Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

Timing of Cyber Conflict presented by Padraic Cashin

Robert Axelrod and Rumen Iliev

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

When do you attack?

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- When expending resources yields value greater than possible future value
- Each entity has a Threshold, T, for Stakes, s; minimum level of stakes before an attack will be considered.
- Resources consist of exploits, back doors, bot nets, etc.

Model Assumptions

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- Entities know the current stakes, but only know the distribution of future stakes
- Future stakes are out of your control
- Future effectiveness of a resource can only be estimated

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Shelf Life of Resources

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- Vulnerabilities can be discovered and patched.
- A vulnerability is stealthy, S, if it remains viable after use
- A vulnerability is persistent, P, if it remains viable when not used

Persistence vs Stealth

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

> Persistent resources are not currently deployed. Stealthy resources have already been used.

- P = Pr(resource survives | not use it)
- S = Pr(resource survives | use it)

Value vs Gain

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- The **gain**, G, of a resource is the immediate value from deploying a resource
- The **value**, V, of a resource is the sum of immediate gains and all future gains
- The value of a resource over time is discounted by a fixed percent, w

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Defining Value

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

Value of a stealthy resource:

$$V_S = G(T) + wSV \tag{1}$$

Value of a persistent resource:

$$V_P = wPV \tag{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Expected value over-time:

 $V = \Pr(s \ge T)[G(T) + wSV] + (1 - \Pr(s \ge T))wPV \quad (3)$

Determining Optimal Timing of Attacks

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- Distribution of stakes is linear. Based on the role of a die.
- The discount rate is fixed at w = 0.9
- Analyse the effects of stealth and persistence on threshold

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Effect of Persistence

Robert Axelrod and Rumen Iliev

P T	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
6									3.88	
	1.98									
4	2.68	2.98	3.13	3.42	3.77	4.20	4.74	5.43	6.37	7.69
3	3.19	3.41	3.66	3.95	4.29	4.69	5.17	5.77	6.52	7.50
	3.52									
1	3.66	3.85	4.05	4.27	4.52	4.79	5.11	5.47	5.88	6.36

Stealth is set to half of Persistence. Using a resource doubles the likely hood it will be discovered.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Effect of Stealth

Robert Axelrod and Rumen Iliev

S T	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
6	2.60	2.70	2.82	2.94	3.08	3.23	3.39	3.57
5	3.74	3.99	4.26	4.58	4.95	5.39	5.91	6.55
4	4.20	4.55	4.95	5.43	6.02	6.76	7.69	8.93
3	4.29	4.69	5.17	5.77	6.52	7.50	8.82	10.71
2	4.14	4.57	5.09	5.75	6.60	7.75	9.39	11.90
1	3.85	4.27	4.79	5.47	6.36	7.61	9.46	12.50

Persistence is fixed at 0.8

Results

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- As Persistence increases Threshold increases
- As Stealth increases Threshold goes down
- Patience increases when stealth is low, persistence is high, and large stakes are rare

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Case Study 1: Stuxnet

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- Low Persistence, High Stealth, and High Stakes
- Multiple resources used at once, high cost of use
- Gain was not estimated properly due to source code leaks

Case Study 2: Attack on Saudi Aramco

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- Broad attack on Saudi and US oil pipelines (30,000 workstations infected)
- Very High Stakes, Low Stealth
- Attackers immediately deployed a resource en masse

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Case Study 3: Chinese Cyber Espionage

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- Wide spread deployment of cyber resources
- Moderate Stealth against vigilant targets, Minimal Stakes

 Either persistence is very low or expect High Stealth against outliers

Case Study 4: Refusal to Export Minerals

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- Chinese refused to export rare-earth minerals due to Japanese detainment of Chinese fishing crew.
- Very High Persistence, Low Stealth, Low Value
- China might have a artificially low threshold or low patience

Effect of Zero–Day Markets

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- Increased pressure to find exploits leads to simultaneous discover; Decreases Persistence.
- Lower Persistence lowers Threshold; Increase resource deployment
- Prices predicted to drop as exploits become available and less persistent

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

Model explains cyber conflict frequency using economic models

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Entities attempt to maximize resource effectiveness
- Resources are both perishable and detectable
- Assumes each entity will act perfectly

What Happens if an Attack is False?

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- Evidence of an Attack can be Spoofed
- Attacks are not necessarily resource intensive; non-state attacks are possible
- Attacks can be attributed to different entities incorrectly, or can be left unattributed

Each entity has unknown capabilities

The Blame Game

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

 Two player Bayesian Game, players have imperfect knowledge of each other but can estimate a probability of state

- Players are either the Attacker (\mathcal{A}) or the Blamer (\mathcal{B})
- \mathcal{A} chooses to attack \mathcal{B} or not
- $\blacksquare \ \mathcal{B}$ chooses to blame \mathcal{A} or not

Behavior and Equilibria

Timing of Cyber Conflict

Robert Axelrod and Rumen Iliev

- \mathcal{A} attempts to determine if \mathcal{B} is **knowledgeable**
- \mathcal{B} attempts to determine if \mathcal{A} is **vulnerable**
- Equilibria exist if no attack no blame or attack blame occurs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Third parties can disrupt cooperative equilibrium