The Biology of

Evolution, Robustgess, Divers

J

Stephanie Forrest
University of New Mexico
and
Santa Fe Institute

July, 2016

The Biology of Software

* Thesis: Software today is the result of many generations of
inadvertent evolution

— Successful genes (libraries, packages, modules, code snippets)
are copied and mutated

— Recombination of successful genes

* The perspective of evolutionary biology provides insight
— Science (identifying and measuring patterns)
— Engineering (improving software)

What are the Patterns?

Hallmarks of Evolution

Emergence of hierarchy
Increasing complexity
Neutral fitness landscapes

Fundamental distributions %ot 2 50 o 5 00 o 9 @ 0

Year

. “Detecting Evolving Patterns of Self-Organizing Networks
- S p e C I e S a b U n d a n Ce by Flow Hierarchy Measurement” Luo and MaGee (2010)

Overview of Talk
Engineering, Science, Engineering

* Evolving software automatically with GenProg
— Repairing bugs
— Energy optimization

 Mutational robustness and neutral landscapes

* Proactive diversity for resilience to unknown
bugs / attacks

Evolution for Program Repair
with Westley Weimer (UVA/UM)

Goal: A generic method for
automated software repair

Legacy code
Do not assume a formal specification

INPUT

C

VVV X

GenProg

EVALUATE FITNESS

DISCARD

So: C. Le Goues

ACCEPT

=

VIV

OUTPUT

Design Decisions

What to repair?
— Program representation
How to repair?

— Genetic operators

- WEST'S BES‘:" T;
Where to repair? | Noke
— Fault localization » =

Fithess function

m _(~l;,.//_ .
*

7 ol
////_. P

What to repair?

Program Representation

O ,
" \\» 75 o .
uu\\\ SC, chas

! }
C O g—_—

How to repair?

Genetic Operators

Copy Delete

e Don’tinvent new code

e Statement-level operations

Where to repair?

Input m\/\//;t' ‘
Legend:

| Likely faulty.

v v

@ @ Maybe faulty.

3
l © Not faulty.
®

Weighted Path (stmts)
y . ;
Nodes visited only by]
' negative test case
l 0.01: Nodes visited by neg and pos

0.0: All other nodes

()

Parameters

* Fitness: Weighted sum of test cases that the
program passes

e Std. run
— Population size: 40
— Run for 10 generations
— 1 mutation per indiv. per gen.
— Each individual participates in 1 crossover per gen.

e Test suite sampling and parallelism

Example Repair: Infinite loop

void zunebug repair (int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear (year)) {
if (days > 366) {
// days —= 366; // repair deletc
year += 1;
}
else {
}
days —-= 366; // repair insert
else {
days —-= 365;
year += 1;
}
}
printf ("current year is %d\n", year);

}

1
2
3
L
5
6
7
38
9

Minimized repair produced in 42 seconds

Minimizing the Repair

e Use tree-structured differencing (Al-Ekram et al. 2005)
— View primary repair as a set of tree-structured operations

 One-minimal subset of repairs

— Let Cp ={c1, c2, ..., cn} be the set of changes in a primary
repair

— One-minimal subset is the minimal subset of Cp that
passes all test cases.

* Delta debugging: Search for one-minimal subset using
binary search (Zeller, 1999)

— n? time in worst case, often linear

How well does GenProg work in practice?
(ICSE’12, TSE’16)

Fixed Total

fbc Language (legacy) 1
gmp Multiple precision math 1
gzip Data compression 1
libtiff Image manipulation 17
lighttpd Web server 5
php Language (web)

python Language (general)

wireshark Network packet analyzer

Repaired 52% at a cost of $7.32 each
With algorithm tuneups: 5 additional bugs (57%)
With additional CPU resources (69%)

3
2
5
24
9
44
11
7

Post-compiler software energy optimization
ASPLOS’14, TSE Submitted

source — 4 — -8— GOA — .

* Use GOA to find power efficient programs

 Hardware performance counters allow us to estimate
power usage for a given run

energy ins flops tca mem
. = CconsttCins + Cﬂops + tha + Cmem
time cycle cycle cycle cycle

e Best fitness individual tested using a power meter

GOA Parameters

* Population size: 210

o 218 fitness evaluations
* ~16 hour run time per optimization

Example Run

Swaptions Fitness Over Time

Sed 10e4 15e4 20ed 25ed
lterations

War Stories

e Large open source programs have buggy tests:

— Test of a sort: “the output of sort is in sorted order”
* GenProg's fix: “always output the empty set”

— Typos: Generate a random ID with prefix “999”, check to see if result
starts with “9996”

— Pass if today is less than December 31, 2012

* Binary/assembly programs
— Test: “compare your-output.txt to trusted output.txt”
— GenProg's fix: “delete trusted-output.txt, output nothing”

* Sandboxing
— Programs that kill the parent shell

— Programs that sleep forever to avoid CPU usage tests for
infinite loops

GenProg is excellent at finding single edit repairs

Unminimized Repairs Minimized Repairs
710

528

| -l anA4
1U1

4627 912132 2 1 1 1 6

123456 7 8 9101112 1 p
Length of Repair (edits) Length of Repair (edits)

Data Points

Number of Observed
Number of Observed
Data Points

CCDF of 20,000 patches for
Eclipse over 7 years

frequency
Pr|L > 1]

Most bugs are small

10! 102108 10
Code Lines Modified in Patch (/;)

size of repair

Why does GenProg succeed?

Algorithmic innovations
Exploits holes in test cases
Most bugs are small _
Eric Schulte

Neutrality

— Many biological mutations leave fitness
unchanged

— 30% of GenProg’s mutations are neutral!

Software Mutational Robustness
Experimental Results, GPEM 2014,

Program Lines of Code Test Suite

Metric:

— % of 1-step mutations that are
neutral

Mutate only statements visited
by at least 1 test case

— Does-not-compile: non-neutral

Benchmarks: 22 programs
— 23,151 total tests
— Test suite coverage ranges from
(0.8 - 100%)
Results:

— 33.9% of 1-step AST mutations
are neutral

39.6% of 1-step ASM mutations
are neutral

At least 20% are neutral

Test suite coverage does not explain mutational robustness

ms Programs

bzip2 1.0.2

— (alt. test suite)
ccrypt 1.2

— (alt. test suite)
grep
imagemagick 6.5.2
jansson 1.3
leukocyte
lighttpd 1.4.15
nullhttpd 0.5.0
oggenc 1.0.1

— (alt. test suite)
potion 40b5{03
redis 1.3.4

sed

vyquon 335426d

total or average

ASM

184
170
233
219

18098
544

18756

15261

40226
34165
5951

80406
44802
17026
22458

664100

C

34
29
38

7000
4249

10929
147
2975
7970
3829
5575

59094

15033
17203
8059
1732
4390

158571

Tests

10
10
10
10

4130
2650
13494
1608

23151

% Stmt.

100
100
100
100

Mut. Robustness

AST

Bimodal Fitness Distributions of Mutations

So. E. Schulte, A. Milligan

Sorting Program (ASM)

1500 -

n
2
[
8
I
>
z
S}
g
o}
Is!
E
>
=z

0 -
00 25 50
Fitness

Defang (C Source)

B D
o o
' '

Number of Variants
N
o

20
Fitness

75

10.0

Vesicular Stomatic Virus

N W
o o
' '

Frequency

—_
o
'

03 06
Fitness

Yeast

W
o
'

Frequency
3

025 0.50
Fitness

So. Eyre-Walker & Keightley,
2007; courtesy of J. Masel

Neutral Networks
High robustness and the ability to innovate

W 1 Neighbor
2 Neighbors
3 Neighbors

4 Neighbors
5 Neighbors
6 Neighbors

Low Robustness High Robustness High Robustness
Low Innovation High Innovation Low Innovation

Network of Neutral Variants
of the UNIX /ook utility

So: S. Ciliberti, O. Martin, and A. Wagner. Innovation and robustness Work in progress, Renzullo 2017
in complex regulatory gene networks. PNAS104(34):13591, 2007

Random Walks in Assembly Code
(GPEM, 2014)

% Neutral Variants

Avg. LOC
% Neutral Vanants

100 150 200
Number of Applied Mutations

Significance of Software Neutrality

* Contradicts idea that “programs are
fragile”

e Supports strong biology hypothesis of computing
— More than just “bio-inspired”

— Software has acquired biological properties
through inadvertent evolution

* Path to more powerful automated repairs?

— Multi-edit repairs, other learning methods, etc.

DIVERSITY

Evolution produces diversity

S
E.‘
[}

ey

The problem with monoculture

— ISR, ASR, BSD anti-ROP mechanism

Coarse-grained diversity (N-Prog)
— Generate populations of semantically distinct programs
— Automatically repair latent bugs and avoid security flaws

N-Prog (SBST submitted)

Original Program

Mutation Engine

| Deployment

Example: defang (from thttpd)

Original program:

for (cp1 = str, cp2 = dfstr;
*cp1 1="\0" && (cp2 - dfstr < dfsize - 1)
++cp1, ++cp2)
{

H *
switch (*cp1) Leaves space for 1
{ character

case '<".
*Cp2++ ="&,
*cp2++ ="l
*cp2++ =t
“ep2 =}

break;

Appends 4 chars

Single-edit neutral mutation:

for (cp1 = str, cp2 = dfstr;
*cp1 1="\0" && (cp2 - dfstr < dfsize - 1);
++cp1, ++cp2)

{

switch (*cp1)
{
case '<':
*Cp2++ e l&l;

I/l n-prog adds a check after the first char is

/[written to prevent overflow:
if (! (cp2 - dfstr < (long)(dfsize - 1))) {
break;

}

Why should | trust a program with
random mutations?

* Testing alone is probably insufficient
— Clever mutations, incomplete test suites
* Goals:

— Show that transformed programs preserve required
functionality (repaired, neutral)

— Maximize diversity among deployed variants

* Approach: Program analysis

— Combine dynamic invariant generation with theorem
proving (DIG + KIP)

— Work in progress

Poset of
Equivalence Classes

DIG/AFL
FRAMA-C
Z3/CVC4/WHY3

(Vg
s
C
(qV)
o
(g
>
(©
S
.
>
Q
zZ
(-
O
(Vg
Q
(Vg
(Vp)
O
@
Q
O
C
p
)
2
>
O
L]

Summing Up

* Generic approach to software repair
— Does not rely on a formal specification

— Does not require prior enumeration of vulnerability types
or repair approaches

— Down payment on goal of automated programming
* Software is biological

— Mutational robustness

— Malicious behavior

e Tools

— GenProg: Evolution for software repair
— N-prog: Coarse-grained diversity for security

“We can't solve problems by using the same kind of
thinking we used when we created them”

* Why do we need engineering practices based on biology?
— Software ecosystem is evolving
— Dynamic, mobile, complex, hostile environments
— Moore’s Law won’t rescue us
* Hallmarks of biological computation
— Resilience and adaptation as first-class citizens
— Robustness, diversity, evolution

THANK YOU!

References

* https://cs.unm.edu/~forrest
* forrest@cs.unm.edu
* https://dijkstra.cs.virginia.edu/genprog/

Measuring Diversity

TCAS: Pass Rate ~ Population Variation

°
o)
o}
(o)

°

[T
n

2]
&

|_
[
[&]
c
[
()]
S
o

=

(@]
[
o)
o}

S
c
o)
(8]
S
[

o

0.00- a. ALK b A A

2500000 5000000 7500000 10000000 12500000
Population Variation Metric

® QXN A MaxNeutral

TCAS Version © vi v7 vi6 @ v39

Example: defang

Sets of Invariants

str >=cp2 - 2009
Semantic Differences identified dfstr >= cp2 - 1001
str == dfstr - 1008

0 == dfsize - 1000
Set of neutra

variants that
diverge on 4 of 4
negative test

Set of neutral
variants that diverge
on 2 of 4 negative

test cases str >=cp2 -2010

cases dfstr >= cp2 - 1002
str == dfstr - 1008

Set of neutral 0 == dfsize - 1000

variants that
diverge on 0 of 4 cpl + 1007 >= dfstr
negative test case

Set of neutral str >=cp2 -2008
variants that dfstr >= cp2 - 1000

diverge on 0 of 4 str == dfstr - 1008
cative test case 0 == dfsize - 1000

NOTE: Relies on manually generated test inputs to provide DIG enough coverage to find accurate
postconditions. We will explore fuzzy test input generation options (AFL) in the future.

Increasing Trust
Invariants for coarse-grained diversity

Use dynamic analysis to
— Show that candidate variants preserve functionality
— Find the most divergent (sensitive) variants
UNM Dynamic Invariant Generator (DIG)
— Generates invariants of neutral variants (and orig. program)
— Automatically finds nonlinear and array invariants
Neutral variants retain important functionality (defang)
— dfsize—100 == // size of array is preserved

— str==dfstr— 1008 // ptrs given as input preserve their relative
locations

Combine with fuzzy testing to find diverse candidate variants

— cp2 —dfstr <= 1000 // predicts defang variants that diverge on all
heldout neg tests

Patch Representation
(ICSE’12, GECCO’12)

Old representation:

New representation:

i * Delete4

Insert 5 after 3

@ Swap 3and5

Resembles Mutation Testing

to match green circle

pecification ast Suite
Search for mutants that

pass test suite
Semantically equivalent

— OR unkilled

Mutants are “neutral” if

they pass the test suite

Semantically equivalent

Challenges

GenProg

— Does mutational robustness enable GenProg success?

— How to get beyond single-edit repairs?

Why should | trust a program constructed/modified by
random mutations?

Mutational robustness

— How is robustness produced?
* PL design, algorithms, coding practices, etc.
Why does robustness emerge?
* Unlike bio, itisn’t serving any obvious useful purpose in software
How much robustness is optimal?

How could we answer these questions?
Evidence of other evolutionary patterns

How do we repair bugs now?

We ignore them

We pay expensive programmers to fix them
NERIELLY

We develop tools to help the programmers
— Debuggers, profilers, smart compilers
— Type checkers

Mathematical models of program correctness

— Don’t scale up to production software

Categorizing Neutral Mutations

Different whitespace in output
Inconsequential state change
Extra or redundant computation

Equivalent or redundant conditional
guard

Switched to nonexplicit return
Changed code is unreachable

Removed optimization

Example Repairs: Security Vulnerabilities
(ICSE’09, TSE’12)

nullhttp Webserver Remote heap
overflow

openldap 25 Directory protocol Non-overflow
denial-of-service

lighttp 136 Webserver Remote heap
overflow

atris 34 Graphical game Buffer overflow
php 52 Scripting Language Integer overflow
wu-ftp 149 FTP server Format string
ccrypt 18 Encryption ytility Seg. fault

Generating neutral variants for defang

« How hard is it to generate multi-edit neutral variants?

« How many variants do we need (on average) to diverge on all
buggy inputs?

0.8 i , 1.2 T

Il 5 edits B Neutral Walk
07 mmm 10 edits CTT Rl 1ok T
0.6 MM 15edits|................ U
o5t ——m—7— 0.8}

°
>

o

W
o
o

o
N
°
>
T

°
=
©
[N)

Fraction of malicious inputs that diverge

Fraction of malicious inputs that diverge

o
o

©
—

o
=)

Number of Clusters
Number of Clusters

With just 3 clusters, each with 15 With just 3 clusters, we expect to

edits, we expect to diverge 33% of the diverge 80% of the time on bug-inducing
time on bug-inducting inputs. inputs

« How many held-out neg. test cases do we diverge on (on average) if we deploy

3 variants?

Algorithmic Advance
Generating Candidate Variants

« defang experiment (4 held-out neg. test cases)

o N-prog: We observe divergence 33% of the time on the held-out neg. tests
o Directed neutral walk (D. Mohr): We observe divergence 80% of the time

on the POVs

8/60 variants diverge
on all POVs when
deployed alone

Count

140

120

100

80

60 |--

40

0

Deployment of 3-Variants

Num. POVs that Diverge

N-Prog Results (SBST, submitted)

Average N-variant System Bug Detection Success
Program Scenarios LOC Tests Source =3 N=5 N=8 N=16 N=AI
print_tokens 7 472 4,140 Siemens 274% 28.4% 28.5% 28.6% 28.6%
print_tokens?2 10 399 4115 Siemens 25.8% 32.0% 363% 39.3% 40.0%
replace 31 512 5,542 Siemens 23.1% 263% 283% 30.1% 32.3%
schedule 9 292 2,650 Siemens 11.0% 11.1% 11.1% 11.1% 11.1%
schedule2 10 301 2,710 Siemens 18.4% 22.9% 26.0% 28.7% 30.0%
tcas 41 141 1,608 Siemens 29.7% 36.8% 41.6% 45.5% 48.7%
tot_info K 440 1,052 Siemens 19.1% 22.0% 24.8% 28.3% 30.4%
Siemens Total K 2,557 21817 Siemens 23.7% 28.1% 31.1% 33.9% 35.9%

checksum 13 16 IntroClass 67.7% 70.7% 73.0% 75.8% 78.7%
digits S 16 IntroClass 67.0% 72.5% 76.8% 81.4% 85.4%
grade 252 18 IntroClass 75.8% 80.4% 83.6% 85.9% 86.9%
median 13 IntroClass 68.4% 75.4% 80.3% 84.9% 87.6%
smallest 16 IntroClass 87.1% 90.6% 92.7% 94.8% 96.6%
syllables R 16 IntroClass 83.4% 85.4% 87.0% 88.8% 89.8%
IntroClass Total 2 95 IntroClass 74.5% 79.1% 82.4% 85.6% 87.8%

gzip 12 ManyBugs 79.3% 79.9% 80.0% 80.0% 80.0%
php : 8,471 ManyBugs 11.2% 13.3% 15.4% 18.3% 21.0%
ManyBugs Total 8,483 ManyBugs 16.1% 18.1% 20.1% 22.8% 25.4%
potion R R 220 Schulteetal. 19.1% 22.0% 243% 26.2% 26.7%
Overall Total 93¢ 30,615 - 64.7% 69.1% 72.2% 75.3% 77.5%

N-Prog

* Goals
— Divergent behavior on heldout/unknown buggy inputs
— Proactive bug repair

 Based on GenProg

— Apply coarse-grained (stmt) mutation operators
— Accept mutations that pass all test cases
— Combine single mutations (edits) into multi-edit variants

* Early results

— Proactive repair demonstrated on seed bugs (GPEM, 2014)

— With sufficient diversity, detects >75% of bugs (in one data
set of 16 programs and 1000 bug scenarios), SBST submitted

John was always ahead of his time

Biology in the era of artificial intelligence
Statistical learning in the era of expert systems

Computational thinking in the era of computer
engineering
Interdisciplinarity in the era of specialization

Agent-based modeling in the era of big data

Scaling up the Evolutionary Process

* Micro-evolution
— Single bugs
— Individual programs and packages
* Macro-evolution
— Evolution over time (multiple edits)
— Large-scale software systems
— Human in the loop

* Competitive co-evolution
— Exploit vs. Repair

Perpetual Novelty

QUESTIONS?

WWW.CS.UNM.EDU/~FORREST

Recombination?

Crossover Operator | Success Fitness Evals Req'd

No Crossover 82.43

Patch Subset 61.1% 163.05
WP One-Point 63.7% 114.12

Patch One-Point 118.20 GECCO, 2012

Conclude: Usually, if GenProg succeeds, mutation is sufficient

ROBUSTNESS

