Logistics

* Current Reading:
* Mitchell, Complexity: A Guided Tour, Chapter 2 (Today)
* Flake, The Computational Beauty of Nature, Chapter 10 (Monday)
* May, Simple Mathematical Models with Very Complicated Dynamics (Today)

* Homework: Project 1: Dynamical Systems v1.1 is now up.

* Choose a paper and two backups by 1:00pm Today. Email your
choices to Bianca. You will be pair with whoever chooses or is
assigned the same paper. The first presentation will be next
Wednesday (Ben is looking for a partner).



George Kelbley
cs523 list

To: mfricke@cs.unm.edu

B3 Inbox - Exchange 23 January 2017 at 15:27

Hi, we have to delete and re-create the cs523 mailing list, its messed up.

Please resubscribe to the mailing list...



Dynamical Systems and Fixed
Point Analysis

Lecture 4



function cobweb(F,a,b,traj x0,num iterations)

% generate N linearly space values on (a,b)
x=linspace(a,b,num iterations);

% turn hold on to gather up all plots in one
hold -

% plot the function F
for t = l:num iterations
plot(x(t), F(x(t)), ) ;
end




function cobweb(F,a,b,traj x0,num iterations). .
% plot the diagonal (if x = F(x))

for t = 1l:num iterations
plot(x(t),x(t), ) ;
end




function cobweb(F,a,b,traj x0,num iterations)

traj

x(l)=traj x0; % plot trajectory starting at xO

for t=1l:num_ iterations

end

(o)

% Get the next point in the trajectory
traj x(t+l)=F(traj x(t));

% Draw a line between the diagonal at time t and F at time t
line([traj x(t),traj x(t)],[traj x(t),traj x(t+l)], , ) ;

Draw a line between F at t+1 and the point on the diagonal a t+1

’ ) 7

line([traj x(t),traj x(t+l)],[traj x(t+l),traj x(t+1)],




function logistic_cobweb(r,a,b,traj x0,num_ iterations)
F = @(x) r*x*(1l-x);

% generate N linearly space values on
(a,b)
x=linspace(a,b,num_iterations);

% turn hold on to gather up all plots in
one

hold on;

% plot the function F

for t = l:num iterations
plot(x(t), F(x(t)), k.");
end

% plot the diagonal (if x = F(x))
for t = l:num iterations

plot (x(t),x(t), 'b.");

end



traj x(1)=traj x0; % plot trajectory starting at xO0
for t=1l:num iterations

% Get the next point in the trajectory

traj x(t+l)=F(traj x(t));

% Draw a line between the diagonal at time t and F at time t
line([traj _x(t),traj x(t)],[traj x(t),traj x(t+l1l)], 'Color’,

r');
Draw a line between F at t+l1l and the point on the diagonal a t+1

line([traj x(t),traj x(t+1l)],[traj x(t+l),traj x(t+l1l)], 'Color', 'r');
end

xlabel('x t', 'Fontsize', 22)
ylabel('x_{t+1} \leftarrow F(x_{t})', 'Fontsize',6K 22)

hold off;



Xt+1 — F(Xt)
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Fixed points




State Spaces: A Geometric Approach

(Abraham and Shaw, 1984)

* History of system is represented
graphically

* Trajectory: A curve in the state space
representation, connecting subsequent
observations

* Time series: A graph of the trajectory
w.r.t. to time

* Phase space (why phase not state?)
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Figure 12.1 A simple Lotka-Volterra attractor which shows four (out of an infinite
number of possible) limit cycles. The value of the four parameters are equal to 3.029850,
4.094132, 1.967217, and 2.295942, which yields a fixed point at 1.1671, 0.740047.

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright ® 1998-2000 by
F I. Permission granted for educational, scholarly, and personal use s - s intact and unaltere

illiam Flake. All rights reserved ational, 2 provided tha
this work may be reproduced for commercial purposes without prior writt: on from the MIT Press.

Example: Lotka-Volterra Equations



Phase Portraits

 All possible trajectories through the
phase space (flows) or state space
(maps)

7
7

. 18/%
* At any point on any of these curves, a /
velocity vector may be derived i v

e Can view a dynamical system as a
vector field

* VVelocity vector field can be derived
from phase portrait by differentiation

Example Vector Field; Wikipedia (2007)



System of equations for an undamped pendulum:

?/1 — Y2
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Sumple Pendulum in Real Space : Undamped
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function phase plot()

F = Q(t,y) [¥(2); -sin(y(1))];

yl = linspace(-2,8,20);
y2 linspace(-2,2,20);

o\°

Creates two matrices one for all the x-values on the grid, and one for
all the y-values on the grid. [x,y] = meshgrid(yl,y2);

= zeros(size(x));

= zeros(size(x));

< £ oo

o\°

we can use a single loop over each element to compute the derivatives at
each point (yl, y2)
t=0; % we want the derivatives at each point at t=0, i.e. the starting time
for i = l:numel(x)

y_deriv = F(t,[x(1); y(i)]);

u(i) = y deriv(1l);

v(i) = y _deriv(2);
end

o\°



. ) % Setup the plot
% Draw the vector field e
quiver(x,y,u,v, 'r'); xlabel('y 1')
ylabel('y 2')

axis tight equal;
xlim([-2,8])
ylim([-2,2])

% Plot some sample trajectories

hold on

max_time = 50;

for trajectory = [0 0.5 1 1.5 2 2.5, 3, 3.5]
[ts,ys] =

ode45(F,[0,max time],[0;trajectory]);
plot(ys(:,1),ys(:,2))
plot(ys(1,1),ys(1,2), 'bo') % starting point
plot(ys(end,1l),ys(end,2), 'ks’') % ending

point

end

hold off
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import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

def F(y, t):

yl, y2 =y

return [y2, -np.sin(yl)]
np.linspace(-2.0, 8.0, 20)
np.linspace(-2.0, 2.0, 20)

y2 = np.meshgrid(yl, y2)

0

u, v = np.zeros(yl.shape), np.zeros(y2.shape)
NI, NJ = Yl.shape

for i in range(NI):
for j in range(NJ):
= y1[i, jl
y2[1, j |
= f([x, yl, t)
y_deriv[@]
y

y
y_
u
Vv _deriv[1]

deriv
[i,7]
[i,7]



Q = plt.quiver(yl, y2, u, v, color='r") olt.xlabel('sy 1)
plt.ylabel('$y_2%")
for y20 in [0, 0.5, 1, 1.5, 2, 2.5]: plt.xlim([-2, 8])
tspan = np.linspace(0, 50, 200) plt.ylim([-4, 4])
yo = [0.0, y20]

ys = odeint(F, y@, tspan)

plt.plot(ysl[:,0], ysl:,1], 'b-"') #
path

plt.plot([ys[0,0]], [yslo,1]], 'o')
# start

plt.plot([ys[-1,0]1]1, [ys[-1,111,
's') # end

plt.xlim([-2, 8])
plt.show()
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For python
Numpy
odeint
matplotlib




Example Trajectories
Linear Vector Fields
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for some init conditions)
Define the ultimate fate of the system over long

time periods. Wikipedia, 2007



% Plot the Lorenz attractor. A model of a weather system.
function [x,y,2] = lorenz(rho, sigma, beta,
initial values, max time, eps, rate, line style)

% Options for the ODE solver
options = odeset('RelTol’',eps, 'AbsTol',6 [eps eps eps/10]);

for t l:max_time
[T,X] = oded45( @(T,X) F(T, X, sigma, rho, beta), [0, t],..
initial values, options);

M
I

X(:,1);
X(:,2);
2,3);

N
n
>4

plot3(x, y, z, line style)
pause(rate)

drawnow

end

end



% Lorenz's System of Differential Equations
function dx = F(T, X, sigma, rho, beta)

dx = zeros(3,1);

dx(l) = sigma*(X(2) - X(1));

dx(2) = X(1)*(rho - X(3)) - X(2);

dx(3) = X(1)*X(2) - beta*X(3);
end



Attractors

* Initially, a trajectory through a dynamical
system may be erratic. This is known as
the initial transient, or start-up transient.

« Asymptopia

« The asymptotic behavior of the system is
known as equilibrium, steady state, or
dynamic equilibrium.

* This does not necessarily imply a
static equilibrium or static state.

* The only equilibrium states which can
be observed experimentally are those
modeled by limit sets which receive
most of the trajectories.

* These are called attractors.

The Lorenz Attractor Ruele and Takens (1971)



Strange Attractors

* The separatrices are
FRACTAL.

 Think about that for a
minute...




Attractors
(from Abraham and Shaw, 1984)

* Basin of attraction: The points of
all trajectories that converge to a

given attractor L e 4 T

* The dividing boundaries (or |\ \\ i
regions) between different “ >/\? 5

attractor regions (basins) are i .

called separatrices. 7

{

e —
P =

1.5.1. Suppose a dynamical system in 1.5.2. Now, find every single trajectory
the plane has a critical point. And let’s which approaches this limit point
suppose further that this critical point is asymptotically, and color it green. The
the limit set of some trajectories in the green portion of the plane is the inset of

phase portrait. the limit set (that is, the critical point).




Next Time

* Some analytical methods for finding and describing
fixed points.

* Lyapunov Exponents



