
Logistics

•We	have	assigned	Grad	students	to	papers	and	are	
now	figuring	out	the	dates.
• Include	your	team	ID	in	your	github readme.
•Project	1:	Papers	due	on	February	10th.
• February	3rd	is	the	drop	without	a	'W'	grade	and	full	
refund	deadline.



Logistics

•Student	Presentation	on	Wednesday:	Lorenz,	E.,	
“Computational	Chaos”,	Physica D,	1988
• I	will	post	the	presentation	review	forms	this	
afternoon.



Lecture	5
Fixed	Point	Analysis
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Basic	Concepts:	Higher	Order	Equations
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or in the case of a map.



Basic	Concepts:	Phase	Space
Definition: The space spanned by all allowed values

of x1 . . . xm in a system defined by:
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Basic	Concepts:	Trajectory	or	Orbit
Definition: A solution in the system defined by:
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and initial conditions: x1 = c1, . . . , xm = c2.



System of equations for an undamped pendulum:

y01 = y2

y02 = � sin(y1)

Basic	Concepts:	Recall	from	last	time
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Basic	Concepts:	What	do	the	three	fixed	
points	mean	physically?
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Basic	Concepts:	Higher	Order	Equations
Since we can rewrite any higher-order
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How does this relate to part 1 of the project?
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Fixed	Points:	Classification
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Fixed	Points:	Classification

lim
t!1

e

f

0(x⇤)t =

⇢
0 if f 0(x⇤) < 0
1 if f 0(x⇤) > 0

So for a 1D system the flow diverges

away from the fixed point when the derivative

of points near the fixed point are negative and converge

on the fixed point if positive.



Fixed point at 0 is unstable.

Fixed point at 1 is stable.



Lyapunov
Exponent

Aleksandr
Lyapunov,
Russia,	turn	of	the	
20th	Century.



Fixed	Points:	Lyapunov Exponent

lim
t!1

e

f

0(x⇤)t =

⇢
0 if f 0(x⇤) < 0
1 if f 0(x⇤) > 0

As we just showed the time evolution

close to a fixed point x

⇤
is generally exponential:

�x = e

�t
, where � = f

0
(x

⇤
).



Fixed	Points:	Lyapunov Exponent
A negative Lyapunov Exponent =)
the flow moves exponentially towards

the fixed point.

A positive Lyapunov Exponent =)
the flow moves exponentially away from

the fixed point.
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Fixed	Points:	Discrete	Maps

�x(t+ 1) = x(t+ 1)� x

⇤ = f

0(x⇤)�x(t)

�x(t+ 1) = x(t+ 1)� x

⇤ = f

0(x⇤)�x(t)

�x(t) = e

�t

The Lyapunov exponent for maps is:

� = ln |f 0
(x

⇤
)| =

⇢
< 0 if |f 0

(x

⇤
)| < 1

> 0 if |f 0
(x

⇤
)| > 1

Solve for �



Fixed	Points:	
Multidimension
al	Systems

The blue line is an eigenvector.

It doesn’t change as we transform the image.

Wikipedia,	2017
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ẏ = 2x+ y

Fixed points are where:

y = 0

2x+ y = 0

Only satisfied when y = x = 0



Fixed	Point	Analysis:	Multidimensional	
Systems

Fixed points are where:

y = 0

2x+ y = 0

In matrix form:


0x+ 1y

2x+ 1y

�
=


0

0

�



Fixed	Point	Analysis:	Multidimensional	
Systems

Fixed points are where:

y = 0

2x+ y = 0

In matrix form:


0x+ 1y

2x+ 1y

�
=


0

0

�


0 1
2 1

�
=


0
0

�



Fixed	Point	Analysis:	Multidimensional	
Systems

Fixed points are where:

y = 0

2x+ y = 0

In matrix form:


0x+ 1y

2x+ 1y

�
=


0

0

�


0 1
2 1

�
=


0
0

�
The eigenvalues describe

the flow nearby



Fixed	Point	Analysis:	Multidimensional	
Systems

Fixed points are where:

y = 0

2x+ y = 0

In matrix form:


0x+ 1y

2x+ 1y

�
=


0

0

�


0 1
2 1

�
=


0
0

�
The eigenvalues describe

the flow nearby

An enormous shortcut . . .





. . . if the system is LINEAR (or nearly so).

If non-linear we need to take the eigenvalues

of the Jacobian matrix (see Lecture 7).

Fixed	Point	Analysis:	Multidimensional	
Systems

The eigenvalues describe

the flow nearby
. . .



Jacobian

Given a set of equations:

y1 = f1(x1, x2, . . . , xn)

y2 = f2(x1, x2, . . . , xn)

.

.

.

ym = f2(x1, x2, . . . , xn)fm



Jacobian

The Jacobian is:

2

66664

@y1

@x1

@y1

@x2
. . . @y1

@xn
@y2

@x1

@y2

@x2
. . . @y2

@xn

.

.

.

@ym

@x1

@ym

@x2
. . . @ym

@xn

3

77775

The partial

derivatives for

each equation and

in each direction.

(Calc III)
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xt+1 = yt

yt+1 = �bxt + ayt � y
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t

J =

"
@yt

@xt

@yt

@yt
@(�bx+ay�y

3)
@xt

@(�bx+ay�y

3)
@yt

#

�bxt + ayt � y

3
t �bxt + ayt � y

3
t

xt+1xt+1



Example:	Holmes	Map
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Let’s	Calculate	it…



Example:	Holmes	Map

=


0 1
�b a� 3y2

�

J =

"
@yt

@xt

@yt

@yt
@(�bx+ay�y

3)
@xt

@(�bx+ay�y

3)
@yt

#

�bxt + ayt � y

3
t �bxt + ayt � y

3
t



>> syms x y a b
>> HolmesMap = [y; -b*x+a*y-y^3] 
HolmesMap = y - y^3 + a*y - b*x 

>> HolmesMapJ = jacobian(HolmesMap, [x,y]) 
HolmesMapJ = [0,  1]

[-b, - 3*y^2 + a]

>> eig(HolmesMapJ) 
ans =  a/2 - (a^2 - 6*a*y^2 + 9*y^4 - 4*b)^(1/2)/2 - (3*y^2)/2
 a/2 + (a^2 - 6*a*y^2 + 9*y^4 - 4*b)^(1/2)/2 - (3*y^2)/2

In	Matlab:



Classifying	Fixed	Points	(2D	Systems)

Eigenvalues Stability Name

Real	and	positive Unstable Source

Real	and	negative Stable Sink

Real mixed	signs Unstable Saddle	point

Complex	with	positive	real part Unstable Spiral Source

Complex	with	negative	real part Stable Spiral	Sink

Imaginary Unstable Center



Classifying	
Fixed-Points	
(2D)

Unstable fixed-point (source)



Classifying	
Fixed-Points	
(2D)

Stable fixed-point (sink)



Classifying	
Fixed-Points	
(2D)

Saddle point



Classifying	
Fixed-Points	
(2D)

Center



Classifying	
Fixed-Points	
(2D)

Center Recall	the	Lotke-Volterra Model



Classifying	
Fixed-Points	
(2D)

Spirals (stable and unstable)



Lecture	5
Ergodicity



Ergodicity

A dynamical system in which trajectories

come arbitrarily close to any point in the

phase space no matter the initial conditions.

This implies that the time average

is equal to the spacial average.
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Basic	Concepts:	Ergodicity
This implies that the time average

is equal to the spacial average.

So what?

If a system is ergodic we can make good long-term

average predictions even when the system is chaotic.



Recall	the	chaos	of	the	logistic	map

xt+1 = rxt(1� xt)

The logistic map turns out to be ergodic



Ergodicity:	Logistic	Map

L	Berliner,	Statistics, Probability and Chaos, Statistical Science,	1992,	
Vol.	7,	No.	1,	69-122	

Histogram of 4000 randomly

chosen initial conditions.

Histogram of time steps > 2000

for a single initial condition.



Ergodicity:	Logistic	Map

L	Berliner,	Statistics, Probability and Chaos, Statistical Science,	1992,	
Vol.	7,	No.	1,	69-122	

Because the Logistic map is ergodic

we can predict its average

behaviour.
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Ergodic systems never become trapped in a particular

region of phase space. They eventually roam everywhere.
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Ergodicity:	Logistic	Map

So can an ergodic system have attractors?

Ergodic systems never become trapped in a particular

region of phase space. They eventually roam everywhere.

Is the logistic map for r=1 ergodic?


