Logistics

- We have assigned Grad students to papers and are now figuring out the dates.
- Include your team ID in your github readme.
- Project 1: Papers due on February $10^{\text {th }}$.
- February 3rd is the drop without a 'W' grade and full refund deadline.

Logistics

- Student Presentation on Wednesday: Lorenz, E., "Computational Chaos", Physica D, 1988
- I will post the presentation review forms this afternoon.

Lecture 5

Fixed Point Analysis

Basic Concepts: Higher Order Equations

 Consider a system defined by a higher-order differential equation such as$$
\frac{d^{3} x}{d t^{3}}=f(x, \dot{x}, \ddot{x})
$$

Basic Concepts: Higher Order Equations

Consider a system defined by a higher-order differential equation such as
$\frac{d^{3} x}{d t^{3}}=f(x, \dot{x}, \ddot{x})$
We can always turn this into a system
of 1 st-order differential equations
Just by renaming the derivative
terms:

Basic Concepts: Higher Order Equations

Consider a system defined by a higher-order differential equation such as
$\frac{d^{3} x}{d t^{3}}=f(x, \dot{x}, \ddot{x})$
$\xrightarrow[\text { Substitute }]{\text { Surn a system }^{\text {Sunto }}} x_{1}(t)=x(t)$
We can always turn this into a system
of 1st-order differential equations

$$
\begin{aligned}
& x_{2}(t)=\dot{x}(t) \\
& x_{3}(t)=\ddot{x}(t)
\end{aligned}
$$ terms:

Basic Concepts: Higher Order Equations

 Consider a system defined by a higher-order differential equation such as$\frac{d^{3} x}{d t^{3}}=f(x, \dot{x}, \ddot{x})$
$x_{1}(t)=x(t)$ Rewrite as a system
$x_{2}(t)=\dot{x}(t)$ of equations
$x_{3}(t)=\ddot{x}(t)$

Basic Concepts: Higher Order Equations

 Consider a system defined by a higher-order differential equation such as$$
\begin{array}{ll}
\frac{d^{3} x}{d t^{3}}=f(x, \dot{x}, \ddot{x}) & \frac{d x_{1}}{d t}=x_{2} \\
x_{1}(t)=x(t) & \text { Rewrite as a system } \\
x_{2}(t)=\dot{x}(t) & \text { of equations } \\
x_{3}(t) & \frac{d x_{2}}{d t}=x_{3} \\
\frac{d x_{3}}{d t} & =f\left(x_{1}, x_{2}, x_{3}\right)
\end{array}
$$

Basic Concepts: Higher Order Equations

 Consider a system defined by a higher-order differential equation such as$$
\begin{array}{ll}
\frac{d^{3} x}{d t^{3}}=f(x, \dot{x}, \ddot{x}) & \frac{d x_{1}}{d t}=x_{2} \\
x_{1}(t)=x(t) & \text { Rewrite as a system } \\
x_{2}(t)=\dot{x}(t) & \text { of equations } \\
x_{3}(t) & \frac{d x_{2}}{d t}=x_{3} \\
\frac{d x_{3}}{d t} & =f\left(x_{1}, x_{2}, x_{3}\right)
\end{array}
$$

Basic Concepts: Higher Order Equations

This is generally true for differential equations of any order:
so let's use a more general and compact notation.

Basic Concepts: Higher Order Equations

$$
\frac{d \vec{x}}{d t}=\frac{d}{d t}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
\vdots \\
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)
\end{array}\right] \quad \text { so let's use }
$$

a more general and compact notation.

Basic Concepts: Higher Order Equations

$$
\left[\begin{array}{c}
x_{1}(t+1) \\
x_{2}(t+1) \\
\vdots \\
x_{m}(t+1)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(t) \\
x_{3}(t) \\
\vdots \\
f\left(x_{1}(t), x_{2}(t), \ldots, x_{m}(t)\right)
\end{array}\right]
$$

or in the case of a map.

Basic Concepts: Phase Space

Definition: The space spanned by all allowed values of $x_{1} \ldots x_{m}$ in a system defined by:

$$
\frac{d \vec{x}}{d t}=\frac{d}{d t}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
\vdots \\
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)
\end{array}\right]
$$

Basic Concepts: Trajectory or Orbit

 Definition: A solution in the system defined by:$$
\frac{d \vec{x}}{d t}=\frac{d}{d t}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
\vdots \\
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)
\end{array}\right]
$$

and initial conditions: $x_{1}=c_{1}, \ldots, x_{m}=c_{2}$.

Basic Concepts: Recall from last time

 System of equations for an undamped pendulum:$y_{1}^{\prime}=y_{2}$
$y_{2}^{\prime}=-\sin \left(y_{1}\right)$

Simple Pendulum in Real Space : Undamped

Simple Pendulum in Phase Space : Undamped

Basic Concepts: What do the three fixed points mean physically?

Basic Concepts: Higher Order Equations

Since we can rewrite any higher-order differential equation as a system of 1st-order equations
we only have to consider 1st-order equations from now on.

Basic Concepts: Higher Order Equations

Since we can rewrite any higher-order differential equation as a system of 1st-order equations
we only have to consider 1 st-order equations from now on.

How does this relate to part 1 of the project?

Fixed Points and Stability
Consider a fixed point x^{*} for a 1D system:
$\dot{x}=f(x)$
$f\left(x^{*}\right)=0$

Fixed Points and Stability

Consider a fixed point x^{*} for a 1D system:

$$
\begin{array}{ll}
\dot{x}=f(x) & \text { The fixed point is the value } \\
f\left(x^{*}\right)=0 & \text { that keeps the function at } 0 .
\end{array}
$$

The stability of x^{*} depends on
the direction of the flow nearby.

Fixed Points and Stability

Consider a fixed point x^{*} for a 1D system:

$$
\begin{array}{ll}
\dot{x}=f(x) & \text { The fixed point is the value } \\
f\left(x^{*}\right)=0 & \text { that keeps the function at } 0 .
\end{array}
$$

The stability of x^{*} depends on the direction of the flow nearby.

Fixed Points and Stability
The stability of x^{*} depends on the direction of the flow nearby.

To find the direction near x^{*} we linearise \dot{x} near x^{*}

Fixed Points and Stability

To find the direction near x^{*} we linearise \dot{x} near x^{*}
Recall from Calculus I the Taylor expansion:

$$
\frac{d}{d t}\left(x-x^{*}\right)=\dot{x} \approx f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+\ldots
$$

Fixed Points: Classification

Our system: $\dot{x}=f(x), f\left(x^{*}\right)=0$

Plugging in and neglecting higher order terms:

$$
\begin{aligned}
& \frac{d}{d t}\left(x-x^{*}\right)=\dot{x} \approx f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+\ldots \\
& \frac{d}{d t}\left(x-x^{*}\right) \approx 0+f\left(x^{*}\right)\left(x-x^{*}\right)
\end{aligned}
$$

Fixed Points: Classification

Our system: $\dot{x}=f(x), f\left(x^{*}\right)=0$

Plugging in and neglecting higher order terms:

$$
\begin{aligned}
& \frac{d}{d t}\left(x-x^{*}\right)=\dot{x} \approx f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+\ldots \\
& \frac{d}{d t}\left(x-x^{*}\right) \approx 0+f\left(x^{*}\right)\left(x-x^{*}\right)
\end{aligned}
$$

Fixed Points: Classification
Solving: $\frac{d}{d t}\left(x-x^{*}\right) \approx f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)$
Relabel: $\Delta x:=\left(x-x^{*}\right)$

Solve: $\frac{d \Delta x}{d t} \approx f^{\prime}\left(x^{*}\right) \Delta x$

Fixed Points: Classification
Solve: $\frac{d \Delta x}{d t} \approx f^{\prime}\left(x^{*}\right) \Delta x$

Fixed Points: Classification

$$
\text { Solve: } \begin{aligned}
\frac{d \Delta x}{d t} & \approx f^{\prime}\left(x^{*}\right) \Delta x \\
d \Delta x & \approx f^{\prime}\left(x^{*}\right) \Delta x d t
\end{aligned}
$$

Fixed Points: Classification

$$
\text { Solve: } \begin{aligned}
\frac{d \Delta x}{d t} & \approx f^{\prime}\left(x^{*}\right) \Delta x \\
d \Delta x & \approx f^{\prime}\left(x^{*}\right) \Delta x d t \\
\frac{d \Delta x}{\Delta x} & \approx f^{\prime}\left(x^{*}\right) d t
\end{aligned}
$$

Fixed Points: Classification
Solve: $\frac{d \Delta x}{d t} \approx f^{\prime}\left(x^{*}\right) \Delta x$

$$
d \Delta x \approx f^{\prime}\left(x^{*}\right) \Delta x d t
$$

$$
\frac{d \Delta x}{\Delta x} \approx f^{\prime}\left(x^{*}\right) d t
$$

$$
\int \frac{d \Delta x}{\Delta x} \approx \int f^{\prime}\left(x^{*}\right) d t
$$

Fixed Points: Classification
Solve: $\frac{d \Delta x}{d t} \approx f^{\prime}\left(x^{*}\right) \Delta x \quad \int \frac{1}{\Delta x} d \Delta x \approx \int f^{\prime}\left(x^{*}\right) d t$ $d \Delta x \approx f^{\prime}\left(x^{*}\right) \Delta x d t$ $\frac{d \Delta x}{\Delta x} \approx f^{\prime}\left(x^{*}\right) d t$

$$
\int \frac{d \Delta x}{\Delta x} \approx \int f^{\prime}\left(x^{*}\right) d t
$$

Fixed Points: Classification
Solve: $\frac{d \Delta x}{d t} \approx f^{\prime}\left(x^{*}\right) \Delta x \quad \int \frac{1}{\Delta x} d \Delta x \approx \int f^{\prime}\left(x^{*}\right) d t$

$$
\begin{aligned}
& d \Delta x \approx f^{\prime}\left(x^{*}\right) \Delta x d t \\
& \underline{d \Delta x} \approx f^{\prime}\left(x^{*}\right) d t
\end{aligned} \quad \int \frac{1}{\Delta x} d \Delta x \approx f^{\prime}\left(x^{*}\right) \int d t
$$

$$
\frac{d \Delta x}{\Delta x} \approx f^{\prime}\left(x^{*}\right) d t
$$

$$
\int \frac{d \Delta x}{\Delta x} \approx \int f^{\prime}\left(x^{*}\right) d t
$$

Fixed Points: Classification
Solve: $\frac{d \Delta x}{d t} \approx f^{\prime}\left(x^{*}\right) \Delta x \quad \int \frac{1}{\Delta x} d \Delta x \approx \int f^{\prime}\left(x^{*}\right) d t$

$$
\begin{array}{lr}
d \Delta x \approx f^{\prime}\left(x^{*}\right) \Delta x d t & \int \frac{1}{\Delta x} d \Delta x \approx f^{\prime}\left(x^{*}\right) \int d t \\
\frac{d \Delta x}{\Delta x} \approx f^{\prime}\left(x^{*}\right) d t & \ln \Delta x \approx f^{\prime}\left(x^{*}\right) \int d t \\
\int \frac{d \Delta x}{} \approx \int f^{\prime}\left(x^{*}\right) d t &
\end{array}
$$

Fixed Points: Classification
Solve: $\frac{d \Delta x}{d t} \approx f^{\prime}\left(x^{*}\right) \Delta x \quad \int \frac{1}{\Delta x} d \Delta x \approx \int f^{\prime}\left(x^{*}\right) d t$

$$
\begin{aligned}
& d \Delta x \approx f^{\prime}\left(x^{*}\right) \Delta x d t \\
& \frac{d \Delta x}{\Delta_{x}} \approx f^{\prime}\left(x^{*}\right) d t
\end{aligned} \quad \int \frac{1}{\Delta x} d \Delta x \approx f^{\prime}\left(x^{*}\right) \int d t
$$

$\ln \Delta x \approx f^{\prime}\left(x^{*}\right) \int d t$
$\ln \Delta x \approx f^{\prime}\left(x^{*}\right) t$

Fixed Points: Classification
Solve: $\frac{d \Delta x}{d t} \approx f^{\prime}\left(x^{*}\right) \Delta x \quad \int \frac{1}{\Delta x} d \Delta x \approx \int f^{\prime}\left(x^{*}\right) d t$

$$
\begin{array}{ll}
d \Delta x \approx f^{\prime}\left(x^{*}\right) \Delta x d t & \int \frac{1}{\Delta x} d \Delta x \approx f^{\prime}\left(x^{*}\right) \int d t \\
\frac{d \Delta x}{\Delta x} \approx f^{\prime}\left(x^{*}\right) d t & \ln \Delta x \approx f^{\prime}\left(x^{*}\right) \int d t \\
\int \frac{d \Delta x}{\Delta x} \approx \int f^{\prime}\left(x^{*}\right) d t & \ln \Delta x \approx f^{\prime}\left(x^{*}\right) t
\end{array}
$$

$$
\Delta x \approx e^{f^{\prime}\left(x^{*}\right) t}
$$

Fixed Points: Classification
Solve: $\frac{d \Delta x}{d t} \approx f^{\prime}\left(x^{*}\right) \Delta x \quad \int \frac{1}{\Delta x} d \Delta x \approx \int f^{\prime}\left(x^{*}\right) d t$

$$
\begin{aligned}
& d \Delta x \approx f^{\prime}\left(x^{*}\right) \Delta x d t \\
& \frac{d \Delta x}{\Delta x} \approx f^{\prime}\left(x^{*}\right) d t
\end{aligned} \quad \int \frac{1}{\Delta x} d \Delta x \approx f^{\prime}\left(x^{*}\right) \int d t
$$

$\ln \Delta x \approx f^{\prime}\left(x^{*}\right) \int d t$
$\ln \Delta x \approx f^{\prime}\left(x^{*}\right) t$

$$
\Delta x \approx e^{f^{\prime}\left(x^{*}\right) t}
$$

Fixed Points: Classification
The flow near fixed point, x^{*}, for $\dot{x}=f(x)$ with $f\left(x^{*}\right)=0$ is
$\Delta x \approx e^{f^{\prime}\left(x^{*}\right) t}$

Fixed Points: Classification

The flow near fixed point, x^{*}, for $\dot{x}=f(x)$ with $f\left(x^{*}\right)=0$ is
$\Delta x \approx e^{f^{\prime}\left(x^{*}\right) t}$

What do points Δx distance from x^{*} do as time gets large?

Fixed Points: Classification
What do points Δx distance from x^{*} do as time gets large?

Fixed Points: Classification
What do points Δx distance from x^{*} do as time gets large?
$\lim _{t \rightarrow \infty} e^{f^{\prime}\left(x^{*}\right) t}=\left\{\begin{array}{cl}0 & \text { if } f^{\prime}\left(x^{*}\right)<0 \\ \infty & \text { if } f^{\prime}\left(x^{*}\right)>0\end{array}\right.$

Fixed Points: Classification

$\lim _{t \rightarrow \infty} e^{f^{\prime}\left(x^{*}\right) t}=\left\{\begin{array}{cc}0 & \text { if } f^{\prime}\left(x^{*}\right)<0 \\ \infty & \text { if } f^{\prime}\left(x^{*}\right)>0\end{array}\right.$

So for a 1D system the flow diverges away from the fixed point when the derivative of points near the fixed point are negative and converge on the fixed point if positive.

Fixed point at 0 is unstable.

Fixed point at 1 is stable.

Lyapunov Exponent

Aleksandr
Lyapunov,
Russia, turn of the 20th Century.

Fixed Points: Lyapunov Exponent

$\lim _{t \rightarrow \infty} e^{f^{\prime}\left(x^{*}\right) t}=\left\{\begin{array}{cc}0 & \text { if } f^{\prime}\left(x^{*}\right)<0 \\ \infty & \text { if } f^{\prime}\left(x^{*}\right)>0\end{array}\right.$
As we just showed the time evolution
close to a fixed point x^{*} is generally exponential:
$\Delta x=e^{\lambda t}$, where $\lambda=f^{\prime}\left(x^{*}\right)$.

Lyapunov Exponent

Fixed Points: Lyapunov Exponent

A negative Lyapunov Exponent \Longrightarrow the flow moves exponentially towards the fixed point.

A positive Lyapunov Exponent
the flow moves exponentially away from the fixed point.

Fixed Points: Discrete Maps

$$
x(t+1)=f(x(t))
$$

$$
x(t+1)=f(x(t)) \approx f\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x(t)-x^{*}\right)
$$

Fixed Points: Discrete Maps

$$
\begin{aligned}
& x(t+1)=f(x(t)) \\
& x(t+1)=f(x(t)) \approx f\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x(t)-x^{*}\right)
\end{aligned}
$$

For discrete maps the fixed point is at:

$$
f\left(x^{*}\right)=x^{*}
$$

Fixed Points: Discrete Maps

$$
x(t+1)=f(x(t))
$$

$$
x(t+1)=f(x(t)) \approx f\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x(t)-x^{*}\right)
$$

For discrete maps the fixed point is at:

$$
f\left(x^{*}\right)=x^{*}
$$

Fixed Points: Discrete Maps

$x(t+1)=f(x(t))$
$x(t+1)=f(x(t)) \approx f\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x(t)-x^{*}\right)$
For discrete maps the fixed point is at: $f\left(x^{*}\right)=x^{*}$
$\Delta x(t+1)=x(t+1)-x^{*}$

Fixed Points: Discrete Maps
$\Delta x(t+1)=x(t+1)-x^{*}$

Fixed Points: Discrete Maps

$$
\Delta x(t+1)=x(t+1)-x^{*}=f^{\prime}\left(x^{*}\right) \Delta x(t)
$$

Fixed Points: Discrete Maps

$$
\begin{aligned}
& \Delta x(t+1)=x(t+1)-x^{*}=f^{\prime}\left(x^{*}\right) \Delta x(t) \\
& \Delta x(t+1)=x(t+1)-x^{*}=f^{\prime}\left(x^{*}\right) \Delta x(t) \\
& \Delta x(t)=e^{\lambda t}
\end{aligned}
$$

Fixed Points: Discrete Maps

Solve for λ

$\Delta x(t+1)=x(t+1)-x^{*}=f^{\prime}\left(x^{*}\right) \Delta x(t)$
$\Delta x(t+1)=x(t+1)-x^{*}=f^{\prime}\left(x^{*}\right) \Delta x(t)$
$\Delta x(t)=e^{\lambda t}$
The Lyapunov exponent for maps is:

$$
\lambda=\ln \left|f^{\prime}\left(x^{*}\right)\right|=\left\{\begin{array}{l}
<0 \text { if }\left|f^{\prime}\left(x^{*}\right)\right|<1 \\
>0 \text { if }\left|f^{\prime}\left(x^{*}\right)\right|>1
\end{array}\right.
$$

Fixed Points:

 Multidimension al Systems

The blue line is an eigenvector.
Wikipedia, 2017
It doesn't change as we transform the image.

Fixed Point Analysis: Multidimensional Systems

Consider the 2D system:
$\dot{x}=y$
$\dot{y}=2 x+y$

Fixed Point Analysis: Multidimensional Systems

Consider the 2D system:

$$
\begin{array}{ll}
\dot{x}=y & \text { Fixed points are where: } \\
\dot{y}=2 x+y & y=0 \\
& 2 x+y=0
\end{array}
$$

Fixed Point Analysis: Multidimensional Systems

Consider the 2D system:

$$
\begin{array}{ll}
\dot{x}=y & \text { Fixed points are where: } \\
\dot{y}=2 x+y & y=0 \\
& 2 x+y=0
\end{array}
$$

Only satisfied when $y=x=0$

Fixed Point Analysis: Multidimensional Systems

Consider the 2D system:

$$
\begin{array}{ll}
\dot{x}=y & \text { Fixed points are where: } \\
\dot{y}=2 x+y & y=0 \\
& 2 x+y=0
\end{array}
$$

Only satisfied when $y=x=0$

Fixed Point Analysis: Multidimensional Systems

Fixed points are where: $y=0$
$2 x+y=0$

In matrix form:

$$
\left[\begin{array}{l}
0 x+1 y \\
2 x+1 y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Fixed Point Analysis: Multidimensional Systems

Fixed points are where:
In matrix form:

$$
\begin{aligned}
& y=0 \\
& 2 x+y=0
\end{aligned}
$$

$$
\left[\begin{array}{l}
0 x+1 y \\
2 x+1 y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Fixed Point Analysis: Multidimensional Systems

Fixed points are where: In matrix form: $y=0$
$2 x+y=0$

$$
\left[\begin{array}{l}
0 x+1 y \\
2 x+1 y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad \begin{aligned} & \text { The eigenvalues describe } \\ & \text { the flow nearby }\end{aligned}$

Fixed Point Analysis: Multidimensional Systems

An enormous shortcut...

Fixed points are where:
In matrix form:

$$
\begin{aligned}
& y=0 \\
& 2 x+y=0
\end{aligned}
$$

$$
\left[\begin{array}{l}
0 x+1 y \\
2 x+1 y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad \begin{aligned} & \text { The eigenvalues describe } \\ & \text { the flow nearby }\end{aligned}$
$\gg M=[0,1 ; 2,1]$
M =

>> eig(M)
ans =
-1
2

Fixed Point Analysis: Multidimensional Systems

The eigenvalues describe the flow nearby. . .

... if the system is LINEAR (or nearly so).
If non-linear we need to take the eigenvalues
of the لacobion matrix (see Lecture 7).

Jacobian

Given a set of equations:

$$
\begin{aligned}
& y_{1}=f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& y_{2}=f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

$$
y_{m}=f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Jacobian

The Jacobian is:

The partial
derivatives for
each equation and
in each direction.
(Calc III) $\left[\begin{array}{cccc}\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{n}} \\ \frac{\partial y_{m}}{\partial x_{1}} & \frac{\partial y_{m}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right]$

Example: Holmes Map

$$
\begin{aligned}
& x_{t+1}=y_{t} \\
& y_{t+1}=-b x_{t}+a y_{t}-y_{t}^{3}
\end{aligned}
$$

Example: Holmes Map

$$
x_{t+1}=y_{t}
$$

$$
y_{t+1}=-b x_{t}+a y_{t}-y_{t}^{3}
$$

$$
J=\left[\begin{array}{cc}
\frac{\partial \overline{y t}_{t}}{\partial x_{t}} & x_{t+1} \\
\frac{\partial\left(-b x_{t}+a y_{t}-y_{t}^{3}\right)}{\partial x_{t}} & \frac{x_{t+1}}{\partial y_{t}} \\
\frac{\partial\left(-b x_{t}+a y_{t}-y_{t}^{3}\right)}{\partial y_{t}}
\end{array}\right]
$$

Example: Holmes Map

$J=\left[\begin{array}{cc}\frac{\partial y_{t}}{\partial x_{t}} & \frac{\partial y_{t}}{\partial y_{t}} \\ \frac{\partial\left(-b x_{t}+a y_{t}-y_{t}^{3}\right)}{\partial x_{t}} & \frac{\partial\left(-b x_{t}+a y_{t}-y_{t}^{3}\right)}{\partial y_{t}}\end{array}\right]$

Let's Calculate it...

Example: Holmes Map

$J=\left[\begin{array}{cc}\frac{\partial y_{t}}{\partial x_{t}} & \frac{\partial y_{t}}{\partial y_{t}} \\ \frac{\partial\left(-b x_{t}+a y_{t}-y_{t}^{3}\right)}{\partial x_{t}} & \frac{\partial\left(-b x_{t}+a y_{t}-y_{t}^{3}\right)}{\partial y_{t}}\end{array}\right]$

$$
=\left[\begin{array}{cc}
0 & 1 \\
-b & a-3 y^{2}
\end{array}\right]
$$

In Matlab:

>> syms x y a b
>> HolmesMap $=$ [y; $-\mathrm{b} * \mathrm{x}+\mathrm{a} * \mathrm{y}-\mathrm{y}^{\wedge} 3$]
HolmesMap $=\mathrm{y}-\mathrm{y}^{\wedge} 3+\mathrm{a} * \mathrm{y}-\mathrm{b} * \mathrm{x}$
>> HolmesMapJ = jacobian(HolmesMap, [x,y])

$$
\text { HolmesMapJ }=\begin{array}{lr}
{[0,} & 1] \\
{\left[-b,-3 * y^{\wedge} 2+a\right]}
\end{array}
$$

>> eig(HolmesMapJ)

$$
\text { ans } \begin{aligned}
& a / 2-\left(a^{\wedge} 2-6 * a * y^{\wedge} 2+9 * y^{\wedge} 4-4 * b\right)^{\wedge}(1 / 2) / 2-\left(3 * y^{\wedge} 2\right) / 2 \\
& a / 2+\left(a^{\wedge} 2-6 * a * y^{\wedge} 2+9 * y^{\wedge} 4-4 * b\right) \wedge(1 / 2) / 2-\left(3 * y^{\wedge} 2\right) / 2
\end{aligned}
$$

Classifying Fixed Points (2D Systems)

Eigenvalues	Stability	Name
Real and positive	Unstable	Source
Real and negative	Stable	Sink
Real mixed signs	Unstable	Saddle point
Complex with positive real part	Unstable	Spiral Source
Complex with negative real part	Stable	Spiral Sink
Imaginary	Unstable	Center

Unstable fixed-point (source)

Stable fixed-point (sink)

Saddle point

Center

Classifying
Fixed-Points
(2D)

Center

Recall the Lotke-Volterra Model

Classifying

Fixed-Points
(2D)

Spirals (stable and unstable)

Lecture 5

Ergodicity

Ergodicity

A dynamical system in which trajectories come arbitrarily close to any point in the phase space no matter the initial conditions.

This implies that the time average is equal to the spacial average.

Basic Concepts: Ergodicity

This implies that the time average is equal to the spacial average.

So what?

Basic Concepts: Ergodicity

This implies that the time average is equal to the spacial average.

So what?

If a system is ergodic we can make good long-term average predictions even when the system is chaotic.

Recall the chaos of the logistic map

$$
x_{t+1}=r x_{t}\left(1-x_{t}\right)
$$

The logistic map turns out to be ergodic

Ergodicity: Logistic Map

Histogram of 4000 randomly chosen initial conditions.

(i)

Histogram of time steps > 2000 for a single initial condition.

L Berliner, Statistics, Probability and Chaos, Statistical Science, 1992, Vol. 7, No. 1, 69-122

Fig. 8. Example of ergodic behavior: Logistic map, $a=4.0$. (i) Histogram of 4000 iterates of $x_{0}=.20005$. (ii) Histogram of the logistic map at time 2000 for $4000 x_{0}$'s in [.10005, .30005].

Ergodicity: Logistic Map

L Berliner, Statistics, Probability and Chaos, Statistical Science, 1992, Vol. 7, No. 1, 69-122

Fig. 8. Example of ergodic behavior: Logistic map, $a=4.0$. (i) Histogram of 4000 iterates of $x_{0}=.20005$. (ii) Histogram of the logistic map at time 2000 for $4000 x_{0}$'s in [.10005, .30005].

Ergodicity: Logistic Map

Ergodic systems never become trapped in a particular region of phase space. They eventually roam everywhere.

Ergodicity: Logistic Map

Ergodic systems never become trapped in a particular region of phase space. They eventually roam everywhere.

So can an ergodic system have attractors?

Ergodicity: Logistic Map

Ergodic systems never become trapped in a particular region of phase space. They eventually roam everywhere.

So can an ergodic system have attractors?
Is the logistic map for $\mathrm{r}=1$ ergodic?

