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Monte	Carlo	Algorithm

• Update	scheme	heuristic.
• We	have	various	choices	about	how	to	update	a	CA.
• Usually	we	update	all	the	states	of	the	CA	simultaneously	
(synchronous)

• We	can	also	update	the	states	asynchronously.	Time	appears	to	pass	
at	different	rates	for	different	cells.

• If	we	update	the	cells	uniform	randomly	time	passes	at	the	same	
expected	rate	everywhere.	

• This	is	often	much	faster	than	updating	everything	all	the	time	and	
converges	to	most	likely	outcome.



Metropolis	Algorithm
Nicholas	Metropolis,	Manhattan	Project	Computation	Lead
Los	Alamos	National	Labs
Supervised	John	von	Neumann	and	Stanislaw	Ulam.
Worked	on	the	MANIAC	I	computer.

“Johnny	von	Neumann	who	was	very,	very	quick—I	mean,	you	have	no	idea	
how	quickly	he	would	infer	things	and	extrapolate	them.	Well,	he	was	fantastic.”



Metropolis	Algorithm

Update	our	model	randomly	but	only	accept	the	new	state	with	probability
Proportional	to	the	probability	of	the	state	really	happening.

For	example:	a	particle	might	try	to	jump	k positions	in	the	lattice	from	its	
current	position	but	takes	energy	to	do	so.	Let’s	say	the	energy	required
Is	linear	with	the	distance	travelled	up	to	a	maximum	of	10	steps.

We	can	model	this	by	randomly	proposing	that	a	particle	moves	5	steps.	The
probability	is	0.5	of	accepting	this	move.

In	other	words	we	say	the	particle	only	has	a	50%	chance	of	having	enough	
energy	to	make	the	move.



Ising Model



Matlab Ising Model



Matlab Ising Model



Self-organised	Criticality

• We	can	describe	systems	like	this	in	terms	of	the	correlations.	How	
much	do	states	influence	each	other.

The	particles	do	not	influence
Their	neighbourhood	much

Particle	neighbours	are	correlated,	
short	correlation	lengths.



1/Temp

The	correlation	length	is	a
measure	of	the	characteristic
scale	of	the	system.

This	is	the	expected	correlation
of	the	spins	between	
all	pairs	of	cells.

At	the	phase	transition	the
correlation	length	becomes
undefined.

A	correlation	length	of	zero
means	there	is	no	correlation.

A	short	correlation	length
means	distant	cells	are	weakly
correlated.

Tom Kennedy, MATH 541: Introduction to Mathematical Physics, Arizona State University



Protein	Correlation

Phase	Transitions:	Immunology

Receptor aggregation by intermembrane interactions: A Monte Carlo study G. Matthew 
Fricke; James L. Thomas Biophysical Chemistry Volume 119, Issue 2, 20 Jan 2006; 
Pages 205-211.



Phase	Transitions

• This	is	a	key	idea	in	Complex	Systems
• When	a	system	transitions	from	one	phase	to	another	(as	in	the	Ising
model)	they	behave	in	a	very	special	way

• At	this	transition	point	the	system	is	said	to	be	critical
• Criticality	is	typically	reached	in	response	to	tuning	some	external	
parameter	(temperature	in	the	case	of	the	Ising model)



Self-Organized	Criticality

• Can	Complex	Adaptive	Systems	adapt	their	own	parameters	so	the	
system	can	move	towards	critical	states	on	its	own?



Self-Organized	Criticality

• Can	Complex	Adaptive	Systems	adapt	their	own	parameters	so	the	
system	can	move	towards	critical	states	on	its	own?

• Yes…
• Originally	identified	in	P.	Bak,	C.	Tang	and K.	Wiesenfeld,	Physical
Review	Letters	59,	381	(1987).	



Going	from	fixed	points	to	complexity	to	
chaos	are	phase	transitions



Self-Organized	Criticality

• A	recurring	observation	complex	systems	is	that	
many	systems	exist	in	the	phase	transition	
between	order	and	chaos

• For	biological	systems	this	is	described	as	“life	at	
the	edge	of	chaos”

• In	computer	science	we	refer	to	”computation	at	
the	edge	of	chaos”

• Recall	Crutchfield	describing	how	systems	tendt o	
balance	themselves	between	order	and	chaos.

Christopher	Langton,	
Complex	Systems	Group,	Los	Alamos	Labs
Santa	Fe	Institute



Self-Organized	Criticality

• Langton	argued	that	the	ability	to	carry	
out	computations	(information	storage,	
transmission,	and	modification)	occur	at	
the	phase	transition	between	order	and	
chaos*

• Builds	on	Wolfram’s	CA	classifications.
• Recall	that	Class	IV	CAs	can	support	
universal	computation.

Christopher	Langton,	
Complex	Systems	Group,	Los	Alamos	Labs
Santa	Fe	Institute*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and

emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.



Self-Organized	Criticality

• Langton	showed	that	the	CA	rules	that	
support	computation	tend	to	exist	in	the	
regions	between	chaos.

Christopher	Langton,	
Complex	Systems	Group,	Los	Alamos	Labs
Santa	Fe	Institute*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and

emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.



Self-Organized	Criticality

• Langton	showed	that	the	CA	rules	that	
support	computation	tend	to	exist	in	the	
regions	between	chaos.

• We	can	think	of	computation,	complexity,	
and	living	systems	as	being	very	long	
transients.

Christopher	Langton,	
Complex	Systems	Group,	Los	Alamos	Labs
Santa	Fe	Institute*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and

emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.



Langton’s	λ-parameter

• Wolfram’s	CA	classifications	are	qualitative	
and	come	from	inspection	of	the	space-
time	progression	of	the	CA.

• Langton	introduced	the	λ-parameter	as	a	
quantitative	measure	of	complexity.

Christopher	Langton,	
Complex	Systems	Group,	Los	Alamos	Labs
Santa	Fe	Institute*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and

emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

• The	lambda	parameter	of	a	CA	is	a	number	between	0	and	1.	
• If	lambda	is	0,	then	all	cells	die	immediately,	since	every	rule	leads	to	
death.	

• If	lambda	is	1,	then	any	cell	that	has	at	least	one	living	neighbor	will	stay	
alive	in	the	next	generation	and,	in	fact,	forever.	

• Values	of	lambda	close	to	zero	give	CA's	in	the	ordered	realm.	
• Values	close	to	1	give	CA's	in	the	chaotic	realm.	
• The	edge	of	chaos	is	somewhere	in	between.



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

• λ is	a	statistic	of	the	output	states	in	the	CA	lookup	table,	defined	as	
the	fraction	of	non-quiescent	states	in	this	table.

• The	quiescent	state	is	an	arbitrarily	chosen	state	(for	example	0	in	a	CA	
with	possible	states	{0,1})

• λ is	the	fraction	of	rules	in	the	CA	that	do	not	lead	to	quiescence	
(death)

� =
Kn � n

Kn



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

Where N is the size of the rules neighbourhood.

⌃

N
is the set of possible inputs to each rule.

� : ⌃N ! ⌃



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

Where N is the size of the rules neighbourhood.

⌃

N
is the set of possible inputs to each rule.

There are |⌃N ||⌃|N
possible transition functions.

� : ⌃N ! ⌃



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

Where N is the size of the rules neighbourhood.

⌃

N
is the set of possible inputs to each rule.

There are |⌃N ||⌃|N
possible transition functions.

8 states per cell
e.g.

8

85
= 10

30000
possible transition functions



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

The � parameter is defined as follows.

We pick an arbitrary state to be the quiescence state sq.



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

The � parameter is defined as follows.

We pick an arbitrary state to be the quiescence state sq.

Let there be n transitions to this special quiescent state

in a transition function �



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

The � parameter is defined as follows.

We pick an arbitrary state to be the quiescence state sq.

Let there be n transitions to this special quiescent state

in a transition function �

Let the remaining |⌃N |� n transitions in �

be filled randomly from the other |⌃|� 1 states.



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.
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Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

� =
|⌃N |� n

|⌃N |

Which is just the fraction of inputs that cause the CA

rule to explore the state space



Langton’s	λ-parameter

*Langton,	Chris	G.	"Computation	at	the	edge	of	chaos:	phase	transitions	and
emergent	computation." Physica D:	Nonlinear	Phenomena 42.1-3	(1990):	12-37.

� =
|⌃N |� n

|⌃N |

Which is just the fraction of inputs that cause the CA

rule to explore the state space

If it explores too much it is chaotic,

too little and it is ordered.



Game of life has � = 0.273



Recall	that	entropy	is	a	measure
of	order	vs	randomness.

(Note:	chaos	is	NOT	random
it	is	deterministic,	but	it
looks random).	It	looks	random
to	entropy	measures	
as	well	at	qualitatively.

Near	the	0.5	the	information
entropy	changes	character.



Phase	transitions	match	up	with	Langton’s	lambda	parameter



Christopher	Langton,	
Complex	Systems	Group,	Los	Alamos	Labs
Santa	Fe	Institute

Below	.5	is	ordered,	above	0.5	is	chaos.
Transients	are	a	proxy	for	complexity	of	computation.



Life	at	the	Edge	of	Chaos

Stuart	Kauffman, At	Home	in	the	Universe:	The	Search	for	Laws	of	
Self-organization	and	Complexity.	Oxford	University	Press,	1995.

Stuart	Kauffman	argues	that	evolution	tends	to	push	life
To	the	edge	of	chaos.

Evolution	is	a	powerful	mechanism,	but	exploring	the	biochemical
landscape	seems	daunting	even	with	the	enormous	number	of	trials
conducted	over	the	past	few	billion	years.

Kauffman’s	work	has	focused	on	the	underlying	structures	that
evolution	is	able	to	exploit.

The	edge	of	chaos	is	one	of	the	places	that	evolution	is	able	to	exploit
in	order	to	more	easily	find	solutions.

We	can	think	of	evolution	as	using	the	edge	of	chaos	as	being	a	possible
GA	building	block.





Self-organised	Criticality



Scale	Free

• At	the	exact	point	of	criticality	the	correlation	lengths	between	
particles	in	the	system	become	scale	free.

• Scale	free	systems	are	characterised	by	power-laws	such	as	the	ones	
Melanie	showed.

• Structures	within	the	system	reach	across	all	levels	at	the	critical	
point.



Forest	Fire
Model



Forest	Fire
Model

Characteristic	length	scale

(Spiral	pattern	with
characteristic	time	and	
length	scales	=	1/p)



Forest	Fire
Model Add	lightning…

No	characteristic	scale	in	
the	size	of	clusters

The	forest	appears	fractal	
with	scale	free	behaviour



Forest	Fire
Model Add	lightning…

There	is	a	power	law	
distribution	of	cluster	sizes

This	is	a	phase	transition	
from	limit	cycles	to	chaos



Self-organised	criticality

Gaussian	distribution	was	discovered	in	the	early	19th century	
by	Carl	Gauss and	Abraham	de	Moivre
It	revolutionised	statistics	because
it	explained	so	many	different	systems.

So	common	it	became	known	as
the	Normal	distribution.

All	properties	of	a	system	with	
a characteristic	scale	converge	to	
this	distribution.	



Self-organised	criticality
Last	century	Paul	Lévy showed	that	if	we	do	not	have
a	characteristic	scale	systems	converge	to	a	Lévy distribution
(a	power	law).

Lévy’s student	Benoit	Mandlebrot
began	the	study	of	fractals.

The	discovery	that	many	systems
can	be	described	by	power-laws
had	a	similar	effect	to	the
discovery	of	the	Normal	
distribution.	 Benoit	Mandlebrot

Paul	Lévy



Self-organised	criticality
Many	systems	can	be	described	by	power-laws.

Melanie	showed	several	examples	last	week:

• Biological	scaling	in	metabolism

• Social	scaling	in	cities

We	have	seen	that	fractals	
Show	up	in	strange	attractors
(Chaotic)

Benoit	Mandlebrot

Paul	Lévy



Self-organised	criticality
Lévy walks	are	a	type	of	search	pattern	that
has	been	shown	to	be	optimal	under
many	circumstances.

These	are	scale	free	search	patterns	that	have
been	used	to	model	the	foraging	patterns
of	numerous	species.

Gandi Viswanathn,	UNM	Postdoc	under
Nitant Kenkre in	the	physical	dept.	

Viswanathan, Gandimohan M., et al. "Optimizing the success of random searches." Nature 401.6756 (1999): 
911-914.



Power-laws	can	have	very	
different	consequences
from	Gaussian	distributions.

In	particular	they	allow
for	rare	events.

a.Clauset, A. Power-law Distributions in Empirical Data, 
2009

Nick	Watkins,	London	School	of	Economics

Arron	Clauset (UNM	CS	Phd,	now	Univ Colorado	Boulder)
Provides	more	examples	and	a	critical	analysis.


