Lecture 8 Measuring Complexity (with a side of information theory)

Logistics

- Current Reading
 - <u>Gell-Mann, M. What is Complexity</u>, *Complexity*, *Vol 1, no. 1*, 1995 (Read by Feb 12th)
 - <u>Crutchfield, J. Between Order and Chaos, Nature Physics</u>, 2012 (Read by Feb 12th)
 - Mitchell. Chapter 3 and 4 by Feb 10th.
 - Mitchell. Chapter 7 by Feb 17th.

- Project 1/4 is due in 0 days at 6:00pm.
- Now you are a domain expert.
 Switch to reviewer mode.

A clarification

- Recall that Strange Attractors are chaotic.
- I have made the following two claims:
 - 1. Strange Attractors cannot exist in systems with less than 3 dimensions.
 - 2. the logistic map contains a strange attractor.
- What is the loophole that keeps me from being a liar?

A clarification

- Recall that Strange Attractors are chaotic.
- I have made the following two claims:
 - 1. Strange Attractors cannot exist in systems with less than 3 dimensions.
 - 2. the logistic map contains a strange attractor.
- Hint: we have seen two basic types of dynamical system. Statement 1 is true for one of these ...

A clarification

- Recall that Strange Attractors are chaotic.
- I have made the following two claims:
 - 1. Strange Attractors cannot exist in systems with less than 3 dimensions.
 - 2. the logistic map contains a strange attractor.
- Hint: we have seen two basic types of dynamical system. Statement 1 is true for one of these ...

Even more of a hint: Poincaré– Bendixson theorem (Lecture 2)

How should we measure the complexity of a system?

How to measure a system's complexity?

- •Unpredictability, entropy
 - Information content.
- How difficult it is to describe
 - Length of the most concise description
 - No single model adequate to describe the system? (Lee Segel def. of complexity)
- •Measuring how long until it halts, if ever
 - How long until it repeats itself?
- How difficult is it to construct?
 - Multiple levels of organization
 - Number of interdependencies

A Few Measures of Complexity (there are many)

- Asymptotic behavior of dynamical systems
 - Fixed points, limit cycles, chaos
 - Wolfram's CA classification, Langton's lambda parameter
- Computational complexity (Cook):
 - What resources does it take to compute a function?
- Language complexity
 - How complex a machine is needed to compute a function?
- Information-theoretic measures
 - Entropy, algorithmic complexity, mutual information
- Logical depth (Bennett)
 - Run-time of the smallest machine that generates the pattern and halts
- Thermodynamic depth (Lloyd and Pagels)
- Effective complexity (Gell-mann and Lloyd)

Information Theory

- Information
 - Decrease in uncertainty once we learn a certain value (symbol)
 - Additive: The more we learn the less uncertainty we have. Use logarithms to get this property
 - Expressed as bits
 - Normalized for probability of different symbols

Claude Shannon, Bell Labs

1948, "A Mathematical Theory of Communication"

Cryptographer who worked with Alan Turing when Turing visited the US.

 $H = -\sum p_i \log_2(p_i)$

Information Theory

- Shannon's information formula is identical to the formula for entropy in statistical thermodynamics.
- Entropy was defined by Bolzmann, Gibbs, and Planck in the late 19th C.
- This formula is the basis for the second law of thermodynamics (rules of energy)

 $S = -k_B \sum p_i \ln(p_i)$

Willard Gibbs

Ludwig Boltzmann

Max Planck

Entropy

- You should call it <u>entropy</u>, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that <u>name</u>, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage. Jon von Neumann (Scientific American Vol. 225 No. 3, (1971), p. 180.)
- The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work.
- In mathematics you don't understand things. You just get used to them.

Inventor of the Computer (along with Alan Turing) .

One of the lead scientists on the Manhattan project.

Inventor of Game Theory (which lead to strategy of *mutually assured destruction*).

Information content is a fundamental property of all systems.

The most likely configuration of a physical system is the one that Maximised the information entropy.

Entropy is a measure of how far the system is from being uniformly random.

In physical systems entropy Always increases leading to more randomness – less complexity.

Leonard Susskind, Stanford. Known for his work in black hole entropy, string theory, and the holographic principle.

The holographic principle showed that information is not lost in a black hole (contrary to Stephen Hawkins).

The most fundamental particle is the bit.

Susskind, Leonard (1995). "The World as a Hologram". *Journal of Mathematical Physics*. **36** (11): 6377–6396

Shannon Entropy

• Generalize previous equation to account for symbols appearing with different frequencies:

$$H = -\sum_{i} p_i \log_2(p_i)$$

- Entropy is measured in bits
- H measures the average uncertainty in the random variable
- Example: Consider a random variable with uniform distribution over 32 values
- Need 5-bit strings to label each outcome

Information and Entropy

- Information is defined to be the resolution of uncertainty.
- Resolution in the sense that the current uncertainty is removed by the receipt of information.
- It is the uncertainty before the information is obtained that defines the quantity of the information.

What is a random variable?

- A function defined on a sample space
 - Should be called *random function*
 - Independent variable is a point in the sample space, e.g., the outcome of an experiment.
- A function of outcomes, rather than a single outcome
- Probability distribution of the random variable X
- Example: $P\{X=x_j\} = f(x_j)$ j = 1, 2, ...
 - Toss 3 fair coins
 - Let X denote the number of heads that appear
 - X is a random variable taking on one of the values (0,1,2,3)
 - $P{X=0} = 1/8; p{X=1} = 3/8; p{X=2} = 3/8; p{X=3} = 1/8$

Example: Horse race

• Probabilities of 8 horses are:

$$\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\right)$$

- Calculate the entropy H of a message containing the outcome:
- Could send the index of the winning horse
 - How many bits of information would this take on average?

Example: Horse race

• Probabilities of 8 horses are:

- Calculate the entropy H of a message containing the outcome:
- Could send the index of the winning horse (3 bits)
- Or, use the following labels: 0, 10, 110, 1110, 111100, 111101, 111110, 111111
 - Avg. description length is 2 bits instead of 3

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{16}\log\frac{1}{16} - 4\frac{1}{64}\log\frac{1}{64} = 2$$
 bits

Example: Horse race

• Probabilities of 8 horses are:

- Calculate the entropy H of a message containing the outcome:
- Suppose we want to send a msg saying who won
 - Could send the index of the winning horse (3 bits)
 - Or, use the following labels: 0, 10, 110, 1110, 111100, 111101, 111110, 111111
 - Avg. description length is 2 bits instead of 3

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{16}\log\frac{1}{16} - 4\frac{1}{64}\log\frac{1}{64} = 2$$
 bits

 Suppose you live in a city where ½ the time it's sunny and ½ the time it's cloudy. I say it's sunny.
 How much information did I give you?

– You live in Abq, 7/8 of the days its sunny, 1/8th it's cloudy. I say it's sunny. How much information did I give you?

Given: p(W = sunny) = 7/8 and p(W = cloudy) = 1/8

By observing W = sunny we get $-\log(7/8) \approx 0.2$ bits of info By observing W = cloudy is $-\log(1/8) = 3$ bits of info

On average, we observe W= sunny 7/8 of the time, and W = cloudy 1/8 of the time

The AVERAGE INFORMATION we receive by observing W is -7/8*log(7/8) + -1/8 log(1/8) ~= 0.54 The SHANNON INFORMATION, H(W_{abq}) ~= 0.54

In New York half the days are sunny, and 1/2 the days are cloudy

```
The SHANNON INFORMATION, H(W_{NY}) = 1
```

Entropy and its Friends

- More generally,
 - The entropy of a random variable is a lower bound on the avg. number of bits required to represent the random variable
- The uncertainty (complexity) of a random variable can be extended to define the complexity of a single string
- e.g., Kolmogorov (algorithmic) complexity is the length of the shortest program that prints out the string.
- Entropy is the uncertainty of a single random variable
- Conditional entropy is the entropy of a random variable given another random variable

Mutual Information

- Measures the amount of information that one random variable contains about another random variable.
 - Mutual information is a measure of reduction of uncertainty due to another random variable.
 - That is, mutual information measures the dependence between two random variables.
 - It is symmetric in X and Y, and is always non-negative.
- Recall: Entropy of a random variable X is *H(X)*.
- Conditional entropy of a random variable X given another random variable Y = H(X | Y).
- The *mutual information* of two random variables X and Y is:

$$I(X,Y) = H(X) - H(X | Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

Theorem 2: The only H satisfying the three above assumptions is of the form:

$$H = -K \sum_{i=1}^{n} p_i \log p_i$$

where K is a positive constant.

This theorem, and the assumptions required for its proof, are in no way necessary for the present theory. It is given chiefly to lend a certain plausibility to some of our later definitions. The real justification of these definitions, however, will reside in their implications.

Quantities of the form $H = -\sum p_i \log p_i$ (the constant K merely amounts to a choice of a unit of measure) play a central role in information theory as measures of information, choice and uncertainty. The form of H will be recognized as that of entropy as defined in certain formulations of statistical mechanics⁸ where p_i is the probability of a system being in cell *i* of its phase space. H is then, for example, the H in Boltzmann's famous H theorem. We shall call $H = -\sum p_i \log p_i$ the entropy of the set of probabilities p_1, \ldots, p_n . If x is a chance variable we will write H(x) for its entropy; thus x is not an argument of a function but a label for a number, to differentiate it from H(y) say, the entropy of the chance variable y.

The entropy in the case of two possibilities with probabilities p and q = 1 - p, namely

$$H = -(p\log p + q\log q)$$

is plotted in Fig. 7 as a function of *p*.

Fig. 7 — Entropy in the case of two possibilities with probabilities p and (1-p).

The quantity H has a number of interesting properties which further substantiate it as a reasonable measure of choice or information.

1. H = 0 if and only if all the p_i but one are zero, this one having the value unity. Thus only when we are certain of the outcome does H vanish. Otherwise H is positive.

2. For a given n, H is a maximum and equal to $\log n$ when all the p_i are equal (i.e., $\frac{1}{n}$). This is also intuitively the most uncertain situation.

Claude Shannon

A Mathematical Theory of Communication *The Bell System Technical Journal*, Vol. 27, pp. 379–423, 623–656, July, October, 1948

Algorithmic Complexity (AC)

(also known as Kolmogorov-Chaitin complexity)

- The *Kolomogorov-Chaitin* complexity *K(x)* is the length, in bits, of the smallest program that when run on a Universal Turing Machine outputs (prints) *x* and then halts.
- Example: What is *K(x)* where *x* is the first 10 even natural numbers? Where *x* is the first 5 million even natural numbers?

Algorithmic Complexity (AC)

(also known as Kolmogorov-Chaitin complexity)

- Example: What is *K(x)* where *x* is the first 10 even natural numbers? Where *x* is the first 5 million even natural numbers?
- Possible representations:
 - 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, ... (2n 2)
 - for (j = 0; j < n: j++) printf("%d\n", j * 2);
- How many bits?
 - Alternative 1: O(n log n)
 - Alternative 2: $K(x) = O(\log n)$
- Two problems:
 - Calculation of K(x) depends on the machine we have available (e.g., what if we have a machine with an instruction "print the first 10 even natural numbers"?)
 - In general, it is an uncomputable problem to determine K(x) for arbitrary x.

Algorithmic Complexity cont.

- AC formalizes what it means for a set of numbers to be compressible and incompressible.
 - Data that are redundant can be more easily described and have lower AC.
 - Data that have no clear pattern and no easy algorithmic description have high AC.
- What about random numbers? If a string is random, then it possesses no regularities:
 - K(x) = | Print(x) |
 - The shortest program to produce x is to input to the computer a copy of x and say "print this."
- Implication: The more random a system, the greater its AC.
- AC is related to entropy:
 - The entropy rate of a symbolic sequence measures the unpredictability (in bits per symbol) of the sequence.
 - The entropy rate is also known as the *entropy density* or the *metric density*. h_{μ}
 - The average growth rate of K(x) is equal to the entropy rate
 - For a sequence of n random variables, how does the entropy of the sequence grow with n?

Slide courtesy of Stephanie Forrest

Measures of Complexity that Capture Properties Distinct from Randomness

Measures of randomness do not capture pattern, structure, correlation, or organization.

- Structural complexity
 - Mutual information, Wolfram's CA classification.
 - The "edge of chaos."

Slide courtesy of Stephanie Forrest

Logical Depth

- Bennett 1986;1990:
 - The *Logical depth* of *x* is the run time of the shortest program that will cause a UTM to produce *x* and then halt.
 - Logical depth is not a measure of randomness; it is small both for trivially ordered and random strings.

• Drawbacks:

- Uncomputable.
- Loses the ability to distinguish between systems that can be described by computational models less powerful than Turing Machines (e.g., finitestate machines).

A measure of complexity for Project 1

For each value of a used in the bifurcation plot, calculate the steady state entropy of x in the map. That is, after the map reaches the steady state, for each unique value of x_i calculate:

$$H_a(x) = -\sum_{x_i \in x} \Pr[x_i] \log \Pr[x_i]$$
(1)

What do you expect to see?

A measure of complexity for Project 1

For each value of a used in the bifurcation plot, calculate the steady state entropy of x in the map. That is, after the map reaches the steady state, for each unique value of x_i calculate:

$$H_a(x) = -\sum_{x_i \in x} \Pr[x_i] \log \Pr[x_i]$$
(1)

What do you expect to see?

