Logistics

- We have assigned Grad students to papers and are now figuring out the dates.
- Include your team ID in your github readme.
- Project 1: Papers due on February 10th.
- February 3rd is the drop without a 'W' grade and full refund deadline.

Logistics

- Student Presentation on Wednesday: Lorenz, E., "Computational Chaos", *Physica D*, 1988
- I will post the presentation review forms this afternoon.

Lecture 5

Fixed Point Analysis

$$\frac{d^3x}{dt^3} = f(x, \dot{x}, \ddot{x})$$

Consider a system defined by a higher-order

differential equation such as

$$\frac{d^3x}{dt^3} = f(x, \dot{x}, \ddot{x})$$

We can always turn this into a system

of 1st-order differential equations

Just by renaming the derivative

terms:

 $x_1(t) = x(t)$ We can always turn this into a system $x_2(t) = \dot{x}(t)$ of 1st-order differential equations $x_3(t) = \ddot{x}(t)$ Just by renaming the derivative terms:

$$\frac{d^3x}{dt^3} = f(x, \dot{x}, \ddot{x})$$

$$x_1(t) = x(t) \quad \text{Rewrite as a system}$$

$$x_2(t) = \dot{x}(t) \quad \text{of equations}$$

$$x_3(t) = \ddot{x}(t)$$

$$\frac{d^3x}{dt^3} = f(x, \dot{x}, \ddot{x}) \qquad \qquad \frac{dx_1}{dt} = x_2$$

$$x_1(t) = x(t) \quad \text{Rewrite as a system} \quad \frac{dx_2}{dt} = x_3$$

$$x_2(t) = \dot{x}(t) \quad \text{of equations} \quad \qquad \frac{dx_3}{dt} = f(x_1, t)$$

 (x_2, x_3)

$$\frac{d^3x}{dt^3} = f(x, \dot{x}, \ddot{x}) \qquad \qquad \frac{dx_1}{dt} = x_2$$

$$x_1(t) = x(t) \quad \text{Rewrite as a system} \quad \frac{dx_2}{dt} = x_3$$

$$x_2(t) = \dot{x}(t) \quad \text{of equations} \quad \qquad \frac{dx_3}{dt} = f(x_1, t)$$

 (x_2, x_3)

This is generally true for differential equations of any order:

so let's use

a more general

and compact notation.

a more general

and compact notation.

or in the case of a map.

Basic Concepts: Phase Space Definition: The space spanned by all allowed values of $x_1 \ldots x_m$ in a system defined by: $\frac{d\vec{x}}{dt} = \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ \vdots \\ f(x_1, x_2, \dots, x_m) \end{bmatrix}$

Basic Concepts: Trajectory or Orbit Definition: A solution in the system defined by:

and initial conditions: $x_1 = c_1, \ldots, x_m = c_2$.

Basic Concepts: Recall from last time System of equations for an undamped pendulum:

 $y_1' = y_2$ $y_2' = -\sin(y_1)$

Simple Pendulum in Real Space : Undamped

Simple Pendulum in Phase Space : Undamped

Basic Concepts: What do the three fixed points mean physically?

Basic Concepts: Higher Order Equations Since we can rewrite any higher-order differential equation as a system of 1st-order equations we only have to consider 1st-order equations from now on.

Basic Concepts: Higher Order Equations Since we can rewrite any higher-order differential equation as a system of 1st-order equations we only have to consider 1st-order equations from now on.

How does this relate to part 1 of the project?

Consider a fixed point x^* for a 1D system: $\dot{x} = f(x)$ $f(x^*) = 0$

Consider a fixed point x^* for a 1D system:

The stability of x^* depends on the direction of the flow nearby.

Consider a fixed point x^* for a 1D system:

The fixed point is the value that keeps the function at 0.

The stability of x^* depends on the direction of the flow nearby.

The stability of x^* depends on the direction of the flow nearby.

> To find the direction near x^* we linearise \dot{x} near x^*

To find the direction near x^* we linearise \dot{x} near x^* Recall from Calculus I the Taylor expansion: $\frac{d}{dt}(x - x^*) = \dot{x} \approx f(x^*) + f'(x^*)(x - x^*) + \dots$

Our system:
$$\dot{x} = f(x), f(x^*) = 0$$

Plugging in and neglecting higher order terms: $\frac{d}{dt}(x - x^*) = \dot{x} \approx f(x^*) + f'(x^*)(x - x^*) + \dots$ $\frac{d}{dt}(x - x^*) \approx 0 + f(x^*)(x - x^*)$

Our system:
$$\dot{x} = f(x), f(x^*) = 0$$

Plugging in and neglecting higher order terms: $\frac{d}{dt}(x - x^*) = \dot{x} \approx f(x^*) + f'(x^*)(x - x^*) + \dots$ $\frac{d}{dt}(x - x^*) \approx 0 + f(x^*)(x - x^*)$

Solving:
$$\frac{d}{dt}(x - x^*) \approx f'(x^*)(x - x^*)$$

Relabel: $\Delta x := (x - x^*)$

Solve:
$$\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$$

Solve:
$$\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$$

Solve: $\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$ $d\Delta x \approx f'(x^*)\Delta x dt$

Solve:
$$\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$$

 $d\Delta x \approx f'(x^*)\Delta x dt$
 $\frac{d\Delta x}{\Delta x} \approx f'(x^*) dt$

Solve: $\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$ $d\Delta x \approx f'(x^*)\Delta x dt$ $\frac{d\Delta x}{\Delta x} \approx f'(x^*)dt$ $\int \frac{d\Delta x}{\Delta x} \approx \int f'(x^*)dt$

Solve:
$$\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$$
 $\int \frac{1}{\Delta x} d\Delta x \approx \int f'(x^*)dt$
 $d\Delta x \approx f'(x^*)\Delta x dt$
 $\frac{d\Delta x}{\Delta x} \approx f'(x^*)dt$
 $\int \frac{d\Delta x}{\Delta x} \approx \int f'(x^*)dt$

Solve: $\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$ $d\Delta x \approx f'(x^*)\Delta x dt$ $\frac{d\Delta x}{\Delta x} \approx f'(x^*)dt$ $\int \frac{d\Delta x}{\Delta x} \approx \int f'(x^*)dt$

 $\int \frac{1}{\Delta x} d\Delta x \approx \int f'(x^*) dt$ $\int \frac{1}{\Lambda x} d\Delta x \approx f'(x^*) \int dt$

Solve: $\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$ $\int \frac{1}{\Delta x} d\Delta x \approx \int f'(x^*) dt$ $d\Delta x \approx f'(x^*)\Delta x dt$ $\int \frac{1}{\Delta x} d\Delta x \approx f'(x^*) \int dt$ $\frac{d\Delta x}{\Delta x} \approx f'(x^*)dt$ $\ln \Delta x \approx f'(x^*) \int dt$ $\int \frac{d\Delta x}{\Delta x} \approx \int f'(x^*)dt$

Solve: $\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$ $\int \frac{1}{\Delta x} d\Delta x \approx \int f'(x^*) dt$ $d\Delta x \approx f'(x^*)\Delta x dt$ $\int \frac{1}{\Lambda x} d\Delta x \approx f'(x^*) \int dt$ $\frac{d\Delta x}{\Delta x} \approx f'(x^*)dt$ $\ln \Delta x \approx f'(x^*) \int dt$ $\int \frac{d\Delta x}{\Delta x} \approx \int f'(x^*)dt$ $\ln \Delta x \approx f'(x^*)t$

Solve: $\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$ $\int \frac{1}{\Delta x} d\Delta x \approx \int f'(x^*) dt$ $d\Delta x \approx f'(x^*)\Delta x dt$ $\int \frac{1}{\Delta x} d\Delta x \approx f'(x^*) \int dt$ $\frac{d\Delta x}{\Delta x} \approx f'(x^*)dt$ $\ln \Delta x \approx f'(x^*) \int dt$ $\int \frac{d\Delta x}{\Delta x} \approx \int f'(x^*)dt$ $\ln \Delta x \approx f'(x^*)t$

 $\Delta x \approx e^{f'(x^*)t}$

Solve: $\frac{d\Delta x}{dt} \approx f'(x^*)\Delta x$ $\int \frac{1}{\Delta x} d\Delta x \approx \int f'(x^*) dt$ $d\Delta x \approx f'(x^*)\Delta x dt$ $\int \frac{1}{\Lambda x} d\Delta x \approx f'(x^*) \int dt$ $\frac{d\Delta x}{\Delta x} \approx f'(x^*)dt$ $\ln \Delta x \approx f'(x^*) \int dt$ $\int \frac{d\Delta x}{\Delta x} \approx \int f'(x^*)dt$ $\ln \Delta x \approx f'(x^*)t$

 $\Delta x \approx e^{f'(x^*)t}$

The flow near fixed point, x^* , for $\dot{x} = f(x)$ with $f(x^*) = 0$ is $\Delta x \approx e^{f'(x^*)t}$

The flow near fixed point, x^* , for $\dot{x} = f(x)$ with $f(x^*) = 0$ is $\Delta x \approx e^{f'(x^*)t}$

What do points Δx distance from x^* do as time gets large?

What do points Δx distance from x^* do as time gets large?

What do points Δx distance from x^* do as time gets large?

$$\lim_{t \to \infty} e^{f'(x^*)t} = \begin{cases} 0 & \text{if } f'(x^*) < 0\\ \infty & \text{if } f'(x^*) > 0 \end{cases}$$

$$\lim_{t \to \infty} e^{f'(x^*)t} = \begin{cases} 0 & \text{if } f'(x^*) < 0\\ \infty & \text{if } f'(x^*) > 0 \end{cases}$$

So for a 1D system the flow diverges

away from the fixed point when the derivative

of points near the fixed point are negative and converge

on the fixed point if positive.

Fixed point at 0 is unstable.

Lyapunov Exponent

Aleksandr Lyapunov, Russia, turn of the 20th Century.

Fixed Points: Lyapunov Exponent

$$\lim_{t \to \infty} e^{f'(x^*)t} = \begin{cases} 0 & \text{if } f'(x^*) < 0\\ \infty & \text{if } f'(x^*) > 0 \end{cases}$$

As we just showed the time evolution close to a fixed point x^* is generally exponential: $\Delta x = e^{\lambda t}$, where $\lambda = f'(x^*)$.

Lyapunov Exponent

Fixed Points: Lyapunov Exponent A negative Lyapunov Exponent \implies the flow moves exponentially towards the fixed point.

> A positive Lyapunov Exponent \implies the flow moves exponentially away from the fixed point.

x(t+1) = f(x(t))

 $x(t+1) = f(x(t)) \approx f(x^*) + g'(x^*)(x(t) - x^*)$

x(t+1) = f(x(t))

$$x(t+1) = f(x(t)) \approx f(x^*) + g'(x^*)(x(t) - x^*)$$

For discrete maps the fixed point is at:

$$f(x^*) = x^*$$

x(t+1) = f(x(t))

$$x(t+1) = f(x(t)) \approx f(x^*) + g'(x^*)(x(t) - x^*)$$

For discrete maps the fixed point is at:

$$f(x^*) = x^*$$

$$x(t+1) = f(x(t))$$

$$x(t+1) = f(x(t)) \approx f(x^*) + g'(x^*)(x(t) - x^*)$$

For discrete maps the fixed point is at:

$$f(x^*) = x^*$$

 $\Delta x(t+1) = x(t+1) - x^*$

 $\Delta x(t+1) = x(t+1) - x^*$

$\Delta x(t+1) = x(t+1) - x^* = f'(x^*) \Delta x(t)$

 $\Delta x(t+1) = x(t+1) - x^* = f'(x^*)\Delta x(t)$ $\Delta x(t+1) = x(t+1) - x^* = f'(x^*)\Delta x(t)$ $\Delta x(t) = e^{\lambda t}$

Fixed Points: Discrete Maps Solve for λ

 $\Delta x(t+1) = x(t+1) - x^* = f'(x^*)\Delta x(t)$ $\Delta x(t+1) = x(t+1) - x^* = f'(x^*)\Delta x(t)$ $\Delta x(t) = e^{\lambda t}$

> The Lyapunov exponent for maps is: $\lambda = \ln |f'(x^*)| = \begin{cases} < 0 \text{ if } |f'(x^*)| < 1 \\ > 0 \text{ if } |f'(x^*)| > 1 \end{cases}$

Fixed Points: Multidimension al Systems

The blue line is an eigenvector. Wikipedia, 2017 It doesn't change as we transform the image.

Consider the 2D system:

- $\dot{x} = y$
- $\dot{y} = 2x + y$

Consider the 2D system:

- $\dot{x} = y$
- $\dot{y} = 2x + y$

Fixed points are where: y = 02x + y = 0

Consider the 2D system:

 $\dot{x} = y$ $\dot{y} = 2x + y$ y = 02x + y = 0

Only satisfied when y = x = 0

Consider the 2D system:

 $\dot{x} = y$ $\dot{y} = 2x + y$ y = 02x + y = 0

Only satisfied when y = x = 0

Fixed points are where: In matrix form: y = 02x + y = 0 $\begin{bmatrix} 0x + 1y \\ 2x + 1y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Fixed points are where: In matrix form: y = 0 $\begin{bmatrix} 0x + 1y \\ 2x + 1y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 2x + y = 0 $\begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$

Fixed points are where: In matrix form: y = 02x + y = 0 $\begin{bmatrix} 0x + 1y \\ 2x + 1y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

The eigenvalues describe the flow nearby

Fixed Point Analysis: Multidimensional Systems An enormous shortcut... Fixed points are where: In matrix form: $\begin{bmatrix} 0x+1y\\2x+1y \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$ y = 02x + y = 0 $\begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$ The eigenvalues describe the flow nearby

>> M = [0,1;2,1]

M = 0 1 2 1

>> **eig(**M)

ans =

-1 2

The eigenvalues describe the flow nearby...

... if the system is LINEAR (or nearly so). If non-linear we need to take the eigenvalues of the **Jacobian** matrix (see Lecture 7).

Jacobian

Given a set of equations:

$$y_1 = f_1(x_1, x_2, \dots, x_n)$$

 $y_2 = f_2(x_1, x_2, \dots, x_n)$

- •
- •
- •

$$y_m = f_m(x_1, x_2, \ldots, x_n)$$

Jacobian

The partial derivatives for each equation and in each direction.

(Calc III)

$ \begin{bmatrix} \frac{\partial y_1}{\partial x_1} \\ \frac{\partial y_2}{\partial x_1} \end{bmatrix} $	$rac{\partial y_1}{\partial x_2} \ rac{\partial y_2}{\partial x_2}$	• • •	$rac{\partial y_1}{\partial x_n} \ rac{\partial y_2}{\partial x_n}$
	• •		
$\left\lfloor rac{\partial y_m}{\partial x_1} ight angle$	$rac{\partial y_m}{\partial x_2}$	• • •	$\frac{\partial y_m}{\partial x_n}$

The Jacobian is:

$$x_{t+1} = y_t$$

$$y_{t+1} = -bx_t + ay_t - y_t^3$$

Let's Calculate it...

In Matlab:

>> syms x y a b
>> HolmesMap = [y; -b*x+a*y-y^3]
HolmesMap = y - y^3 + a*y - b*x

>> HolmesMapJ = jacobian(HolmesMap, [x,y])
HolmesMapJ = [0, 1]
[-b, - 3*y^2 + a]

Classifying Fixed Points (2D Systems)

Eigenvalues	Stability	Name
Real and positive	Unstable	Source
Real and negative	Stable	Sink
Real mixed signs	Unstable	Saddle point
Complex with positive real part	Unstable	Spiral Source
Complex with negative real part	Stable	Spiral Sink
Imaginary	Unstable	Center

Unstable fixed-point (source)

Stable fixed-point (sink)

Saddle point

Recall the Lotke-Volterra Model

Spirals (stable and unstable)

Lecture 5 Ergodicity

Ergodicity

A dynamical system in which trajectories come arbitrarily close to any point in the phase space no matter the initial conditions.

> This implies that the time average is equal to the spacial average.

Basic Concepts: Ergodicity This implies that the time average is equal to the spacial average.

So what?

Basic Concepts: Ergodicity This implies that the time average is equal to the spacial average.

So what?

If a system is ergodic we can make good long-term average predictions even when the system is chaotic. Recall the chaos of the logistic map

$$x_{t+1} = rx_t(1 - x_t)$$

The logistic map turns out to be ergodic

logistic map at time 2000 for 4000 x_0 's in [.10005, .30005].

Vol. 7, No. 1, 69-122

FIG. 8. Example of ergodic behavior: Logistic map, a = 4.0. (i) Histogram of 4000 iterates of $x_0 = .20005$. (ii) Histogram of the logistic map at time 2000 for 4000 x_0 's in [.10005, .30005].

Ergodicity: Logistic Map

Ergodic systems never become trapped in a particular region of phase space. They eventually roam everywhere.

Ergodicity: Logistic Map

Ergodic systems never become trapped in a particular region of phase space. They eventually roam everywhere.

So can an ergodic system have attractors?

Ergodicity: Logistic Map

Ergodic systems never become trapped in a particular region of phase space. They eventually roam everywhere.

So can an ergodic system have attractors?

Is the logistic map for r=1 ergodic?