for the pre-
formed, energy-rich organic molecules present in yolk or
food. It also fails to account for the metabolic work per-
formed by the organism in order to process energy and
materials to produce new biomass.

Even though Em may be difficult to measure empirically,

its theoretical importance dictates that methods be devised
to estimate it. Here, we use two methods to estimate Em

from empirical growth curves. First, we calculate an upper
bound for Em in embryos, based on the assumption that
the maintenance metabolic rate is negligibly low. Second,
we estimate Em for embryos and juveniles by applying the
OGM to estimate the fraction of the metabolic rate that
is used to fuel production of new biomass.

An Empirical Upper Bound on Em

First, we calculate an upper bound on Em from the growth
and metabolism early in ontogeny by assuming that the
energy devoted to maintenance is sufficiently small that it
can be ignored. Thus, Em can be calculated by multiplying
the metabolic rate that is allocated to growth (Bg) by the
time taken to add new biomass: . Deter-E p B (dt/dm)m g

mining Bg precisely is difficult, but total metabolic rate (B)
is obviously an upper bound on Bg. Early in ontogeny,
where mass is !5% of adult mass, B is a reasonable ap-
proximation of Bg. This gives

dt
E ≈ B . (5)m dm

Table 2 gives the mean value of Em calculated from
equation (5) for nine embryos: six mammals (3,500–9,200
J/g), chicken (1,600 J/g), quail (3,500 J/g), and trout (2,700
J/g). Here, B is estimated from , where is the3/4B m B0 0

interspecific scaling exponent for the appropriate taxo-
nomic group (Peters 1983) and is measured em-dt/dm
pirically (a series of discrete measures of is given indt/dm
growth curves from sources listed in table 2; Em is cal-
culated as an average over these intervals for each species).
We note that scaling of metabolic rate of bird embryos is
approximated by J/g3/4/day, but in adult birds,3/4B p 650m

J/g3/4/day (Peters 1983). We use the appro-3/4B p 2,000m
priate B0 for embryos to calculate Em for the chicken and
quail embryos. If instead, we use empirical measurements
of B (Needham 1931; Williams and Swift 1988), then we
obtain a mean J/g for the chicken andE p 1,040m

J/g for the quail, both close to the estimateE p 2,859m

of Em obtained using the scaling equation for B. These
relatively low values for Em in chick eggs are close to the
estimated value of J/g by Vleck et al. (1980).E p 1,230m

In “A More Detailed Analysis of Em Based on Dry Biomass
in Embryos,” we discuss how changing water content of
embryos during development may alter these estimates.

We can also estimate Em in embryos from growth times
and equation (3). The scaling between time and size at
hatching or birth has been determined empirically for
birds, fish, and mammals (table 3). By setting the scaling
constant in these equations equal to and remembering4/a

Moses et al 2008

heart	rate	
in	mammals

gestation	times	
in	fish

+0.28



Universal	Growth	Curve

WBE,	Nature	2001



Ants!	Natures	Secret	Power

How	has	evolution	produced	foraging	strategies	that	scale	up	to	
millions	of	ants?	

~20	Ants
~20,000,000	Ants

Ants	are	
Abundant,	Diverse,	Dominant

14,000	species	

1019 ants

15%	of	terrestrial	animal	
biomass

Foraging	strategies
adapt	to	a	variety	of	environments

from	simple	behaviors
with	no	central	control



Metabolic rate and body mass for resting unitary insects and whole colonies. 

Hou C et al. PNAS 2010;107:3634-3638
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Reproductive	Rate	vs.	Metabolism:
Humans	and	other	mammals	

Mammals:	6.54	B-0.34,	r2 =	0.68

Humans:	1.89	B-0.35,	r2=	0.47

Biological	or	Industrial	Metabolism	(W)

Moses	&	Brown	2003



Biological	or	Industrial	Metabolism	(W)

Each North American consumes the energy
of a 30,000 kg primate

Reproductive rates have dropped accordingly



Berger	et	al	2011



Brown	et	al	Bioscience	2011





Fig. 1. A comparison of long-term price trends for coal, nuclear power and solar photovoltaic modules. Prices for coal and nuclear 
power are costs in the US in dollars per kilowatt hour (scale on the left) whereas solar modules are in dollars per watt-peak, i....

J. Doyne Farmer,  François Lafond 2015



Fig. 20. Global energy consumption due to each of the major sources from BP Statistical Review of World Energy (BP, 2014). Under 
a projection for solar energy obtained by fitting to the historical data the target of 20% of global primary energy is achieved in ...



And	why	is	it	everywhere?



Transistor Integrated	circuit AMD	Opteron	multi-core	chip
billions	of	transistors

Mitochondrion 1	to	1000s	of	
Mitochondria	per	cell

Trillions	of	mitochondria



Living	systems	acquire	and	transform	
energy	and	information	



“We	must	envisage	a	living	organism	as	a	special	kind	of	system	to	
which	the	general	laws	of	physics	and	chemistry	apply.	
And	because	of	the	prevalence	of	homologies	of	organization,	
we	may	well	suppose,	as	D’Arcy	Thompson	has	done,	that	
certain	physical	processes	are	of	very	general	occurrence…”
attributed	to	Alan	Turing	by	Evelyn	Fox	Keller	in	Making	Sense	of	Life



Here, we model mammals as composed of nodes (regions
of tissue) that process oxygen delivered via a hierarchical vas-
cular network, and we model microprocessors as composed
of nodes (transistors that perform computation) that commu-
nicate bits over a network of wires. As each system scales up
in size, our model identifies network designs that minimize
(i) the time for resources to be delivered by the network
and processed in the nodes, and (ii) the energy dissipated
during these processes. Despite the obvious differences
between animals and chips, we present a general model and
derive energy and time-scaling relations from physical prin-
ciples applicable to each system. Using these relations, we
express the optimal network design as a trade-off between
energy cost and processing speed. This energy–time minimiz-
ation model is consistent with shifts across the major
evolutionary transitions, such as the transition from protists to
multicellular animals and the transition from single- to multi-
core computer chips. It also points to likely future trajectories
of the evolution of computer architecture and to possible
extensions of metabolic scaling theory to account for sociality.

Previous biological scaling models have sought either to
minimize energy dissipation, e.g. [5], or to maximize resource
delivery rate [6], but they have not formalized the trade-offs
between these goals. By simultaneously considering energy
and time minimization, our analysis helps to explain how
nature and engineering are able to produce designs that
approach pareto-optimality along the energy–time trade-off,
a question investigated extensively in computer architecture
(e.g. [7,8]). Thus, biological evolution has produced mammals
ranging in size from mice to elephants, rather than converging
on a single optimal size, and computer engineers have
designed processors with thousands to billions of transistors,
each of which fills a specific computational niche.

In the rest of the paper, we present the unified energy–
time minimization model (§2) and its assumptions (§2a).
We then use the model to derive a series of predictions
about how time and energy scale with system size, first
for mammals (§3a,b) and then for microprocessors (§3c).
We discuss new insights into previously analysed scaling

relationships in biology that we gain from the time–energy
minimization framework, and we test our scaling predictions
with empirical power and performance data on computer
chips. Finally, in §4, we discuss the implications of these
results for evolutionary transitions in nature and engineering.

2. Unified model of network scaling
Vascular systems are hierarchical branching networks where
blood vessels (pipes) become thicker and longer through the
hierarchy from the capillaries to the aorta. Similarly, micro-
processor chips are organized hierarchically into a nested
structure of modules and submodules, where wires become
longer and thicker as the hierarchical level of a module
increases (figure 1). These wires are organized into metal
layers, where short, thin wires are routed on the lowest
layers, and long, thick wires are placed on the top layers.
We model the scaling of length (l ) and thickness (r) of both
pipes and wires as

li ¼ l0li=Dl ð2:1Þ

and

ri ¼ r0l
i=Dr , ð2:2Þ

where i is the hierarchical level of a branch or module, l is the
branching factor and Dl and Dr are the length and thickness
dimensions, respectively. This model resembles the hierarch-
ical pipe model of vascular systems proposed in [5], where
l1=Dr and l1=Dl correspond to b and g, respectively, in [5]
(note that in [5], the aorta or top of the network is labelled
as level 0, while here the smallest branches, the capillaries,
are labelled as level 0).

In vascular networks, r represents the radius of cylindri-
cal pipes, and in computer interconnect, r represents the
width of wires with aspect ratio 1. Dr describes the relative
radius of pipes between successive hierarchical levels. The
smallest edges occur at i ¼ 0, and have constant radius, r0,
but length, l0, that scales with system size [6].

ri + 1

ri

ℓ i
ℓ i

+
1

(b)(a) (c)

Figure 1. Idealized branching models in biology (a) and computers (c). (a) A cardiovascular tree with branching factor l ¼ 2, H ¼ 5 hierarchical branchings and
N ¼ 32 terminal branches at level 0 that represent capillaries. (b) The radius and length of successive branches: Dr defines the relative radius and Dl defines the
relative length of pipe or wire between successive hierarchical levels (i and i þ 1) in both biology (a) and computers (c). (c) The semi-hierarchical branching of logic
wires on a computer chip. Each module within a hierarchical level is shaded the same colour. The purple, red, green and blue (thinnest to thickest) wires cross 0, 1, 2
and 3 modules, respectively. The wire lengths and widths increase as they cross more levels according to Dl and Dr. Dw defines the number of wires, determined by
the ratio of internal (intra-module) communication per node to external (inter-module) communication per node. Here Dw ¼ 2 so that a node is connected to all
nodes within a module (in this case only 1) by a purple wire, 1/2 of the nodes in the next hierarchical level by red wires, 1/4 of the nodes in the next level by green
wires, and 1/8 of the nodes in the next level by blue wires.
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Energy and time determine scaling in
biological and computer designs
Melanie Moses1,2,3, George Bezerra1, Benjamin Edwards1, James Brown2,3
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Metabolic rate in animals and power consumption in computers are analo-
gous quantities that scale similarly with size. We analyse vascular systems
of mammals and on-chip networks of microprocessors, where natural selec-
tion and human engineering, respectively, have produced systems that
minimize both energy dissipation and delivery times. Using a simple net-
work model that simultaneously minimizes energy and time, our analysis
explains empirically observed trends in the scaling of metabolic rate in mam-
mals and power consumption and performance in microprocessors across
several orders of magnitude in size. Just as the evolutionary transitions
from unicellular to multicellular animals in biology are associated with
shifts in metabolic scaling, our model suggests that the scaling of power
and performance will change as computer designs transition to decentra-
lized multi-core and distributed cyber-physical systems. More generally, a
single energy–time minimization principle may govern the design of
many complex systems that process energy, materials and information.

This article is part of the themed issue ‘The major synthetic evolutionary
transitions’.

1. Introduction
Both organisms and computers have evolved from relatively simple beginnings
into complex systems that vary by orders of magnitude in size and number of
components. Evolution, by natural selection in organisms and by human engin-
eering in computers, required critical features of architecture and function to be
scaled up as size and complexity increased. In biology, Kleiber’s Law describes
empirically how metabolic rate and many other traits, such as lifespan, heart
rate and number of offspring, scale with body size [1]. Similarly, computer
architecture has Moore’s Law to describe scaling of transistor density and
performance [2], Koomey’s Law for the energy cost per computation [3], and
Rent’s rule for the external communication per logic block [4].

We posit that these empirical patterns originate from a common principle:
networks that deliver resources are optimized to reduce energy dissipation
and increase flow rates, expressed here as minimizing the energy–time product.
That is, both living systems and computer chips are designed to maximize the
rate at which resources are delivered to terminal nodes of a network and to
minimize the energy dissipated as it is delivered and processed. For example,
in biology the vascular network of mammals supplies oxygen and nutrients
to every cell, fuelling metabolism for maintenance, growth and reproduction.
Since energy is a limited resource, we assume that mammals are selected to
minimize the time spent and energy dissipated as oxygen is delivered through
the network [5] and processed to produce ATP in the mitochondria. Similarly,
computation in microprocessors relies on a network of microscopic wires that
transmits bits of information between transistors on a chip. This network is
designed to deliver the maximum information flow at the lowest possible
energy cost.

& 2016 The Author(s) Published by the Royal Society. All rights reserved.
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Energy	(oxygen)	transported	
through	cardiovascular	network	
to	mitochondria	

Bits	delivered	by	“interconnect”	
on	microprocessors	to	transistors



Networks	&	Diminishing	Returns	
tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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Fractal	Networks	Generate	3/4	powers
Centralized	hierarchical,	fractal	branching
1.	Constant	branching	ratio,	

2.	Area	preserving

3.	Space	filling			

4.	Invariant	terminal	units
-Capillaries	same	length,	radius	&	delivery	capacity
-Metabolism	proportional	to	#	of	capillaries

5.	Network	volume	proportional	to	mass



Fractal	Networks	Generate	3/4	powers
Centralized	hierarchical,	fractal	branching
1.	Constant	branching	ratio,	

2.	Area	preserving

3.	Space	filling			

4.	Invariant	terminal	units
-Capillaries	same	length,	radius	&	delivery	capacity
-Metabolism	proportional	to	#	of	capillaries

5.	Network	volume	proportional	to	mass

€ 

NkAk = c

€ 

lk+1

lk
= b1/ 3€ 

b



Metabolic	Rate	is	proportional	to	the	number	of	capillaries

To	double	metabolic	rate,	double	the	number	of	capillaries

Additional	network	(black)
is	needed	to	connect	the	2	smaller	networks

Increasing	Volume	100	times increases	metabolic	delivery	30	times

Diminishing	returns:	Network	size	grows	faster	than	network	delivery	rate

€ 

Vnet = πbkAcaplcap bi / 3
i= 0

k

∑

B	µ Vnet3/4

Vnetµ (bk)(4/3)

Vnetµ Ncap
(4/3) µ B(4/3)



A	centralized	network	that	
delivered	a	timing	signal

Wire	lengths	and	radii	follow	
WBE	predictions	in	2D

Allowed	unprecedented	
speed	(300	MHz)

Clock	speed	is	limited	by	the
isochronic area	(last	mile)	

Clock	area	~	Achip
3/2

The	clock	consumed	40%	of	
the	chip’s	power

Diminishing	Returns	

Dec	Alpha	H-tree	(1994),	a	2D	WBE	fractal	network
Isochronic Area



Scaling	in	Information	Networks:
Increasing	Returns	in	Information	Exchange

If	you	have	an	apple	and	I	have	an	apple	and	we	exchange	apples	
then	you	and	I	will	still	each	have	one	apple.	

But	if	you	have	an	idea	and	I	have	an	idea	and	we	exchange	these	ideas,	
then	each	of	us	will	have	two	ideas.

--George	Bernard	Shaw

A B

A B AB



Information	can	be	copied

Amplifiers	regenerate
clock	signal	at	each	branch

Decentralized	communication
generates	linear	scaling	
of	clock	power	&	area	
with	chip	area

Synchronize	more	transistors
with	less	power

Partially	Decentralized	Intel	Itanium	2	H-tree	(2004)
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NkAk = c
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lk+1

lk
= b1/ 3
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b

Microprocessors:	Fractal	Networks,	different	scaling

⇒
rk+1
rk

= b1/2

Vnet =M

Centralized,	hierarchical,	fractal	branching	networks
Efficient	networks:	Max.	energy	delivery,	min.	energy	

dissipation

Assumptions
1.	Constant	branching	ratio	

2.	Space	filling	(becomes		2D	area	filling	)	

3.	Area	preserving	branching:	No—Rent’s	rule

4.	Invariant	terminal	units:	No	
-Transistors	(service	volumes)	shrink	as	network	grows
-Throughput	proportional	to	#	of	transistors

5.	Network	volume	proportional	to	mass:	
No, Metal	layers	accommodate	extra	wire

€ 

b

lk+1
lk
= b1/2



Assumptions

• Living	systems	and	computer	chips	are	designed	to	maximize	
the	rate	at	which	resources	are	delivered	to	terminal	nodes	of	a	
network	and	to	minimize	the	energy	dissipated	as	it	is	delivered	
and	processed.	
– Minimize	Energy	dissipation	&	Delivery	Time

(Minimize	the	energy-time	product)

– Explicitly	consider	energy	&	time	in	the	network AND	nodes
– matching	supply	and	demand	(pipelining)

• Biology:	minimize	energy	dissipated	in	the	network	&	maximize	
metabolic	rate

• Computers:	minimize	total	energy	consumption	on	the	chip	and	
maximize	rate	that	bits	are	processed	(MIPS)



3. Model predictions for mammals and
microprocessors

We define Enet and Tnet, respectively, to be the energy dissi-
pated and the time taken by the network to deliver a
fundamental unit of resource to each node. For mammals,
the resource is oxygen (in mammals, carried by a unit
volume of blood), and for computers, the resource is a bit
of information. Similarly, we define Enode and Tnode as the
energy dissipated and the time taken by the nodes to process
that resource. For mammals, the node is the service volume
corresponding to a region of tissue supplied by a single capil-
lary [6], which corresponds to a volume of tissue containing a
constant number of mitochondria [18], the organelles that
process oxygen molecules to generate biologically useful
energy in the form of ATP. A node is defined as having a con-
stant rate of delivery of oxygen and processing of oxygen, but
the volume of a node varies with organism size.

Enet is the energy required to deliver oxygen to the cells
(as analysed in [5]), and Enode is the energy dissipated by
cells processing incoming oxygen. Tnet is the time delay
between delivering each oxygen molecule to the cell, and
Tnode is the time taken for the cell to process each oxygen
molecule. From the steady-state assumption, Tnet ¼ Tnode,
i.e. supply matches demand as in [6].

In microprocessors, the nodes are transistors, and Enet

and Enode represent the energy dissipated as bits are deliv-
ered to transistors and the energy required to process the
bits at the node. Tnet and Tnode are the times required to
deliver and process a bit at the node (i.e. network and tran-
sistor switching delay). In computers, the time taken to
deliver and process bits is bounded by max(Tnet, Tnode),
i.e. a node cannot process another bit until the bit is deliv-
ered, and a node cannot process a new bit until the node
has finished processing the previous bit. For both mammals
and microprocessors, we define the total energy as the
sum of energy dissipated in the network plus the energy
dissipated in the nodes: Esys ¼ Enet þ Enode.2

In the following, we derive general scaling relationships
between Enet, Tnet, Enode and Tnode, and the number of
nodes N, under the assumption that the energy–time product
is minimized. N is our measure of system size (number of
capillaries or number of transistors). In mammals, larger N
implies larger organism volume and mass. For computer
chips, N increases by shrinking components, and so increas-
ing N does not imply increasing chip area, which we
assume to be constant.

The hypothesis that mammals and computers minimize
the energy–time product predicts that optimized system
designs will achieve the highest performance per cost, where
performance is given by flow and cost by energy expended.
To show this mathematically, we express the optimal network
design as a constraint optimization problem in which the
whole system’s energy–time product is minimized as

min
Dr,Dw,Dl

ðEsys # TsysÞ: ð3:1Þ

We derive expressions for Esys and Tsys for mammals (§3a)
and microprocessors (§3c) in terms of the dimensions Dr,
Dw and Dl, where Dl is fixed by the external dimensions
of the system.

(a) Mammallian cardiovascular network
In this section, we derive general-energy and time-scaling
relations for the cardiovascular network and nodes, and
then use them to minimize equation (3.1). We first define
scaling relationships for the four key quantities: (i) Enet,
(ii) Enode, (iii) Tnet, and (iv) Tnode, and then show how
they scale with N when equation (3.1) is minimized. In con-
trast to computer scaling, several theoretical scaling models
have been proposed for animals over the last century (e.g.
[5,6,19–21]). The influential West et al. [5] model predicted
scaling relationships by minimizing energy dissipation,
whereas an alternative model [6] maximized metabolic
rate by minimizing the time to deliver oxygen. Not surpris-
ingly, scaling models that assume different optimization
principles make different predictions [22]. Our model com-
bines both energy and time constraints into a single
framework.

(i) Enet. From basic principles of hydraulics, the energy
dissipated to transport a constant volume of blood through
the network is given by the loss in pressure from the
aorta to the capillaries multiplied by the volume being
transported. The loss in pressure is the product between
hydraulic resistance (R) and flow (Q), so DP ¼ RQ. Thus,
Enet / DP ¼ RQ:

(ii) Enode. Following [5,11], we assume that the quantity of
energy dissipated to metabolize a fixed quantity of oxygen in
each node is constant. Therefore, the energy summed over all
nodes is Enode /N:

(iii) Tnet. The time to deliver a fixed number of oxygen
molecules to the nodes is given by the volume of blood
being transported divided by the flow (Q). Since a constant
volume is delivered to each node in parallel, we consider
the volume being distributed per unit time to all nodes,
giving Tnet /N=Q:

There is no distance term in the Tnet equation. This is
because Tnet is defined as the time to deliver the ‘next’
oxygen molecule from a capillary, consistent with the
steady-state assumption. It is not the time it takes a single
molecule to traverse the network (i.e. it is not t in [6]), but
rather the inverse of the rate at which oxygen molecules are
delivered to the nodes, analogous to the inverse of clock
speed in computer chips.

(iv) Tnode. From the steady-state assumption,
Tnode / Tnet /N=Q:

Substituting these relationships into equation (3.1) (where
Esys ¼ RQ þ N, and Tsys /N=Q) gives

minðEsys # TsysÞ ¼ min
Dr,Dw,Dl

RN þN2

Q

! "
: ð3:2Þ

We now show how R and Q scale with N. The resistance
of a pipe is given by the well-known Hagen–Poiseuille’s
equation, where R at hierarchical level i is Ri ¼ 8mli=pr4

i
and m is the viscosity constant. The total network resistance
R is given by [5]

R ¼
XH

i¼0

8mli
pr4

i

1
ni
¼ 8ml0

pr4
0
l&H

XH

i¼0
li(1=Dl&4=Drþ1), ð3:3Þ

where there are H þ 1 hierarchical levels, and ni ¼ lH 2 i is the
total number of pipes at hierarchical level i.

Next, we consider upper and lower bounds for Dr given
the objective of minimizing the energy–time product
(equation (3.2)). Recalling that l2H ¼ N21, in the case
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(iii) Tnet. The time to deliver a fixed number of oxygen
molecules to the nodes is given by the volume of blood
being transported divided by the flow (Q). Since a constant
volume is delivered to each node in parallel, we consider
the volume being distributed per unit time to all nodes,
giving Tnet /N=Q:

There is no distance term in the Tnet equation. This is
because Tnet is defined as the time to deliver the ‘next’
oxygen molecule from a capillary, consistent with the
steady-state assumption. It is not the time it takes a single
molecule to traverse the network (i.e. it is not t in [6]), but
rather the inverse of the rate at which oxygen molecules are
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(iv) Tnode. From the steady-state assumption,
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Substituting these relationships into equation (3.1) (where
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where Dr ! 4Dl/(1 þ Dl), the summation in equation (3.3)
converges to a constant (log(N ) in the case of equality), and

R/ l0N#1: ð3:4Þ

As Dr increases above 4Dl/(1 þ Dl), R increases from/ l0N#1

to / l0N1=Dl#4=Dr (see Appendix A in the electronic
supplementary material for details of the calculation).

Flow through a pipe is defined as Q ¼ upr2, where u is the
fluid velocity. Therefore, flow through the aorta equals
Q ¼ uHpr2

H , and substituting from equation (2.2), Q ¼
u0pr2

0l
2H=Dr ¼ u0pr2

0N2=Dr: Since we do not assume that uH is
independent of N, u0 appears in the equations. If Q is equal
at all levels of the network (steady-state assumption) then:

Q/ u0N2=Dr : ð3:5Þ

With R and Q in hand, we now substitute these relationships into
the equations for Enet, Enode, Tnet and Tnode, obtaining the scaling
predictions shown in the first column of table 1. It is evident that
the scaling behaviour of Enet depends on the value of Dr:

Case 1: Dr ! 4Dl=ð1þDlÞ: Enet / l0u0N2=Dr#1

Case 2: Dr . 4Dl=ð1þDlÞ: Enet / l0u0N1=Dl#2=Dr:

Given that Dl ¼ 3 for three-dimensional animals, and that
Dr must be greater than 2 to accommodate the necessary
slowing of blood as it flows towards the capillaries (5), then
Case 1 applies for 2 ! Dr ! 3, and Case 2 applies for Dr . 3.

Appendix A (in the electronic supplementary material)
gives the derivations for Enet for all values of Dr. Here we
show the case (Dr ! 3) that minimizes the scaling of the
energy–time product (equation (3.2)):

min
Dr

RN þN2

Q

! "
/ l0 þ u#1

0 N2#2=Dr : ð3:6Þ

The energy–time product is dominated by the second
term in equation (3.6), which is minimized by setting Dr to

its minimum possible value. Thus, minimizing the energy–
time product requires Dr ¼ 2 (Case 1), and

Enet / l0u0N2=Dr#1 / l0u0: ð3:7Þ

(b) Biological scaling predictions from the energy –
time minimization model

Earlier scaling models showed that area-preserving branch-
ing (Dr ¼ 2) leads to the 3/4 power scaling of metabolic
rate with body size known as Kleiber’s Law (e.g. [5,6]). How-
ever, in animal circulatory networks blood must slow before
reaching capillaries in order to reduce pressure on the walls
of small vessels and to allow oxygen to be dissociated from
haemoglobin in the capillaries. Under this circumstance,
perfect area-preserving branching is not feasible, and Dr

must be greater than 2.
We make a specific prediction for the value of Dr that

minimizes the energy–time product while both slowing the
flow of blood to the capillaries and matching the supply
and demand for oxygen in the nodes. By our definition of
a node as the volume of tissue that processes oxygen at a
fixed rate, Tnode must be invariant. Table 1 shows the
model prediction Tnode / u#1

0 N1#2=Dr:

Following [6], in the optimal case u0 increases with organ-
ism mass, and therefore with N. See electronic supplementary
material, §6.1 for the derivation that u0 / l0 /N2=3Dr#2=9:

Substituting this equation for u0 into the equation for Tnode

in table 1, we find that Tnode is invariant with respect to N
when Dr ¼ 24/11 ¼ 2.18. The last column of table 1 lists the
scaling predictions given this value of Dr.

We test the prediction that Dr ¼ 24/11 using data from
[23]. This influential Kolokotrones et al. paper showed that
metabolic rate is elevated in both small and very large
mammals, indicating systematic deviations from a simple
power-law relationship between metabolism and mass.
Although the deviation appears only as a slight curvature
in the canonical log–log plots, as shown in figure 2, it is
important because it calls into question prior scaling
models that purport to explain a universal scaling exponent.

Table 1. Predicted scaling relationships for mammals and computer chips.
The first column shows the general scaling equation for dimensional
parameters in plausible ranges, Dr ! 4Dl/(1 þ Dl) for mammals and Dw '
Dl/(Dl 2 1) for chips. The second column shows how each quantity scales
with N given the values of the dimensional parameters that minimize
the energy – time product, Dr ¼ 24/11 and Dl ¼ 3 for mammals and
Dr ¼ Dl ¼ Dw ¼ 2 for chips.

general
energy – time
minimization

mammals

Enet l0u0N2=Dr#1 N1/12

Enode N N

Tnet u#1
0 N1#2=Dr N0

Tnode u#1
0 N1#2=Dr N0

Esys ( Tsys l0 þ u#1
0 N2#2=Dr N1/12 þ N

computers

Enet N1#1=Dl N1/2

Enode N1#1=Dl N1/2

Tnet N0 N0

Tnode N#1=Dl N21/2

Esys ( Tsys N1#1=Dl þ N1#1=Dl N1/2 þ N1/2

105

104

103

102

10

1

1 10 102 103

mass (g)
104 105 106 107

10–1

10–2

energy–time minimization theory: Dr = 24/11

metabolic scaling theory: B µ M3/4

best fit: Dr = 2.50

B
M

R
(k

Jh
–1

)

Figure 2. The energy – time minimization model predicts metabolic scaling
in mammals. Data from [23] show slight, but theoretically important, curva-
ture in the scaling of metabolic rate versus mass of mammals. The theoretical
optimum predicted by equation (3.8) with Dr ¼ 24/11 is shown as a solid
line. The West et al. 3/4 scaling prediction [5] is shown as a dotted line,
and the best empirical fit of equation (3.8) to the data is shown as a
dashed line (Dr ¼ 2.50).
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at all levels of the network (steady-state assumption) then:

Q/ u0N2=Dr : ð3:5Þ

With R and Q in hand, we now substitute these relationships into
the equations for Enet, Enode, Tnet and Tnode, obtaining the scaling
predictions shown in the first column of table 1. It is evident that
the scaling behaviour of Enet depends on the value of Dr:

Case 1: Dr ! 4Dl=ð1þDlÞ: Enet / l0u0N2=Dr#1

Case 2: Dr . 4Dl=ð1þDlÞ: Enet / l0u0N1=Dl#2=Dr:

Given that Dl ¼ 3 for three-dimensional animals, and that
Dr must be greater than 2 to accommodate the necessary
slowing of blood as it flows towards the capillaries (5), then
Case 1 applies for 2 ! Dr ! 3, and Case 2 applies for Dr . 3.

Appendix A (in the electronic supplementary material)
gives the derivations for Enet for all values of Dr. Here we
show the case (Dr ! 3) that minimizes the scaling of the
energy–time product (equation (3.2)):

min
Dr

RN þN2

Q

! "
/ l0 þ u#1

0 N2#2=Dr : ð3:6Þ

The energy–time product is dominated by the second
term in equation (3.6), which is minimized by setting Dr to

its minimum possible value. Thus, minimizing the energy–
time product requires Dr ¼ 2 (Case 1), and

Enet / l0u0N2=Dr#1 / l0u0: ð3:7Þ

(b) Biological scaling predictions from the energy –
time minimization model

Earlier scaling models showed that area-preserving branch-
ing (Dr ¼ 2) leads to the 3/4 power scaling of metabolic
rate with body size known as Kleiber’s Law (e.g. [5,6]). How-
ever, in animal circulatory networks blood must slow before
reaching capillaries in order to reduce pressure on the walls
of small vessels and to allow oxygen to be dissociated from
haemoglobin in the capillaries. Under this circumstance,
perfect area-preserving branching is not feasible, and Dr

must be greater than 2.
We make a specific prediction for the value of Dr that

minimizes the energy–time product while both slowing the
flow of blood to the capillaries and matching the supply
and demand for oxygen in the nodes. By our definition of
a node as the volume of tissue that processes oxygen at a
fixed rate, Tnode must be invariant. Table 1 shows the
model prediction Tnode / u#1

0 N1#2=Dr:

Following [6], in the optimal case u0 increases with organ-
ism mass, and therefore with N. See electronic supplementary
material, §6.1 for the derivation that u0 / l0 /N2=3Dr#2=9:

Substituting this equation for u0 into the equation for Tnode

in table 1, we find that Tnode is invariant with respect to N
when Dr ¼ 24/11 ¼ 2.18. The last column of table 1 lists the
scaling predictions given this value of Dr.

We test the prediction that Dr ¼ 24/11 using data from
[23]. This influential Kolokotrones et al. paper showed that
metabolic rate is elevated in both small and very large
mammals, indicating systematic deviations from a simple
power-law relationship between metabolism and mass.
Although the deviation appears only as a slight curvature
in the canonical log–log plots, as shown in figure 2, it is
important because it calls into question prior scaling
models that purport to explain a universal scaling exponent.

Table 1. Predicted scaling relationships for mammals and computer chips.
The first column shows the general scaling equation for dimensional
parameters in plausible ranges, Dr ! 4Dl/(1 þ Dl) for mammals and Dw '
Dl/(Dl 2 1) for chips. The second column shows how each quantity scales
with N given the values of the dimensional parameters that minimize
the energy – time product, Dr ¼ 24/11 and Dl ¼ 3 for mammals and
Dr ¼ Dl ¼ Dw ¼ 2 for chips.

general
energy – time
minimization

mammals

Enet l0u0N2=Dr#1 N1/12

Enode N N

Tnet u#1
0 N1#2=Dr N0

Tnode u#1
0 N1#2=Dr N0

Esys ( Tsys l0 þ u#1
0 N2#2=Dr N1/12 þ N

computers

Enet N1#1=Dl N1/2

Enode N1#1=Dl N1/2

Tnet N0 N0

Tnode N#1=Dl N21/2

Esys ( Tsys N1#1=Dl þ N1#1=Dl N1/2 þ N1/2
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Figure 2. The energy – time minimization model predicts metabolic scaling
in mammals. Data from [23] show slight, but theoretically important, curva-
ture in the scaling of metabolic rate versus mass of mammals. The theoretical
optimum predicted by equation (3.8) with Dr ¼ 24/11 is shown as a solid
line. The West et al. 3/4 scaling prediction [5] is shown as a dotted line,
and the best empirical fit of equation (3.8) to the data is shown as a
dashed line (Dr ¼ 2.50).
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Energy	dissipation	in	the	network	is	minimized	when	Dr =	2	(area	preserving	branching)

We	predict	the	optimal	Dr given	that	
• blood	must	slow	(Dr >	2)
• match	the	delivery	rate	of	oxygen	by	the

network	to	the	consumption	rate	in	the	nodes
(both	invariant	wrt N)

where Dr ! 4Dl/(1 þ Dl), the summation in equation (3.3)
converges to a constant (log(N ) in the case of equality), and

R/ l0N#1: ð3:4Þ

As Dr increases above 4Dl/(1 þ Dl), R increases from/ l0N#1

to / l0N1=Dl#4=Dr (see Appendix A in the electronic
supplementary material for details of the calculation).

Flow through a pipe is defined as Q ¼ upr2, where u is the
fluid velocity. Therefore, flow through the aorta equals
Q ¼ uHpr2

H , and substituting from equation (2.2), Q ¼
u0pr2

0l
2H=Dr ¼ u0pr2

0N2=Dr: Since we do not assume that uH is
independent of N, u0 appears in the equations. If Q is equal
at all levels of the network (steady-state assumption) then:

Q/ u0N2=Dr : ð3:5Þ

With R and Q in hand, we now substitute these relationships into
the equations for Enet, Enode, Tnet and Tnode, obtaining the scaling
predictions shown in the first column of table 1. It is evident that
the scaling behaviour of Enet depends on the value of Dr:

Case 1: Dr ! 4Dl=ð1þDlÞ: Enet / l0u0N2=Dr#1

Case 2: Dr . 4Dl=ð1þDlÞ: Enet / l0u0N1=Dl#2=Dr:

Given that Dl ¼ 3 for three-dimensional animals, and that
Dr must be greater than 2 to accommodate the necessary
slowing of blood as it flows towards the capillaries (5), then
Case 1 applies for 2 ! Dr ! 3, and Case 2 applies for Dr . 3.

Appendix A (in the electronic supplementary material)
gives the derivations for Enet for all values of Dr. Here we
show the case (Dr ! 3) that minimizes the scaling of the
energy–time product (equation (3.2)):

min
Dr

RN þN2

Q

! "
/ l0 þ u#1

0 N2#2=Dr : ð3:6Þ

The energy–time product is dominated by the second
term in equation (3.6), which is minimized by setting Dr to

its minimum possible value. Thus, minimizing the energy–
time product requires Dr ¼ 2 (Case 1), and

Enet / l0u0N2=Dr#1 / l0u0: ð3:7Þ

(b) Biological scaling predictions from the energy –
time minimization model

Earlier scaling models showed that area-preserving branch-
ing (Dr ¼ 2) leads to the 3/4 power scaling of metabolic
rate with body size known as Kleiber’s Law (e.g. [5,6]). How-
ever, in animal circulatory networks blood must slow before
reaching capillaries in order to reduce pressure on the walls
of small vessels and to allow oxygen to be dissociated from
haemoglobin in the capillaries. Under this circumstance,
perfect area-preserving branching is not feasible, and Dr

must be greater than 2.
We make a specific prediction for the value of Dr that

minimizes the energy–time product while both slowing the
flow of blood to the capillaries and matching the supply
and demand for oxygen in the nodes. By our definition of
a node as the volume of tissue that processes oxygen at a
fixed rate, Tnode must be invariant. Table 1 shows the
model prediction Tnode / u#1

0 N1#2=Dr:

Following [6], in the optimal case u0 increases with organ-
ism mass, and therefore with N. See electronic supplementary
material, §6.1 for the derivation that u0 / l0 /N2=3Dr#2=9:

Substituting this equation for u0 into the equation for Tnode

in table 1, we find that Tnode is invariant with respect to N
when Dr ¼ 24/11 ¼ 2.18. The last column of table 1 lists the
scaling predictions given this value of Dr.

We test the prediction that Dr ¼ 24/11 using data from
[23]. This influential Kolokotrones et al. paper showed that
metabolic rate is elevated in both small and very large
mammals, indicating systematic deviations from a simple
power-law relationship between metabolism and mass.
Although the deviation appears only as a slight curvature
in the canonical log–log plots, as shown in figure 2, it is
important because it calls into question prior scaling
models that purport to explain a universal scaling exponent.

Table 1. Predicted scaling relationships for mammals and computer chips.
The first column shows the general scaling equation for dimensional
parameters in plausible ranges, Dr ! 4Dl/(1 þ Dl) for mammals and Dw '
Dl/(Dl 2 1) for chips. The second column shows how each quantity scales
with N given the values of the dimensional parameters that minimize
the energy – time product, Dr ¼ 24/11 and Dl ¼ 3 for mammals and
Dr ¼ Dl ¼ Dw ¼ 2 for chips.

general
energy – time
minimization

mammals

Enet l0u0N2=Dr#1 N1/12

Enode N N

Tnet u#1
0 N1#2=Dr N0

Tnode u#1
0 N1#2=Dr N0

Esys ( Tsys l0 þ u#1
0 N2#2=Dr N1/12 þ N

computers

Enet N1#1=Dl N1/2

Enode N1#1=Dl N1/2

Tnet N0 N0

Tnode N#1=Dl N21/2
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Figure 2. The energy – time minimization model predicts metabolic scaling
in mammals. Data from [23] show slight, but theoretically important, curva-
ture in the scaling of metabolic rate versus mass of mammals. The theoretical
optimum predicted by equation (3.8) with Dr ¼ 24/11 is shown as a solid
line. The West et al. 3/4 scaling prediction [5] is shown as a dotted line,
and the best empirical fit of equation (3.8) to the data is shown as a
dashed line (Dr ¼ 2.50).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150446

5

 on September 20, 2016http://rstb.royalsocietypublishing.org/Downloaded from 

where Dr ! 4Dl/(1 þ Dl), the summation in equation (3.3)
converges to a constant (log(N ) in the case of equality), and

R/ l0N#1: ð3:4Þ

As Dr increases above 4Dl/(1 þ Dl), R increases from/ l0N#1

to / l0N1=Dl#4=Dr (see Appendix A in the electronic
supplementary material for details of the calculation).

Flow through a pipe is defined as Q ¼ upr2, where u is the
fluid velocity. Therefore, flow through the aorta equals
Q ¼ uHpr2

H , and substituting from equation (2.2), Q ¼
u0pr2

0l
2H=Dr ¼ u0pr2

0N2=Dr: Since we do not assume that uH is
independent of N, u0 appears in the equations. If Q is equal
at all levels of the network (steady-state assumption) then:

Q/ u0N2=Dr : ð3:5Þ

With R and Q in hand, we now substitute these relationships into
the equations for Enet, Enode, Tnet and Tnode, obtaining the scaling
predictions shown in the first column of table 1. It is evident that
the scaling behaviour of Enet depends on the value of Dr:

Case 1: Dr ! 4Dl=ð1þDlÞ: Enet / l0u0N2=Dr#1

Case 2: Dr . 4Dl=ð1þDlÞ: Enet / l0u0N1=Dl#2=Dr:

Given that Dl ¼ 3 for three-dimensional animals, and that
Dr must be greater than 2 to accommodate the necessary
slowing of blood as it flows towards the capillaries (5), then
Case 1 applies for 2 ! Dr ! 3, and Case 2 applies for Dr . 3.

Appendix A (in the electronic supplementary material)
gives the derivations for Enet for all values of Dr. Here we
show the case (Dr ! 3) that minimizes the scaling of the
energy–time product (equation (3.2)):

min
Dr

RN þN2

Q

! "
/ l0 þ u#1

0 N2#2=Dr : ð3:6Þ

The energy–time product is dominated by the second
term in equation (3.6), which is minimized by setting Dr to

its minimum possible value. Thus, minimizing the energy–
time product requires Dr ¼ 2 (Case 1), and

Enet / l0u0N2=Dr#1 / l0u0: ð3:7Þ

(b) Biological scaling predictions from the energy –
time minimization model

Earlier scaling models showed that area-preserving branch-
ing (Dr ¼ 2) leads to the 3/4 power scaling of metabolic
rate with body size known as Kleiber’s Law (e.g. [5,6]). How-
ever, in animal circulatory networks blood must slow before
reaching capillaries in order to reduce pressure on the walls
of small vessels and to allow oxygen to be dissociated from
haemoglobin in the capillaries. Under this circumstance,
perfect area-preserving branching is not feasible, and Dr

must be greater than 2.
We make a specific prediction for the value of Dr that

minimizes the energy–time product while both slowing the
flow of blood to the capillaries and matching the supply
and demand for oxygen in the nodes. By our definition of
a node as the volume of tissue that processes oxygen at a
fixed rate, Tnode must be invariant. Table 1 shows the
model prediction Tnode / u#1

0 N1#2=Dr:

Following [6], in the optimal case u0 increases with organ-
ism mass, and therefore with N. See electronic supplementary
material, §6.1 for the derivation that u0 / l0 /N2=3Dr#2=9:

Substituting this equation for u0 into the equation for Tnode

in table 1, we find that Tnode is invariant with respect to N
when Dr ¼ 24/11 ¼ 2.18. The last column of table 1 lists the
scaling predictions given this value of Dr.

We test the prediction that Dr ¼ 24/11 using data from
[23]. This influential Kolokotrones et al. paper showed that
metabolic rate is elevated in both small and very large
mammals, indicating systematic deviations from a simple
power-law relationship between metabolism and mass.
Although the deviation appears only as a slight curvature
in the canonical log–log plots, as shown in figure 2, it is
important because it calls into question prior scaling
models that purport to explain a universal scaling exponent.

Table 1. Predicted scaling relationships for mammals and computer chips.
The first column shows the general scaling equation for dimensional
parameters in plausible ranges, Dr ! 4Dl/(1 þ Dl) for mammals and Dw '
Dl/(Dl 2 1) for chips. The second column shows how each quantity scales
with N given the values of the dimensional parameters that minimize
the energy – time product, Dr ¼ 24/11 and Dl ¼ 3 for mammals and
Dr ¼ Dl ¼ Dw ¼ 2 for chips.

general
energy – time
minimization

mammals

Enet l0u0N2=Dr#1 N1/12

Enode N N

Tnet u#1
0 N1#2=Dr N0

Tnode u#1
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computers

Enet N1#1=Dl N1/2
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Figure 2. The energy – time minimization model predicts metabolic scaling
in mammals. Data from [23] show slight, but theoretically important, curva-
ture in the scaling of metabolic rate versus mass of mammals. The theoretical
optimum predicted by equation (3.8) with Dr ¼ 24/11 is shown as a solid
line. The West et al. 3/4 scaling prediction [5] is shown as a dotted line,
and the best empirical fit of equation (3.8) to the data is shown as a
dashed line (Dr ¼ 2.50).
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Here, we model mammals as composed of nodes (regions
of tissue) that process oxygen delivered via a hierarchical vas-
cular network, and we model microprocessors as composed
of nodes (transistors that perform computation) that commu-
nicate bits over a network of wires. As each system scales up
in size, our model identifies network designs that minimize
(i) the time for resources to be delivered by the network
and processed in the nodes, and (ii) the energy dissipated
during these processes. Despite the obvious differences
between animals and chips, we present a general model and
derive energy and time-scaling relations from physical prin-
ciples applicable to each system. Using these relations, we
express the optimal network design as a trade-off between
energy cost and processing speed. This energy–time minimiz-
ation model is consistent with shifts across the major
evolutionary transitions, such as the transition from protists to
multicellular animals and the transition from single- to multi-
core computer chips. It also points to likely future trajectories
of the evolution of computer architecture and to possible
extensions of metabolic scaling theory to account for sociality.

Previous biological scaling models have sought either to
minimize energy dissipation, e.g. [5], or to maximize resource
delivery rate [6], but they have not formalized the trade-offs
between these goals. By simultaneously considering energy
and time minimization, our analysis helps to explain how
nature and engineering are able to produce designs that
approach pareto-optimality along the energy–time trade-off,
a question investigated extensively in computer architecture
(e.g. [7,8]). Thus, biological evolution has produced mammals
ranging in size from mice to elephants, rather than converging
on a single optimal size, and computer engineers have
designed processors with thousands to billions of transistors,
each of which fills a specific computational niche.

In the rest of the paper, we present the unified energy–
time minimization model (§2) and its assumptions (§2a).
We then use the model to derive a series of predictions
about how time and energy scale with system size, first
for mammals (§3a,b) and then for microprocessors (§3c).
We discuss new insights into previously analysed scaling

relationships in biology that we gain from the time–energy
minimization framework, and we test our scaling predictions
with empirical power and performance data on computer
chips. Finally, in §4, we discuss the implications of these
results for evolutionary transitions in nature and engineering.

2. Unified model of network scaling
Vascular systems are hierarchical branching networks where
blood vessels (pipes) become thicker and longer through the
hierarchy from the capillaries to the aorta. Similarly, micro-
processor chips are organized hierarchically into a nested
structure of modules and submodules, where wires become
longer and thicker as the hierarchical level of a module
increases (figure 1). These wires are organized into metal
layers, where short, thin wires are routed on the lowest
layers, and long, thick wires are placed on the top layers.
We model the scaling of length (l ) and thickness (r) of both
pipes and wires as

li ¼ l0li=Dl ð2:1Þ

and

ri ¼ r0l
i=Dr , ð2:2Þ

where i is the hierarchical level of a branch or module, l is the
branching factor and Dl and Dr are the length and thickness
dimensions, respectively. This model resembles the hierarch-
ical pipe model of vascular systems proposed in [5], where
l1=Dr and l1=Dl correspond to b and g, respectively, in [5]
(note that in [5], the aorta or top of the network is labelled
as level 0, while here the smallest branches, the capillaries,
are labelled as level 0).

In vascular networks, r represents the radius of cylindri-
cal pipes, and in computer interconnect, r represents the
width of wires with aspect ratio 1. Dr describes the relative
radius of pipes between successive hierarchical levels. The
smallest edges occur at i ¼ 0, and have constant radius, r0,
but length, l0, that scales with system size [6].

ri + 1

ri

ℓ i
ℓ i

+
1

(b)(a) (c)

Figure 1. Idealized branching models in biology (a) and computers (c). (a) A cardiovascular tree with branching factor l ¼ 2, H ¼ 5 hierarchical branchings and
N ¼ 32 terminal branches at level 0 that represent capillaries. (b) The radius and length of successive branches: Dr defines the relative radius and Dl defines the
relative length of pipe or wire between successive hierarchical levels (i and i þ 1) in both biology (a) and computers (c). (c) The semi-hierarchical branching of logic
wires on a computer chip. Each module within a hierarchical level is shaded the same colour. The purple, red, green and blue (thinnest to thickest) wires cross 0, 1, 2
and 3 modules, respectively. The wire lengths and widths increase as they cross more levels according to Dl and Dr. Dw defines the number of wires, determined by
the ratio of internal (intra-module) communication per node to external (inter-module) communication per node. Here Dw ¼ 2 so that a node is connected to all
nodes within a module (in this case only 1) by a purple wire, 1/2 of the nodes in the next hierarchical level by red wires, 1/4 of the nodes in the next level by green
wires, and 1/8 of the nodes in the next level by blue wires.
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Relax	area	preserving	assumption
Minimize	time	&	energy	dissipation:	Dr =	2.18	

Consider	energy	to	drive	network	+	energy	processed	in	nodes

where Dr ! 4Dl/(1 þ Dl), the summation in equation (3.3)
converges to a constant (log(N ) in the case of equality), and

R/ l0N#1: ð3:4Þ

As Dr increases above 4Dl/(1 þ Dl), R increases from/ l0N#1

to / l0N1=Dl#4=Dr (see Appendix A in the electronic
supplementary material for details of the calculation).

Flow through a pipe is defined as Q ¼ upr2, where u is the
fluid velocity. Therefore, flow through the aorta equals
Q ¼ uHpr2

H , and substituting from equation (2.2), Q ¼
u0pr2

0l
2H=Dr ¼ u0pr2

0N2=Dr: Since we do not assume that uH is
independent of N, u0 appears in the equations. If Q is equal
at all levels of the network (steady-state assumption) then:

Q/ u0N2=Dr : ð3:5Þ

With R and Q in hand, we now substitute these relationships into
the equations for Enet, Enode, Tnet and Tnode, obtaining the scaling
predictions shown in the first column of table 1. It is evident that
the scaling behaviour of Enet depends on the value of Dr:

Case 1: Dr ! 4Dl=ð1þDlÞ: Enet / l0u0N2=Dr#1

Case 2: Dr . 4Dl=ð1þDlÞ: Enet / l0u0N1=Dl#2=Dr:

Given that Dl ¼ 3 for three-dimensional animals, and that
Dr must be greater than 2 to accommodate the necessary
slowing of blood as it flows towards the capillaries (5), then
Case 1 applies for 2 ! Dr ! 3, and Case 2 applies for Dr . 3.

Appendix A (in the electronic supplementary material)
gives the derivations for Enet for all values of Dr. Here we
show the case (Dr ! 3) that minimizes the scaling of the
energy–time product (equation (3.2)):

min
Dr

RN þN2

Q

! "
/ l0 þ u#1

0 N2#2=Dr : ð3:6Þ

The energy–time product is dominated by the second
term in equation (3.6), which is minimized by setting Dr to

its minimum possible value. Thus, minimizing the energy–
time product requires Dr ¼ 2 (Case 1), and

Enet / l0u0N2=Dr#1 / l0u0: ð3:7Þ

(b) Biological scaling predictions from the energy –
time minimization model

Earlier scaling models showed that area-preserving branch-
ing (Dr ¼ 2) leads to the 3/4 power scaling of metabolic
rate with body size known as Kleiber’s Law (e.g. [5,6]). How-
ever, in animal circulatory networks blood must slow before
reaching capillaries in order to reduce pressure on the walls
of small vessels and to allow oxygen to be dissociated from
haemoglobin in the capillaries. Under this circumstance,
perfect area-preserving branching is not feasible, and Dr

must be greater than 2.
We make a specific prediction for the value of Dr that

minimizes the energy–time product while both slowing the
flow of blood to the capillaries and matching the supply
and demand for oxygen in the nodes. By our definition of
a node as the volume of tissue that processes oxygen at a
fixed rate, Tnode must be invariant. Table 1 shows the
model prediction Tnode / u#1

0 N1#2=Dr:

Following [6], in the optimal case u0 increases with organ-
ism mass, and therefore with N. See electronic supplementary
material, §6.1 for the derivation that u0 / l0 /N2=3Dr#2=9:

Substituting this equation for u0 into the equation for Tnode

in table 1, we find that Tnode is invariant with respect to N
when Dr ¼ 24/11 ¼ 2.18. The last column of table 1 lists the
scaling predictions given this value of Dr.

We test the prediction that Dr ¼ 24/11 using data from
[23]. This influential Kolokotrones et al. paper showed that
metabolic rate is elevated in both small and very large
mammals, indicating systematic deviations from a simple
power-law relationship between metabolism and mass.
Although the deviation appears only as a slight curvature
in the canonical log–log plots, as shown in figure 2, it is
important because it calls into question prior scaling
models that purport to explain a universal scaling exponent.

Table 1. Predicted scaling relationships for mammals and computer chips.
The first column shows the general scaling equation for dimensional
parameters in plausible ranges, Dr ! 4Dl/(1 þ Dl) for mammals and Dw '
Dl/(Dl 2 1) for chips. The second column shows how each quantity scales
with N given the values of the dimensional parameters that minimize
the energy – time product, Dr ¼ 24/11 and Dl ¼ 3 for mammals and
Dr ¼ Dl ¼ Dw ¼ 2 for chips.
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Figure 2. The energy – time minimization model predicts metabolic scaling
in mammals. Data from [23] show slight, but theoretically important, curva-
ture in the scaling of metabolic rate versus mass of mammals. The theoretical
optimum predicted by equation (3.8) with Dr ¼ 24/11 is shown as a solid
line. The West et al. 3/4 scaling prediction [5] is shown as a dotted line,
and the best empirical fit of equation (3.8) to the data is shown as a
dashed line (Dr ¼ 2.50).
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summary, given Dl ¼ 2, the terms of the energy–time pro-
duct are minimized when Dr ¼ 2 and Dw ! 2. Although the
energy–time product is minimized for values of Dw greater
than 2, this would entail greater communication locality,
which is challenging to engineer and doesn’t improve the
energy–time product. Thus, the model predicts that Dw ¼
2, which is consistent with observed Rent’s exponents that
approach 1/2 [15,29]. The scaling relations for various
quantities are summarized in table 1.

(d) Predictions for microprocessors
Summarizing the results from the previous section, the
energy–time product for chips is minimized when Dl ¼
Dr ¼ 2 ¼ Dw. This result corresponds to ideal scaling, as
suggested by Dennard [30], where the linear dimensions of
transistors and wires scale at the same rate, wire delay is
constant, and Rent’s exponent is 1/2.

The final energy–time product scales as N1/2 (table 1),
showing that, unlike mammals, as size increases, the
energy-delay product per node decreases systematically.
Thus, chips have become faster and they consume less
energy per transistor as more transistors are packed onto a
chip. Of course, this trend arises from the remarkable minia-
turization of transistors and wires described by Moore’s Law.
It is not surprising that transistors are faster (Tnode) and
require less energy (Enode) as they become smaller. It also
makes sense that Enet grows sublinearly with the number of
transistors, because as N increases the distance between
nodes is reduced. Additionally, Dw ¼ 2, means that most
bits move locally, so the distance between nearest nodes
affects the average distance that bits are transmitted. The
only term in the energy–time product that does not decrease
with increased N and decreased process size is Tnet, which
remains constant under Dennard scaling where wire radius
and length scale proportionally to each other.

These scaling models make two testable predictions. First,
power consumption (P) in chips (total energy dissipated per
unit of time) scales as

P ¼
Esys

Tsys
/N1=2: ð3:12Þ

Second, performance, measured as computations executed
per unit of time, or throughput (Tp), is predicted to scale
linearly with N, i.e.

Tp/ N
Tsys
/N: ð3:13Þ

We compared our theoretical predictions for active power
consumption (ignoring leakage power) with data obtained for
523 different microprocessors over a range of approximately 6
orders of magnitude in transistor count (see the electronic sup-
plementary material, §7.3 for details of the data collection).
The data are shown in figure 3, where the measured exponent
was 0.495 (95% confidence interval¼ 0.46–0.53), which agrees
closely with our prediction of 0.5. Consistent data on perform-
ance across many technology generations is difficult to obtain
because reporting standards have changed over the years and
their adoption by different vendors is not uniform. We obtained
normalized performance data for 100 different Intel chips,
measured with Dhrystone Millions of Instructions per Second
(DMIPS), from a variety of sources (see the electronic sup-
plementary material, §7.3). These sources included a variety of

published third-party performance comparisons from different
generations over a range of 6 orders of magnitude in transistor
count. The best-fit exponent for these data is 1.11 (95% confi-
dence interval ¼ 1.07–1.15), as shown in figure 4. This is close
to our predicted exponent of 1, suggesting that engineered
designs slightly outperform the theoretical optimum defined
by the model. Performance and throughput were fitted using
least-squares regression, assuming that there are no significant
errors in the reported count of the number of transistors [31].

It is somewhat counterintuitive that performance increases
only linearly with the number of transistors. Given that transis-
tor switching times have decreased dramatically as size has
decreased, one might expect performance to increase as the
product of clock speed and transistor number (N). However,
this is not the case, and we show the expected performance
if time were actually the inverse of clock speed in the dotted
line in figure 4. Some performance increases are achieved by
increasing clock speed for a given manufacturing process,
which may account for the higher-than-predicted scaling expo-
nent.5 This analysis confirms that the network is indeed the
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Figure 3. The energy – time minimization model predicts power scaling in
chips. Each data point represents a microprocessor chip, with active power
and number of transistors per chip from [11]. The energy – time minimization
model prediction (equation (3.12)) is shown as solid line, and the best-fit line
is shown as dashed line.
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Figure 4. The energy – time minimization model predicts how throughput
scales with the number of transistors. The raw data and their sources are
included as electronic supplementary material. The model prediction
(equation (3.13)) is shown as a solid line. The dotted line shows an alterna-
tive prediction if throughput were bound by the nodes (switching speed)
rather than the network. The dashed line is the best fit to the data.
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summary, given Dl ¼ 2, the terms of the energy–time pro-
duct are minimized when Dr ¼ 2 and Dw ! 2. Although the
energy–time product is minimized for values of Dw greater
than 2, this would entail greater communication locality,
which is challenging to engineer and doesn’t improve the
energy–time product. Thus, the model predicts that Dw ¼
2, which is consistent with observed Rent’s exponents that
approach 1/2 [15,29]. The scaling relations for various
quantities are summarized in table 1.

(d) Predictions for microprocessors
Summarizing the results from the previous section, the
energy–time product for chips is minimized when Dl ¼
Dr ¼ 2 ¼ Dw. This result corresponds to ideal scaling, as
suggested by Dennard [30], where the linear dimensions of
transistors and wires scale at the same rate, wire delay is
constant, and Rent’s exponent is 1/2.

The final energy–time product scales as N1/2 (table 1),
showing that, unlike mammals, as size increases, the
energy-delay product per node decreases systematically.
Thus, chips have become faster and they consume less
energy per transistor as more transistors are packed onto a
chip. Of course, this trend arises from the remarkable minia-
turization of transistors and wires described by Moore’s Law.
It is not surprising that transistors are faster (Tnode) and
require less energy (Enode) as they become smaller. It also
makes sense that Enet grows sublinearly with the number of
transistors, because as N increases the distance between
nodes is reduced. Additionally, Dw ¼ 2, means that most
bits move locally, so the distance between nearest nodes
affects the average distance that bits are transmitted. The
only term in the energy–time product that does not decrease
with increased N and decreased process size is Tnet, which
remains constant under Dennard scaling where wire radius
and length scale proportionally to each other.

These scaling models make two testable predictions. First,
power consumption (P) in chips (total energy dissipated per
unit of time) scales as

P ¼
Esys

Tsys
/N1=2: ð3:12Þ

Second, performance, measured as computations executed
per unit of time, or throughput (Tp), is predicted to scale
linearly with N, i.e.

Tp/ N
Tsys
/N: ð3:13Þ

We compared our theoretical predictions for active power
consumption (ignoring leakage power) with data obtained for
523 different microprocessors over a range of approximately 6
orders of magnitude in transistor count (see the electronic sup-
plementary material, §7.3 for details of the data collection).
The data are shown in figure 3, where the measured exponent
was 0.495 (95% confidence interval¼ 0.46–0.53), which agrees
closely with our prediction of 0.5. Consistent data on perform-
ance across many technology generations is difficult to obtain
because reporting standards have changed over the years and
their adoption by different vendors is not uniform. We obtained
normalized performance data for 100 different Intel chips,
measured with Dhrystone Millions of Instructions per Second
(DMIPS), from a variety of sources (see the electronic sup-
plementary material, §7.3). These sources included a variety of

published third-party performance comparisons from different
generations over a range of 6 orders of magnitude in transistor
count. The best-fit exponent for these data is 1.11 (95% confi-
dence interval ¼ 1.07–1.15), as shown in figure 4. This is close
to our predicted exponent of 1, suggesting that engineered
designs slightly outperform the theoretical optimum defined
by the model. Performance and throughput were fitted using
least-squares regression, assuming that there are no significant
errors in the reported count of the number of transistors [31].

It is somewhat counterintuitive that performance increases
only linearly with the number of transistors. Given that transis-
tor switching times have decreased dramatically as size has
decreased, one might expect performance to increase as the
product of clock speed and transistor number (N). However,
this is not the case, and we show the expected performance
if time were actually the inverse of clock speed in the dotted
line in figure 4. Some performance increases are achieved by
increasing clock speed for a given manufacturing process,
which may account for the higher-than-predicted scaling expo-
nent.5 This analysis confirms that the network is indeed the
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chips. Each data point represents a microprocessor chip, with active power
and number of transistors per chip from [11]. The energy – time minimization
model prediction (equation (3.12)) is shown as solid line, and the best-fit line
is shown as dashed line.
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scales with the number of transistors. The raw data and their sources are
included as electronic supplementary material. The model prediction
(equation (3.13)) is shown as a solid line. The dotted line shows an alterna-
tive prediction if throughput were bound by the nodes (switching speed)
rather than the network. The dashed line is the best fit to the data.
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“Hegemony	of	the	network”
Linear	scaling	between	throughput	and	#	of	transistors



Power	scaling:	Increasing	returns
Thousand-fold	increase	in	power,	Million-fold	increase	in	MIPS
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Metabolic	Scaling	
A	striking	universal(?)	pattern

B µM3/4

Metabolic	rate	scales	sub-linearly	with	mass Metabolism is	the	rate	of	energy	use
Measured	as	

Oxygen	in,	or	CO2 out
Food	consumption
(for	non-growing	animals)

Metabolism governs
Physiology
Growth
Reproduction
Lifespan
Photosynthesis	&	carbon	flux
Ecosystem	dynamics…	

Hemmingson 1960



Scaling	intercepts	and	slopes	shift	after	evolutionary	innovations
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Scaling	intercepts	and	slopes	shift	after	evolutionary	&	technological	innovations
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• Innovations	in	chip	design	mimic	innovation	in	the	evolution	of	bacteria
• Single-core	chip	scaling	mimics	unicellular	protists (single	cells	with	a	nucleus)
• Multi-core	chips	echo	the	transition	to	multicellularity
• Computer	scaling	deviates	from	biological	scaling	in	important	ways

• Decentralized	designs	dominate	in	the	transition	to	sociality

Kurzweil Singularity



Take	home	messages
• Approximate	¾	power	scaling	is	ubiquitous	in	biology
• Scaling	patterns	when	animals	aggregate	in	social	groups	are	similar	to	

scaling	patterns	when	cells	aggregate	in	bodies	(with	notable	exceptions)
• Analogous	designs	in	microprocessor	interconnect	and	cardiovascular	

network
– Fractal	branching	to	terminal	service	volumes	

• Differences	between	scaling	of	energy	&	information
– Information	can	be	copied;	energy	can	not;	reduces	energy	dissipated	to	

transmit	a	bit
– Decentralization	through	communication	locality	(Rent’s	rule)

• ¾	scaling	(with	curvature)	arises	from	
– Minimizing	energy	disipation and	delivery	time
– matching	supply	and	demand	in	the	last	mile	for	a	variety	of	network	

topologies

• Network	scaling	framework	predicts	properties	of	engineered	systems	&	
offers	a	new	perspective	on	societal	infrastructure	and	human	ecology	


