

Computational Chaos by Edward N. Lorenz

Ben Mixon-Baca Meisam Navaki Arefi

Spring 2017

Outline

- Introduction
- A system with fixed-point attractors
- Instability of fixed points
- Bifurcations
- Onset of chaos
- Strange Attractors
- Conclusion

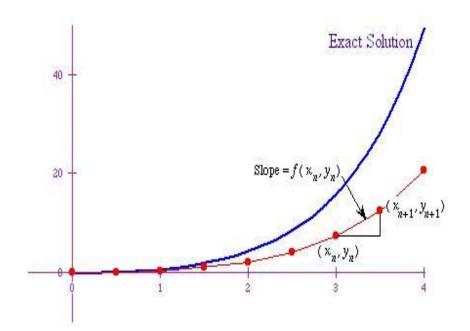
 Solutions to nonlinear differential equations often sought by numerical means.

$$\mathrm{d}\boldsymbol{X}/\mathrm{d}\boldsymbol{t} = \boldsymbol{F}(\boldsymbol{X})$$

• Approximating using Euler scheme:

$$\boldsymbol{X}_{n+1} = \boldsymbol{X}_n + \tau \boldsymbol{F}(\boldsymbol{X}_n)$$

- Other techniques:
 - Runge-Kutta
 - 4th-Order Taylor Series



- Chaotic behavior sometimes occurs when difference equations used as approximation to ordinary differential equation are solved numerically with a large time increment.
- Using one example we show when fixed points go unstable and when chaos first sets in

- **Computational chaos**: A chaotic behavior that owes its existence to the use of a large time increment, **τ**.
- Goal:
 - Lower limit of values of τ for which fixed points are unstable?
 - Lower limit of values of τ for which chaos is present?

- Computational chaos is widespread: Even for one of the simplest flows $dx/dt = x x^2$
- Almost all solutions approach either -∞ or the stable fixed point x = 1
- If we apply Euler function:

$$x_{n+1} = (1+\tau)x_n - \tau x_n^2$$

• $0 < x_0 < (1 + \tau)/\tau \Rightarrow$ fixed point x = 1 if $\tau < 2$ \Rightarrow chaotic behavior if $2 < \tau < 3$

A system with fixed-point attractors

• Used a model of fluid convection and turned into a limiting form of it.

 $dX/dt = -\sigma X + \sigma Y,$ $dY/dt = -XZ + \rho X - Y,$ $dZ/dt = XY - \beta Z,$

$$dx/dt = ax - xy,$$

$$dy/dt = -y + x^{2}$$

• As:
$$\sigma \rightarrow \infty$$
, $\beta = 1$, a = ϱ -1

- Replace X by Y
- Replace Y and Z by x and y

A system with fixed-point attractors

• Approximating the limiting form by Euler scheme:

$$x_{n+1} = (1 + a\tau)x_n - \tau x_n y_n$$
$$y_{n+1} = (1 - \tau)y_n + \tau x_n^2.$$

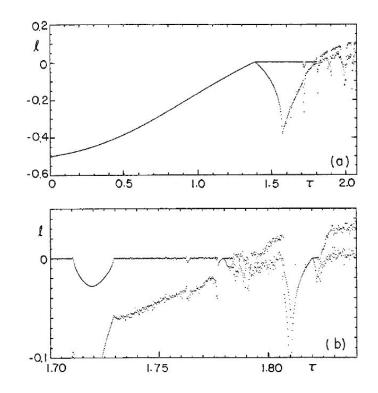
• After solving the differential equation we get Lyapunov exponents: l_1 and l_2 which are both equal to:

$$[\log(1-\tau+2a\tau^2)]/(2\tau)$$

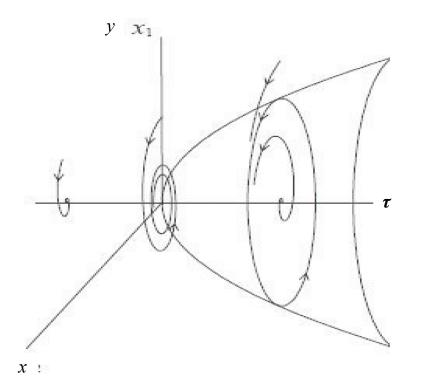
If τ →0 ⇒ -½ (stable fixed point) τ = 1/(2a) ⇒ 0

Lyapunov Exponent VS Time Increment

- $0 \le \tau < \tau_a, \ l < 0 \Rightarrow$ Stable fixed point
 - Single stable fixed point
- $\tau_a \le \tau < \tau_b, l > 0 \Rightarrow$ Unstable fixed point
 - Hopf bifurcation
- $\tau b \le \tau < \tau c, l > 0 \Rightarrow$ Unstable fixed point
 - Chaos is present
- $au c \leq au$
 - Computational instability



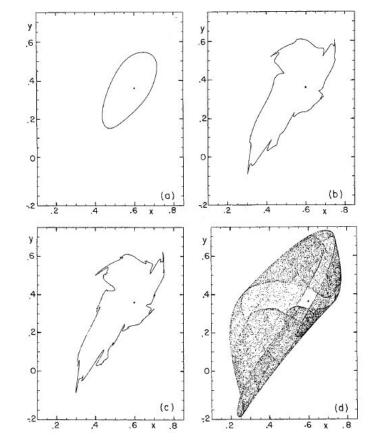
Hopf Bifurcation



http://www.intechopen.com/source/html/39234/media/image6.jpeg

Attractors About A Fixed Point

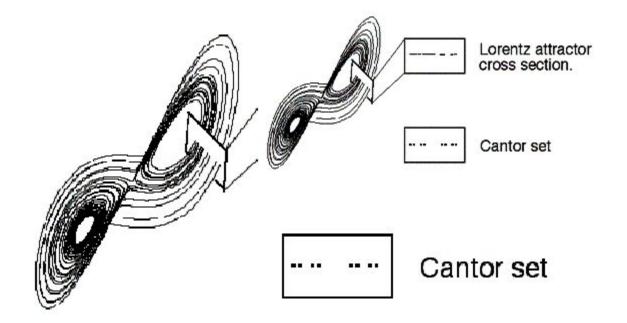
- Limit cycle at Q. Not chaotic
- Deformed limit cycle. Not chaotic
- Further deformed. Chaotic
 - Hopf Bifurcations at kinks



Cantor Set

пп	пп	П П	Ш

Lorenz Attractor Cross Section



Strange Attractor

- Closed set
- Can be visualized in phase space
- Fractal substructure with infinite complexity.
- Basin of attraction

Conclusion

- Interaction between parameters (a, b, τ) can lead to chaos
- Chaos starts with different types of bifurcation
- Not all approximation techniques are created equal
 - $\circ~$ Runge-Kutta has a larger range of τ before chaos but can still go chaotic
- Strange attractors:
 - o fractal "surfaces"
 - Resemble the Cantor set

References

• Lorenz, E., "Computational Chaos", Physica D, 1988