Lecture 8
 Measuring Complexity
 (with a side of information theory)

Logistics

- Current Reading
- Gell-Mann, M. What is Complexity?, Complexity, Vol 1, no. 1, 1995 (Read by Feb 12th)
- Crutchfield, J. Between Order and Chaos, Nature Physics, 2012 (Read by Feb 12th)
- Mitchell. Chapter 3 and 4 by Feb $10^{\text {th }}$.
- Mitchell. Chapter 7 by Feb 17 ${ }^{\text {th }}$.
- Project $1 / 4$ is due in 0 days at 6:00pm.
- Now you are a domain expert. Switch to reviewer mode.

A clarification

- Recall that Strange Attractors are chaotic.
- I have made the following two claims:

1. Strange Attractors cannot exist in systems with less than 3 dimensions.
2. the logistic map contains a strange attractor.
-What is the loophole that keeps me from being a liar?

A clarification

- Recall that Strange Attractors are chaotic.
- I have made the following two claims:

1. Strange Attractors cannot exist in systems with less than 3 dimensions.
2. the logistic map contains a strange attractor.

- Hint: we have seen two basic types of dynamical system. Statement 1 is true for one of these ...

A clarification

- Recall that Strange Attractors are chaotic.
- I have made the following two claims:

1. Strange Attractors cannot exist in systems with less than 3 dimensions.
2. the logistic map contains a strange attractor.

- Hint: we have seen two basic types of dynamical system. Statement 1 is true for one of these ...

Even more of a hint: Poincaré- Bendixson theorem (Lecture 2)

How should we measure the complexity of a system?

How to measure a system's complexity?

- Unpredictability, entropy
- Information content.
-How difficult it is to describe
- Length of the most concise description
- No single model adequate to describe the system? (Lee Segel def. of complexity)
- Measuring how long until it halts, if ever
- How long until it repeats itself?
- How difficult is it to construct?
- Multiple levels of organization
- Number of interdependencies

A Few Measures of Complexity (there are many)

- Asymptotic behavior of dynamical systems
- Fixed points, limit cycles, chaos
- Wolfram's CA classification, Langton's lambda parameter
- Computational complexity (Cook):
- What resources does it take to compute a function?
- Language complexity
- How complex a machine is needed to compute a function?
- Information-theoretic measures
- Entropy, algorithmic complexity, mutual information
- Logical depth (Bennett)
- Run-time of the smallest machine that generates the pattern and halts
- Thermodynamic depth (Lloyd and Pagels)
- Effective complexity (Gell-mann and Lloyd)

Information Theory
 - Information

- Decrease in uncertainty once we learn a certain value (symbol)
- Additive: The more we learn the less uncertainty we have. Use logarithms to get this property
- Expressed as bits
- Normalized for probability of different symbols

Claude Shannon, Bell Labs
1948, "A Mathematical Theory of Communication"
Cryptographer who worked with Alan Turing when Turing visited the US.

$$
H=-\sum_{i} p_{i} \log _{2}\left(p_{i}\right)
$$

Information Theory

- Shannon's information formula is identical to the formula for entropy in statistical thermodynamics.
- Entropy was defined by Bolzmann, Gibbs, and Planck in the late $19^{\text {th }} \mathrm{C}$.

Willard Gibbs

- This formula is the basis for the second law of thermodynamics (rules of energy)

$$
S=-k_{B} \sum_{i} p_{i} \ln \left(p_{i}\right)
$$

Ludwig Boltzmann

Max Planck

Entropy

- You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage. - Jon von Neumann (Scientific American Vol. 225 No. 3, (1971), p. 180.)
- The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work.

Inventor of the Computer (along with Alan Turing) .

One of the lead scientists on the Manhattan project.

Inventor of Game Theory (which lead to strategy of mutually assured destruction).

- In mathematics you don't understand things. You just get used to them.

Information content is a fundamental property of all systems.

The most likely configuration of a physical system is the one that Maximised the information entropy.

Entropy is a measure of how far the system is from being uniformly random.

In physical systems entropy Always increases leading to more randomness - less complexity.

Leonard Susskind, Stanford.
Known for his work in black hole entropy, string theory, and the holographic principle.

The holographic principle showed that information is not lost in a black hole (contrary to Stephen Hawkins).

The most fundamental particle is the bit.

Susskind, Leonard (1995). "The World as a Hologram". Journal of Mathematical Physics. 36 (11): 6377-6396

Shannon Entropy

- Generalize previous equation to account for symbols appearing with different frequencies:

$$
H=-\sum_{i} p_{i} \log _{2}\left(p_{i}\right)
$$

- Entropy is measured in bits
- H measures the average uncertainty in the random variable
- Example: Consider a random variable with uniform distribution over 32 values
- Need 5-bit strings to label each outcome

Information and Entropy

- Information is defined to be the resolution of uncertainty.
- Resolution in the sense that the current uncertainty is removed by the receipt of information.
- It is the uncertainty before the information is obtained that defines the quantity of the information.

What is a random variable?

- A function defined on a sample space
- Should be called random function
- Independent variable is a point in the sample space, e.g., the outcome of an experiment.
- A function of outcomes, rather than a single outcome
- Probability distribution of the random variable X
- Example: $P\left\{X=x_{j}\right\}=f\left(x_{j}\right) \quad j=1,2, \ldots$
- Toss 3 fair coins
- Let X denote the number of heads that appear
- X is a random variable taking on one of the values $(0,1,2,3)$
- $P\{X=0\}=1 / 8 ; p\{X=1\}=3 / 8 ; p\{X=2\}=3 / 8 ; p\{X=3\}=1 / 8$

Example: Horse race

- Probabilities of 8 horses are:

$$
\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\right)
$$

- Calculate the entropy H of a message containing the outcome:
- Could send the index of the winning horse
- How many bits of information would this take on average?

Example: Horse race

- Probabilities of 8 horses are:

$$
\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\right)
$$

- Calculate the entropy H of a message containing the outcome:
- Could send the index of the winning horse (3 bits)
- Or, use the following labels: $0,10,110,1110,111100,111101,111110$, 111111
- Avg. description length is 2 bits instead of 3

$$
H(X)=-\frac{1}{2} \log \frac{1}{2}-\frac{1}{4} \log \frac{1}{4}-\frac{1}{8} \log \frac{1}{8}-\frac{1}{16} \log \frac{1}{16}-4 \frac{1}{64} \log \frac{1}{64}=2 \text { bits }
$$

Example: Horse race

- Probabilities of 8 horses are:

$$
\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\right)
$$

- Calculate the entropy H of a message containing the outcome:
- Suppose we want to send a msg saying who won
- Could send the index of the winning horse (3 bits)
- Or, use the following labels: $0,10,110,1110,111100,111101,111110,111111$
- Avg. description length is 2 bits instead of 3

$$
H(X)=-\frac{1}{2} \log \frac{1}{2}-\frac{1}{4} \log \frac{1}{4}-\frac{1}{8} \log \frac{1}{8}-\frac{1}{16} \log \frac{1}{16}-4 \frac{1}{64} \log \frac{1}{64}=2 \text { bits }
$$

Another Example:

- Suppose you live in a city where $1 / 2$ the time it's sunny and $1 / 2$ the time it's cloudy. I say it's sunny. How much information did I give you?
- You live in Abq, $7 / 8$ of the days its sunny, $1 / 8^{\text {th }}$ it's cloudy. I say it's sunny. How much information did I give you?

Given: $p(W=$ sunny $)=7 / 8$ and $p(W=$ cloudy $)=1 / 8$
By observing $W=$ sunny we get $-\log (7 / 8) \sim=0.2$ bits of info By observing $W=$ cloudy is $-\log (1 / 8)=3$ bits of info

On average, we observe $\mathrm{W}=$ sunny $7 / 8$ of the time, and $\mathrm{W}=$ cloudy $1 / 8$ of the time

The AVERAGE INFORMATION we receive by observing W is

$$
-7 / 8 * \log (7 / 8)+-1 / 8 \log (1 / 8) \sim=0.54
$$

The SHANNON INFORMATION, $\mathrm{H}\left(\mathrm{W}_{\mathrm{abq}}\right) \sim=0.54$
In New York half the days are sunny, and $1 / 2$ the days are cloudy
The SHANNON INFORMATION, $\mathrm{H}\left(\mathrm{W}_{\mathrm{NY}}\right)=1$

Entropy and its Friends

- More generally,
- The entropy of a random variable is a lower bound on the avg. number of bits required to represent the random variable
- The uncertainty (complexity) of a random variable can be extended to define the complexity of a single string
- e.g., Kolmogorov (algorithmic) complexity is the length of the shortest program that prints out the string.
- Entropy is the uncertainty of a single random variable
- Conditional entropy is the entropy of a random variable given another random variable

Mutual Information

- Measures the amount of information that one random variable contains about another random variable.
- Mutual information is a measure of reduction of uncertainty due to another random variable.
-That is, mutual information measures the dependence between two random variables.
- It is symmetric in X and Y, and is always non-negative.
- Recall: Entropy of a random variable X is $H(X)$.
- Conditional entropy of a random variable X given another random variable $Y=H(X \mid Y)$.
- The mutual information of two random variables X and Y is:

$$
I(X, Y)=H(X)-H(X \mid Y)=\sum_{x, y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

$$
H=-K \sum_{i=1}^{n} p_{i} \log p_{i}
$$

where K is a positive constant.
This theorem, and the assumptions required for its proof, are in no way necessary for the present theory. It is given chiefly to lend a certain plausibility to some of our later definitions. The real justification of these definitions, however, will reside in their implications.

Quantities of the form $H=-\sum p_{i} \log p_{i}$ (the constant K merely amounts to a choice of a unit of measure) play a central role in information theory as measures of information, choice and uncertainty. The form of H will be recognized as that of entropy as defined in certain formulations of statistical mechanics ${ }^{8}$ where p_{i} is the probability of a system being in cell i of its phase space. H is then, for example, the H in Boltzmann's famous H theorem. We shall call $H=-\sum p_{i} \log p_{i}$ the entropy of the set of probabilities p_{1}, \ldots, p_{n}. If x is a chance variable we will write $H(x)$ for its entropy; thus x is not an argument of a function but a label for a number, to differentiate it from $H(y)$ say, the entropy of the chance variable y.

The entropy in the case of two possibilities with probabilities p and $q=1-p$, namely

$$
H=-(p \log p+q \log q)
$$

is plotted in Fig. 7 as a function of p.

Fig. 7 - Entropy in the case of two possibilities with probabilities p and $(1-p)$.
The quantity H has a number of interesting properties which further substantiate it as a reasonable measure of choice or information.

1. $H=0$ if and only if all the p_{i} but one are zero, this one having the value unity. Thus only when we are certain of the outcome does H vanish. Otherwise H is positive
2. For a given n, H is a maximum and equal to $\log n$ when all the p_{i} are equal (i.e., $\frac{1}{n}$). This is also intuitively the most uncertain situation.

Claude Shannon

A Mathematical Theory of Communication

 The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948
Algorithmic Complexity (AC)
 (also known as Kolmogorov-Chaitin complexity)

- The Kolomogorov-Chaitin complexity $K(x)$ is the length, in bits, of the smallest program that when run on a Universal Turing Machine outputs (prints) x and then halts.
- Example: What is $K(x)$ where x is the first 10 even natural numbers? Where x is the first 5 million even natural numbers?

Algorithmic Complexity (AC)
 (also known as Kolmogorov-Chaitin complexity)

- Example: What is $K(x)$ where x is the first 10 even natural numbers? Where x is the first 5 million even natural numbers?
- Possible representations:
- $0,2,4,6,8,10,12,14,16,18, \ldots(2 n-2)$
- for ($\mathrm{j}=0 ; \mathrm{j}$ < n: j++) printf("\%d\n", j^{*} 2);
- How many bits?
- Alternative 1: O(n $\log n)$
- Alternative 2: $K(x)=O(\log n)$
- Two problems:
- Calculation of $K(x)$ depends on the machine we have available (e.g., what if we have a machine with an instruction "print the first 10 even natural numbers"?)
- In general, it is an uncomputable problem to determine $\mathrm{K}(\mathrm{x})$ for arbitrary x .

Algorithmic Complexity cont.

- AC formalizes what it means for a set of numbers to be compressible and incompressible.
- Data that are redundant can be more easily described and have lower AC.
- Data that have no clear pattern and no easy algorithmic description have high AC.
- What about random numbers? If a string is random, then it possesses no regularities:
- $K(x)=|\operatorname{Print}(\mathrm{x})|$
- The shortest program to produce x is to input to the computer a copy of x and say "print this."
- Implication: The more random a system, the greater its AC.
- $A C$ is related to entropy:
- The entropy rate of a \$ymbolic sequence measures the unpredictability (in bits per symbol) of the sequence.
- The entropy rate is also known as the entropy density or the metric density.
- The average growth rate of $K(x)$ is equal to the entropy rate
- For a sequence of n random variables, how does the entropy of the sequence grow with n ?

Measures of Complexity that Capture Properties Distinct from Randomness

Algorithmic Complexity

Randomness

Randomness

- Measures of randomness do not capture pattern, structure, correlation, or organization.
- Structural complexity
- Mutual information, Wolfram's CA classification.
- The "edge of chaos."

Logical Depth

- Bennett 1986;1990:
- The Logical depth of x is the run time of the shortest program that will cause a UTM to produce x and then halt.
- Logical depth is not a measure of randomness; it is small both for trivially ordered and random strings.
-Drawbacks:
- Uncomputable.
- Loses the ability to distinguish between systems that can be described by computational models less powerful than Turing Machines (e.g., finitestate machines).

A measure of complexity for Project 1

For each value of a used in the bifurcation plot, calculate the steady state entropy of x in the map. That is, after the map reaches the steady state, for each unique value of x_{i} calculate:

$$
\begin{equation*}
H_{a}(x)=-\sum_{x_{i} \in x} \operatorname{Pr}\left[x_{i}\right] \log \operatorname{Pr}\left[x_{i}\right] \tag{1}
\end{equation*}
$$

What do you expect to see?

A measure of complexity for Project 1

For each value of a used in the bifurcation plot, calculate the steady state entropy of x in the map. That is, after the map reaches the steady state, for each unique value of x_{i} calculate:

$$
\begin{equation*}
H_{a}(x)=-\sum_{x_{i} \in x} \operatorname{Pr}\left[x_{i}\right] \log \operatorname{Pr}\left[x_{i}\right] \tag{1}
\end{equation*}
$$

What do you expect to see?

