Self-organised criticality, catastrophe

theory, and computation at the edge of
Chaos

Lecture 12



Ising Spin Model

Model of ferromagnet - collection of magnetic
| moments associated with the spins of atoms.

Treat the spins as located at fixed points on a 2D
lattice. Ignore quantum mechanical effects (active
area of research).

Consider spin projections along either +z or -z

See: . .
direction.

Computational Physics,
N. Giordano, H. Nakanishi,
2" Ed., McGraw Hill

Consider only nearest neighbor interactions.
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where (ij) means all nearest neighbor spins



Ising Spin Model
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Statistical Mechanics

In the spirit of Statistical Mechanics, we consider the energy associated
with a spin state (which corresponds to knowing the spin directions of all
atoms on the lattice). For a system in equilibrium with a heat bath, the
probability associated with being in a given state depends only on the
energy:

For a square lattice with N sites per direction, there are N sites and a
total of »N* possible states. Even a small lattice with N=101s

impossible to study with ‘brute force’. On the other hand, such a small
lattice is very far from typical real systems, where we deal with O(10%)

spins. Boundary conditions in the simulation become important.



Statistical Mechanics

Typical quantities of interest are:
<E>=EBZEQ <M>=EBxMa

where M, = 2 S,

Note that there are often many ‘microstates’ - here, arrangement of
spins - with the same energy. The normalization of the probability is

-E [kT
e «@

P =
a Ee—E“ [ kT

a

Competition between highest probability state (min energy) and large
number of lower probability states (max entropy). Balance controlled
by the temperature, T.



Monte Carlo Algorithm

e Update scheme heuristic.
* We have various choices about how to update a CA.

e Usually we update all the states of the CA simultaneously
(synchronous)

* We can also update the states asynchronously. Time appears to pass
at different rates for different cells.

* If we update the cells uniform randomly time passes at the same
expected rate everywhere.

* This is often much faster than updating everything all the time and
converges to most likely outcome.



Metropolis Algorithm

Nicholas Metropolis, Manhattan Project Computation Lead
Los Alamos National Labs

Supervised John von Neumann and Stanislaw Ulam.
Worked on the MANIAC | computer.

“Johnny von Neumann who was very, very quick—I mean, you have no idea
how quickly he would infer things and extrapolate them. Well, he was fantastic.”

...the method we employ is actually a modified Monte Carlo scheme, where, instead of choosing
configurations randomly, then weighting them with exp(—F/kT'), we choose configurations with

a probability exp(—FE/kT') and weight them evenly.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics,

21(6):1087-1092, 1953.



Metropolis Algorithm

Update our model randomly but only accept the new state with probability | '
Proportional to the probability of the state really happening.

For example: a particle might try to jump k positions in the lattice from its
current position but takes energy to do so. Let’s say the energy required
Is linear with the distance travelled up to a maximum of 10 steps.

We can model this by randomly proposing that a particle moves 5 steps. The
probability is 0.5 of accepting this move.

In other words we say the particle only has a 50% chance of having enough
energy to make the move.




Ising Model
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Self-organised Criticality

* We can describe systems like this in terms of the correlations. How
much do states influence each other.

The particles do not influence Particle neighbours are correlated,
Their neighbourhood much short correlation lengths.



The correlation length is a
measure of the characteristic
scale of the system.

This is the expected correlation
of the spins between
all pairs of cells.

At the phase transition the
correlation length becomes
undefined.

correlation length

A correlation length of zero
means there is no correlation.

A short correlation length
means distant cells are weakly
correlated.

1/Temp

Tom Kennedy, MATH 541: Introduction to Mathematical Physics, Arizona State University



Phase Transitions: Immunology
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Receptor aggregation by intermembrane interactions: A Monte Carlo study G. Matthew
Fricke; James L. Thomas Biophysical Chemistry Volume 119, Issue 2, 20 Jan 2006;
Pages 205-211.




Phase Transitions

* This is a key idea in Complex Systems

* When a system transitions from one phase to another (as in the Ising
model) they behave in a very special way

* At this transition point the system is said to be critical

e Criticality is typically reached in response to tuning some external
parameter (temperature in the case of the Ising model)



Selt-Organized Criticality

e Can Complex Adaptive Systems adapt their own parameters so the
system can move towards critical states on its own?



Selt-Organized Criticality

e Can Complex Adaptive Systems adapt their own parameters so the
system can move towards critical states on its own?

* Yes...

* Originally identified in P. Bak, C. Tang and K. Wiesenfeld, Physical
Review Letters 59, 381 (1987).



Going from fixed points to complexity to
chaos are phase transitions
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Figure 10.7 Bifurcation diagrams for the logistic map: (a) This image has values of r
such that fixed points, limit cycles, and chaos are all visible. (b) This image shows the
detail of the boxed section of (a).

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright (© 1998-2000 by
Gary William Flake. All rights reserved. Permission granted for educational, scholarly, and personal use provided that this notice remains intact and unaltered. No
part of this work may be reproduced for commercial purposes without prior written permission from the MIT Press.



Selt-Organized Criticality

* Arecurring observation complex systems is that
many systems exist in the phase transition
between order and chaos

For biological systems this is described as “life at
the edge of chaos”

* In computer science we refer to “computation at
the edge of chaos”

Recall Crutchfield describing how systems tendt o
balance themselves between order and chaos.

Christopher Langton,
Complex Systems Group, Los Alamos Labs
Santa Fe Institute



Selt-Organized Criticality

* Langton argued that the ability to carry
out computations (information storage,
transmission, and modification) occur at
the phase transition between order and
chaos*

e Builds on Wolfram’s CA classifications.

* Recall that Class IV CAs can support
universal computation.

Christopher Langton,
Complex Systems Group, Los Alamos Labs
Santa Fe Institute

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Selt-Organized Criticality

* Langton showed that the CA rules that
support computation tend to exist in the
regions between chaos.

Christopher Langton,
Complex Systems Group, Los Alamos Labs
Santa Fe Institute

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Selt-Organized Criticality

* Langton showed that the CA rules that
support computation tend to exist in the
regions between chaos.

* We can think of computation, complexity,
and living systems as being very long
transients.

Christopher Langton,
Complex Systems Group, Los Alamos Labs
Santa Fe Institute

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

* Wolfram’s CA classifications are qualitative
and come from inspection of the space-
time progression of the CA.

e Langton introduced the A-parameter as a
guantitative measure of complexity.

Christopher Langton,
Complex Systems Group, Los Alamos Labs
Santa Fe Institute

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

* The lambda parameter of a CA is a number between 0 and 1.

. glarﬂbda is 0, then all cells die immediately, since every rule leads to
eath.

* If lambdais 1, then any cell that has at least one living neighbor will stay
alive in the next generation and, in fact, forever.

* Values of lambda close to zero give CA's in the ordered realm.
* Values close to 1 give CA's in the chaotic realm.
* The edge of chaos is somewhere in between.

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

* Ais a statistic of the output states in the CA lookup table, defined as
the fraction of non-quiescent states in this table.

* The quiescent state is an arbitrarily chosen state (for example 0 in a CA
with possible states {0,1})

* Ais the fraction of rules in the CA that do not lead to quiescence
(death)

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

Each finite automaton consists of a finite set of
cell states 2, a finite input alphabet a, and a
transition function A, which is a mapping from the
set of neighborhood states to the set of cell states.

ARD A Y
Where N is the size of the rules neighbourhood.

>N is the set of possible inputs to each rule.

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

There are |27 ||E|N possible transition functions.
A:XY 5%

Where N is the size of the rules neighbourhood.

>N is the set of possible inputs to each rule.

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

N |§3|N : " :
There are |27 possible transition functions.

e.g.

8 states per cell

5 ° o ° °
85" = 10°Y9% possible transition functions
five cell neighborhood

Where N is the size of the rules neighbourhood.

>N is the set of possible inputs to each rule.

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

The )\ parameter is defined as follows.

We pick an arbitrary state to be the quiescence state s,.

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

The )\ parameter is defined as follows.

We pick an arbitrary state to be the quiescence state s,.

Let there be n transitions to this special quiescent state

in a transition function A

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

The )\ parameter is defined as follows.

We pick an arbitrary state to be the quiescence state s,.

Let there be n transitions to this special quiescent state

in a transition function A

Let the remaining |X%| — n transitions in A
be filled randomly from the other |3| — 1 states.

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.




Langton’s A-parameter

IR

\ —
2N

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.



Langton’s A-parameter

B \EN|—n
By

A

Which is just the fraction of inputs that cause the CA

rule to explore the state space

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.
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Langton’s A-parameter

A\ =

Which is just the fraction of inputs that cause the CA

rule to explore the state space

If it explores too much it is chaotic,

too little and 1t 1s ordered.

*Langton, Chris G. "Computation at the edge of chaos: phase transitions and
emergent computation." Physica D: Nonlinear Phenomena 42.1-3 (1990): 12-37.
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Fig. 16. Location of the Wolfram classes in A space.



Recall that entropy is a measure
of order vs randomness.

(Note: chaos is NOT random

it is deterministic, but it

looks random). It looks random
to entropy measures

as well at qualitatively.

Near the 0.5 the information
entropy changes character.
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Fig. 6. Average single cell entropy H over A space for approx-
imately 10000 CA runs. Each point represents a different
transition function.
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Phase transitions match up with Langton’s lambda parameter



15000 IIIIPIIITUIITIYIIIITIIIITIIITIlllrllll[l.'_l'lillIT

10000

5000

transient length

-0

llll[llllllll[llllllljlllllllIllllhllllllllill'l

-0 .1 2 3 4 5 6 7 8 9 1
A

Fig. 3. Average transient length as a function of A in an array
of 128 cells.

Christopher Langton,
Below .5 is ordered, above 0.5 is chaos. Complex Systems Group, Los Alamos Labs

Transients are a proxy for complexity of computation. Santa Fe Institute



Life at the Edge of Chaos

Stuart Kauffman argues that evolution tends to push life
To the edge of chaos.

Evolution is a powerful mechanism, but exploring the biochemical
landscape seems daunting even with the enormous number of trials
conducted over the past few billion years.

Kauffman’s work has focused on the underlying structures that
evolution is able to exploit.

The edge of chaos is one of the places that evolution is able to exploit
in order to more easily find solutions.

We can think of evolution as using the edge of chaos as being a possible
GA building block.

Stuart Kauffman, At Home in the Universe: The Search for Laws of
Self-organization and Complexity. Oxford University Press, 1995.




Second-Order Phase Transitions Phase transitions occur in many physical systems
when the number of components diverges, viz “macroscopic” systems. Every phase
has characteristic properties. The key property, which distinguishes one phase from
another, 1s denoted the “order parameter”. Mathematically one can classify the type of
ordering according to the symmetry of the ordering breaks.

The Order Parameter. In a continuous or “second-order” phase tran-
sition the high-temperature phase has a higher symmetry than the low-
temperature phase and the degree of symmetry breaking can be character-
ized by an order parameter ¢.

Note that all matter is disordered at high enough temperatures and ordered phases occur
at low to moderate temperatures in physical systems.



Self-organised Criticality

Scale-Invariance and Self-Similarity If a control parameter, often the temperature,
of a physical system is tuned such that it sits exactly at the point of a phase transition,
the system 1is said to be critical. At this point there are no characteristic length scales.

Scale Invariance. If a measurable quantity, like the correlation func-

tion, decays like a power of the distance ~ (1/ r)a, with a critical exponent
0, the system is said to be critical or scale-invariant.

Power laws have no scale; they are self-similar,

) )
o L r S S
S(r) = co (7) = (] (7) ; Corp =¢€177



Scale Free

* At the exact point of criticality the correlation lengths between
particles in the system become scale free.

* Scale free systems are characterised by power-laws such as the ones
Melanie showed.

e Structures within the system reach across all levels at the critical
point.



-orest Fire
Model

Simulations of the forest fire model. Left: Fires burn in characteristic

spirals for a growth probability p = 0.005 and no lightning, f = 0 (from Clar et al.
1996). Right: A snapshot of the forest fire model with a growth probability p = 0.06
and a lightning probability f = 0.0001. Note the characteristic fire fronts with trees in

front and ashes behind

CLAR, S., DROSSEL, B., SCHWABL, F. 1996 Forest fires and other examples of self-organized
criticality. Journal of Physics: Condensed Matter 8, 6803—6824.
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characteristic time and imulations of the forest fire model. Left: Fires burn in characteristic
_ rowth probability p = 0.005 and no lightning, f = 0 (from Clar et al.
length scales = 1/p) A snapshot of the forest fire model with a growth probability p = 0.06

and a lightning probability f = 0.0001. Note the characteristic fire fronts with trees in
front and ashes behind

CLAR, S., DROSSEL, B., SCHWABL, F. 1996 Forest fires and other examples of self-organized
criticality. Journal of Physics: Condensed Matter 8, 68036824,



-orest Fire S—
Model add lightning...

No characteristic scale in
the size of clusters

The forest appears fractal | =
with scale free behawour o
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Simulations of the forest fire model. Left: Fires burn in characteristic
sp1ra1s for a growth probability p = 0.005 and no lightning, f = 0 (from Clar et al.
1996). Right: A snapshot of the forest fire model with a growth probability p = 0.06
and a lightning probability f = 0.0001. Note the characteristic fire fronts with trees in
front and ashes behind

CLAR, S., DROSSEL, B., SCHWABL, F. 1996 Forest fires and other examples of self-organized
criticality. Journal of Physics: Condensed Matter 8, 6803—6824.



~orest Fire ,
Model add lightning...

There is a power law
distribution of cluster sizes

This is a phase transition
from I|m|t cycles to chaos

¥ X d‘» ‘;\!\‘0’

g —.u. Simulations of the forest fire model. Left: Fires burn in characteristic
spirals for a growth probability p = 0.005 and no lightning, f = 0 (from Clar et al.
1996). Right: A snapshot of the forest fire model with a growth probability p = 0.06

and a lightning probability f = 0.0001. Note the characteristic fire fronts with trees in
front and ashes behind

CLAR, S., DROSSEL, B., SCHWABL, F. 1996 Forest fires and other examples of self-organized
criticality. Journal of Physics: Condensed Matter 8, 6803—6824.



Self-organised criticality

Gaussian distribution was discovered in the early 19t century
by Carl Gauss and Abraham de Moivre

It revolutionised statistics because 0014
it explained so many different systems. -

Bell Curve

0.01

So common it became known as
the Normal distribution.

0.003

Gauss Distribution

All properties of a system with 0.004
a characteristic scale converge to 0002
this distribution.

-qOO -30 -60 40 -20 0 20 40 60 80 100
Randomy produced numbers



Self-organised criticality

Last century Paul Lévy showed that if we do not have
a characteristic scale systems converge to a Lévy distribution
(a power law).

Levy’s student Benoit Mandlebrot
began the study of fractals. o]

o o 0
(L |
[0 SIS &

The discovery that many systems
can be described by power-laws
had a similar effect to the
discovery of the Normal
distribution.

 enoit Mandlebrot



Self-organised criticality

Many systems can be described by power-laws.

Melanie showed several examples last week:

1.0f

* Biological scaling in metabolism

0.8F

O O o0 o o
[0 o S O B e

* Social scaling in cities

We have seen that fractals
Show up in strange attractors
(Chaotic)

0'%.0 OI.S 11.0 ll.5 2[.0 21.5 31.0 .
X enoit Mandlebrot



Self-organised criticality

Lévy walks are a type of search pattern that
has been shown to be optimal under
many circumstances.

These are scale free search patterns that have
been used to model the foraging patterns
of numerous species.

Gandi Viswanathn, UNM Postdoc under
Nitant Kenkre in the physical dept.

BESRC NTTeT e == 1

Viswanathan, Gandimohan M., et al. "Optimizing the success of random searches." Nature 401.6756 (1999):
911-914.



S J
Power-laws can have very 10
different consequences 10% '
from Gaussian distributions. o3
: 2
In particular they allow 10
for rare events. 10] .
100 A N M (|
1 10 100
Arron Clauset (UNM CS Phd, now Univ Colorado Boulder)
Provides more examples and a critical analysis. (1+a)
—(l+a
Clauset, A. Power-law Distributions in Empirical Data, ﬂr(é:) — é: O<a< 2
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Nick Watkins, London School of Economics



