EXCUSE ME, BUT
REAL PROGRAMMERS
USE BUTTERFLIES.

fR 2

nano? REAL HEY. REAL WELL, REAL | | NO, REAL | |REAL PROGRAMMERS
PROGRAMMERS | | PROGRAMMERS | | PROGRaMMERS | | PROGRAMMERS | | USE A MAGNETIZED
USE emocs USE vim. USE ed. USE cat. NEEDLE AND A
} | } STEAD\,/ HAND.
THE DISTURBANCE RIFPLES  WHICH ACT AS [ENSES THAT
THEYOPEN THEIR OUTWARD, CHANGING THE FLOV  DEFLECT INCOMING COSMIC
HANDS AND LET THE | OF THE EDDY CURRENTS RAYS, FOCUSING THEM TO
DELICATE WINGS FLAP ONCE. STRIKE THE DRIVE PLATTER

IN THE UPPER PWI'DSPHERE

k

THESE CAUSE NOﬂENTARY POCKETS

OF HIGHER-PRESSURE. AIRTO FORM,

AND FLIP THE DESIRED BIT.

NICE.
COURSE, THERES AN EMACS
COHMAND TO DO THATL

OH YEAH! GOOD QL
CxT-¢ Nbuﬁer‘fg )

Wﬁiﬁ

DAMTAIT, EMACS.

xkcd.com




Logistics

* We plan to return graded projects on Wednesday, Thursday.

* | will hold office hours all day Thursday so you can pick up and discuss
your graded project.

* Project 2 has been posted.
* Groups have been assigned.



Logistics

* We plan to return graded projects on Wednesday, Thursday.

* | will hold office hours all day Thursday so you can pick up and discuss
your graded project.

* Project 2 has been posted.
* Groups have been assigned.




Genetic Algorithms
Continued

Lecture 10



Terminology

Amino acids biochemical properties ' nonpolar  polar basic

On chromosomes:

1st

base
4 Bases {T,C,A,G} T
TTC

.
TTA
Codons (sequences of 3 —,
bases) code for each cTT
amino acid. o |CTC
CTA
_ CTG
Genes (variable length po
sequences of codons) L AT
code for complete ATA

. ATGIA
proteins.

GTT
- GTC
Proteins form the GTA
Phenotype. aTa

T

(Phe/F) Phenylalanine

(Leu/L) Leucine

(lle/1) Isoleucine

(Met/M) Methionine

(Val/V) Valine

TCT
TCC
TCA
TCG
CCT
CCC
CCA
CCG
ACT
ACC
ACA
ACG
GCT
GCC
GCA
GCG

acidic

Termination: stop codon

Standard genetic code

(Ser/S) Serine

(Pro/P) Proline

(Thr/T) Threonine

(Ala/A) Alanine

2nd base

TAT
TAC
TAA[E]
TAGIE]
CAT
CAC
CAA
CAG
AAT
AAC
AAA
AAG
GAT
GAC
GAA
GAG

A

(Tyr/Y) Tyrosine

Stop (Ochre)
Stop (Amber)

(His/H) Histidine

(GIn/Q) Glutamine

(Asn/N) Asparagine

(Lys/K) Lysine

(Asp/D) Aspartic acid

(GIu/E) Glutamic acid

TGT
TGC
TGAE]
TGG
CGT
CGC
CGA
CGG
AGT
AGC
AGA
AGG
GGT
GGC
GGA
GGG

G

(Cys/C) Cysteine

Stop (Opal)
(Trp/W) Tryptophan

(Arg/R) Arginine

(Ser/S) Serine

(Arg/R) Arginine

(Gly/G) Glycine

3rd
base

-

O >» O 4 6O >» O 4 6 >» O 4 6O > 0O

Wikipedia, 2-22-2017



Chromosomal location of the TCR a/0, B and

Y chain loci in man

13
11.2

12
13

14

12

1.1
111 NN

12

ter

5 l interspersed 55 . TRGC - 1
ter TRAY : 49, TRDV: 1, TRAV/DY: 5 f IR GJ 2
: TRDV : 1 ; EEC 1
: TROD : 3 T
b TF.:D..L 1 - TRGY : 12-15
) TRE) %’zg' 1 ' 160 kb
5 \Tj:,g A TRAL - B (19-22 genes)
V TRAC - 1
" 1000 kb {127 genes)
£ TRBV: 63-66
,-| TRBD: 1
- TRBJ : B
s ¢ TRBC : 1
- o TRED: 1
[.. IRB TRBJ : 8
~. N TRBC: 1
ter o TRBY: 11

locus representations from the International
Immunogenetics Information System (IMGT)

server (http://www.imgt.org/)

TCR: T cell Receptor

620 kb

These loci are highly variable in their alleles.



Terminology: Protein Phenotype

Proteins form the
phenotype.

The conformation of
a protein is how it
twists itself.

This conformation
process is dynamical.

Proteins vibrate into low
energy conformations.

Structure

© Robotics

Robot path planning techniques for protein folding. (Lydia Tapia, UNM)

Xinyu Tang, Shawna Thomas, Lydia Tapia, David P. Giedroc, Nancy M. Amato,
"Simulating RNA Folding Kinetics on Approximated Energy
Landscapes," Journal of Molecular Biology, 3811(4):1055-1067, 2007



Terminology: Protein Phenotype

Proteins form the phenotype.

The conformation of a protein is how it
twists itself.

This conformation process is dynamical.

Proteins vibrate into low energy conformations.

These states are defined by stable and unstable
fixed points and saddle points.

Xia, Kelin, and Guo-Wei Wei. "Molecular nonlinear
dynamics and protein thermal uncertainty
quantification." Chaos: An Interdisciplinary Journal of
Nonlinear Science 24.1, 013103, 2014.

Figure 2

Q
R0, C..

80| iy

N 60

20 40 60 20 40 60
Residue number Residue number

Transition from chaos to periodicity in the chaotic dynamics model (CDM) of bacteriocin AS-48 (PDB ID
1e68). (a) The butterfly wing pattern for one of 70 chaotic oscillators. (b) The solution of original 70 chaotic
oscillators. (c¢) The periodic orbit of the ILDM for bacteriocin AS-48. (d) Bacteriocin AS-48 induced Hopf
bifurcation from chaos. All of 70 nonlinear oscillators are in one lag synchronized periodic orbit.



Terminology

* Gene — A variable in the genome
* Genotype — A string of symbols in the genome

* Phenotype — The decoding of a genome
* Locus — A position in the genome (it" position in a string)
 Allele — A value the variable (gene) can take on.

* Epistasis — interdependence of genes (nonlinearity)

* Encoding — A mapping of a set of features into the genome.
* Biological genes can be independent of loci.



Schemata

John Holland, Inventor of the GA.

The following slides are based on material from Goldberg, D. Genetic
Algorithms, 1989 and Holland J, Adaptation in Natural and Artificial Systems, 1993




GAs: Schemata

Consider a sample problem:

Encoding: integers as bitstrings.

Integers here are the phenotype and bitstrings

are the genotype.

We want to maximise the bitstrings according to the
fitness function:

F(x) = 27



GAs: Instructive Example

F(x) =z~
v e
01101
2 11000 24
3 01000 3

4 10011 19



GAs: Instructive Example

F(x) =z~
v e
01101
2 11000 24 576
3 01000 3 64

4 10011 19 361



fi
2.

IW Phenotype

01101 0.14
11000 24 576 0.49
3 01000 8 64 0.06
4 10011 19 361 0.31

Roulette Selection P(i) =

N



After selection

nm Phenotype

01101
2 11000 24 576
3 11000 24 576

4 10011 19 361



After selection, 1-point crossover

0110|1
2 1100/0 24 576
3 11/000 24 576

4 10/011 19 361




After selection, crossover (P = 1.0),

and mutation (P — 10100> CNazzutation in this

Im
01100

2 1100|1 25 625

3 11/011 27 729

4 10/000 16 256




GAs: Schemata

| Bitstring W
What information

about the search 01101

space does this table

contain? 11000 576
01000 64

10011 361



GAs: Schemata

: Bitstring W
What information

about the search 01101

space does this table

contain? 11000 576
01000 64

Notice that bitstrings
starting with 1s have 10011 361
higher fitness.



GAs: Schemata

1. Similarity among strings

in the population. 01101

2. A causal relationship 11000 576
between the strings and

the fitness function. 01000 64

Schemata capture this. 10011 361



GAs: Schemata

1. Similarity among strings

in the population. 01101

2. A causal relationship 11000 576
between the strings and

the fitness function. 01000 64

Schemata capture this. 10011 361

Schemata define functional equivalence classes.



GAs: Schemata

Schemata are defined over the

string alphabet plus a metasymbol “*’

“*7 is just a wildcard (not a Kleene star if you are in CS500).



GAs: Schemata

Schemata (or similarity templates)

define equivalence classes.

10 %« 01



GAs: Schemata

Schemata (or similarity templates) define
equivalence classes.

10 % 01 = {10101, 10001}



GAs: Schemata

Schemata (or similarity templates) define
equivalence classes.

10 %01 = {10101, 10001}
x ()00



GAs: Schemata

Schemata (or similarity templates) define
equivalence classes.

10 % 01 = {10101, 10001}
«000% = {00000, 00001, 10000, 10001}



GAs: Schemata

Schemata (or similarity templates) define
equivalence classes.

10 % 01 = {10101, 10001}

*000* = {OOOOO, 00001, 10000, 10001}
IEBEE:



GAs: Schemata

Schemata (or similarity templates) define
equivalence classes.

10 % 01 = {10101, 10001}

«000% = {00000, 00001, 10000, 10001}

O 1% x Allstrings of length 5 with a 0 in
the first position and a 1 in the third.



GAs: Schemata

How many schemata are there
for an alphabet with cardinality &
and genome length N7



GAs: Schemata

How many schemata are there
for an alphabet with cardinality &
and genome length N7

(k+ 1)



GAs: Schemata

We can bound the number of schemata in a population.



GAs: Schemata

We can bound the number of schemata in a population.

In our example:

The number of schemata for an individual genome is 2°.

because it can take on its actual value or the wildcard.
(2 values)



GAs: Schemata

We can bound the number of schemata in a population.

In our example:

The number of schemata for an individual genome is 2°.
because it can take on its actual value or the wildcard.

If the population has n individuals

there will be at most n2° schemata.



GAs: Schemata

So what? How does this help us?



GAs: Schemata

So what? How does this help us?

Can think in terms of useful classes of genomes,
since some of the variation won’t matter.

Holland makes an optimality argument for GAs
using schemata.



GAs: Schemata

So what? How does this help us?

Can think in terms of useful classes of genomes,
since some of the variation won’t matter.
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Schemata

Take a couple of minutes to discuss with
your neighbour the effect on

Schemata in the current population of:

* Reproduction
* Crossover
* Mutation




GAs: Schemata

First we consider reproduction:



GAs: Schemata

First we consider reproduction:
Schemata with higher fitness tends to increase

each generation. No new schemata appear.



GAs: Schemata: Reproduction
First we consider reproduction:
Schemata with higher fitness tends to increase

each generation. No new schemata appear.

Formally, for a schema S in population A,
The number of individuals with schema S at time ¢ + 1,
given the number at time ¢ is

f(5)
mean(f(A))

ms(t -+ 1) = ms(t)



GAs: Schemata: Reproduction

Consider a schema with fitness ¢ X mean(A),and ¢ > 1



GAs: Schemata: Reproduction

Consider a schema with fitness ¢ X mean(A),and ¢ > 1

We can rewrite the increase in representation

for this schema, S, as:

¢ X mean(A)

ms(t+1) = ms(t) mean (A)




GAs: Schemata: Reproduction

We can rewrite the increase in representation

for this schema, S, as:

¢ X mean(A)
mean(A)

ms(t 1) — ms(t)

ms(t -+ 1) = C X ms(t)



GAs: Schemata: Reproduction

We can rewrite the increase in representation

for this schema, S, as:

¢ X mean(A)

ms(t 1) — ms(t)

mean(A)

ms(t -+ 1) = C X ms(t)

mg(t) =cxcx -+ xcxXmg(0)



GAs: Schemata: Reproduction

We can rewrite the increase in representation

for this schema, S, as:

¢ X mean(A)
mean(A)

ms(t 1) — ms(t)

ms(t -+ 1) = C X ms(t)




GAs: Schemata

Now consider the effect of 1-point

crossover on schemata.



GAs: Schemata

Now consider the effect of 1-point

crossover on schemata.

Schemata survive if they are not cut by the crossover

For example:
morc

1 xxx0 i1s Tess likely than * x x 10x
to be destroyed.



Formally:

D(S
« LS(_ ) where,

T 1 fewer crossover
sites than genes

Probability of disruption: Pp = P

P18 the crossover probabilty,
D(S) is the defining length of schema S,
L is the string/genome length.

Defining length: distance between the first

and last non-wildcard symbols.



GAs: Schemata

How about mutation?



GAs: Schemata

Mutation is more likely to destroy ”higher order” schemata.

The order is the number of fixed (non-wildcard) symbols.



GAs: Schemata

Mutation is more likely to destroy ”higher order” schemata.

The order is the number of fixed (non-wildcard) symbols.

More formally,
Probability of disruption: Pp = (1 — (1 — Pmut)O(S )) where,

Pt 1s the mutation probability,
O(S) is the order of the schema S.



GAs: Schemata

The schema theorem:
Fit schema with lower defining length
and lower order increase exponentially in the

population over time.

These are called “building blocks”



GAs: Schemata

Schema Theorem

More formally,

mS(t -+ 1) Z ms(t)

f(5)

Also called the fundamental
Theorem of Genetic Algorithms

mean(S) |




GAs: Schemata

Building block hypothesis: A genetic algorithm seeks
optimal performance through the juxtaposition of
short, low-order, high- performance schemata, called

the building blocks.

Premature convergence is the main challenge. Building blocks
can cause premature convergence.




A Royal Road Problem: Testing the Building Block Hypothesis

51 = 11111111k Rkkmkskrkkiokoko ook ik iokofiokkiook ook iokokolpiolorioliolopoolkolok, o) — 8
P i B B B TP
g3 = FRRRRRlkckkikoRik ] 1111 ] PRk ookl oRkoRkokok, o0 — g
§q = FRRRRlkckkokoRkkiokkokokk ] 11711 ] Pokkklkioliolopiolkoliool ol olkokoRkoRkokok, o — 8
g5 = FRERkkklklkk kool ooloRkokkioolokk ] 11111 ] Rkl ook ik, o0 — 8
g = FRRRkkkilkkkokkkkiokok okl okokiokoloRok ] 111111 Rkkiokkiokololiolokkok, 00— 8
gy = FFRRRRlkckk Rkl ook kokRoliokloiokokokolkokiok ] 11711 ] Plokiokokk, o) — g
g = FRkklkickkokokiokkiolkkokokokok okl ol oRkR Rk kK% 1 11111115 cg = 8
Sg = 1111111111111111************************************************ co = 16
10 _****************1111111111111111******************************** ci0 = 16
S11 _********************************1111111111111111**************** ci1 = 16
S1o _************************************************1111111111111111 cio = 16

813 =11111111111111111111111111111111********************************; c13 = 32
S1q =R R 1111111111 1111 111111111111111111;5 ¢14 = 32
15 =111111111111111111111111111111111111111111171111111111111111111115 ¢15 =64

Figure 1: Example Royal Road Function. F(z) = ) _.¢cs0s(x), where z is a bit string, cs is a value assigned

1 i st ¢
to the schema s (here, cs = order(s)), and os(z) = { 0 i)tﬁei'swail:ems ance oL s

Mitchell, Melanie, Stephanie Forrest, and John H. Holland. "The royal road for genetic algorithms: Fitness
landscapes and GA performance." Proceedings of the first european conference on artificial life. 1992.
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Logistics

e Midterm exam - March 10th,
e Midterm review moved to March 6,

* Project 2 is due on March 10t
* Project reviews are due on March 20t.
* The in class competition will be on March 20t.

e Transitioning from Genetic Algorithms to Cellular Automata

* We will be using genetic algorithms in the next project to explore cellular
automata and game theory.



Theory of Selt-Reproducing Automata
- John von Neumann

e David Shubsda
e Joshua Ridens

* Turn in your review forms in to Bianca at the end of the presentation.
* | will put David and Joshua’s slides on the course website.



GAs: k-armed bandits
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mean = l;, and variance = o



GAs: k-armed bandits
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Suppose you can play k£ slot machines.

The i*" machine pays jackpot following a

(Gaussian probability distribution with

mean = j;, and variance = o7

The challenge is to win the most money

possible (or lose the least) over time.



GAs: k-armed bandits
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GAs: k-armed bandits

Reason about the best trade-oft

A strategy:

Given a maximum of N pulls at the arm we could try:
Allocating an equal number, n, of pulls, where (kn < N), to each arm,
then use all the remaining time to pull on the arm with

the most payouts.



GAs: k-armed bandits

GEEIL A 4
$788,367.32 §

1.ry,
_,.
e
B
T
| =g I
=

Reason about the best trade-oft HAEE

- 2
Given NV, u;, and o;,

we can define a loss function, L(NV,n).



GAs: Optimality of Trial Allocation

* There is a trade-off between sampling near the best observed and
exploring the fitness landscape.

 Loss due to searching near the currently known optimum is due to
sampling error.

* Loss due to choosing areas that are not known to be good we might
call performance loss.



GAs: Optimality of Trial Allocation

* The presence of a trade-off suggests an optimisation problem.



GAs: k-armed bandits
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Reason about the best trade-oft AR

: 2
Given N, u;, and o},

we can define a loss function, L(NV,n).

L(N,n) = |p1 — po| [(N = n)q(n) +n(l —q(n))
The 2-arm case generalises

De Jong, K. A. An analysis of the behaviour of a class of genetic algorithms. Diss. PhD thesis, University of Michigan, 1975.



GAs: k-armed bandits
L(N,n) = |p1 — p2| [(N —n)q(n) + n(1 —q(n)))

Where ¢(n) is the probability that the worst
arm is the best arm after n pulls.

In other words g(n)is the probability that you got unlucky
as a function of the explore/exploit trade-off.

De Jong, K. A. An analysis of the behaviour of a class of genetic algorithms. Diss. PhD thesis, University of Michigan, 1975.



$(x)
o (y)

q(n) decreases

exponentially with n.

To minimise ¢(n) distiibution of

we allocate O(e") Area = Pr {2\ - S2.
N-n
trials to the known best.
y=0 YEHTHo /
X= x=0 X
“The ratio of trials ~(py=p)
\/ 0'2 0'2
of the observed best e
to the Second best Fig. 11. The convolution of—wzth NS—n

Holland J, Adaptation in Natural and Artificial Systems, 1993

orows exponentially.”



GAs: k-armed bandits

Holland showed that allocating an exponential number of pulls

to the best performing slot machine minimises the loss function L(N,n).

This exponential allocation to exploitation best solves the problem.

Holland, J., "Genetic algorithms and the optimal allocation of trials." SIAM Journal on Computing 2.2 (1973): 88-105.



GAs: k-armed bandits

Holland showed that allocating an exponential number of pulls

to the best performing slot machine minimises the loss function L(N,n).

This exponential allocation to exploitation best solves the problem.

What does this have to
Do with the Fundamental Theorem?



GAs: k-armed bandits

Holland showed that allocating an exponential number of pulls

to the best performing slot machine minimises the loss function L(N,n).

This exponential allocation to exploitation best solves the problem.

What does this have to
Do with the Fundamental Theorem?

The fundamental theorem shows that GAs
allocate exponentially increasing samples to known best solutions.



Diversity

A pitfall of GAs is that they may converge too early on a local maxima.
* If the population were infinite this wouldn't be a problem.

* The smaller the population the more likely they are to converge
prematurely.

* Building blocks can increase premature convergence for some
problems.



Schemata: Implicit Parallelism

Holland also showed in 1985 that it K

is the number of stringsprocessed each generation

and N 1s the number of schemata

Then N € O(K?).



Diversity: Island GAs

Cactus Small
round tree Medium Woodpecker
nch finch tree finch finch

) =
Medium -~
round N ’ .
inch -

G. scandens C. parvulus C. pauper C. pallidus

Large G fortis Small  Large cactus |Vegetarian Large Green Gray
round round grotgmd finch ﬁgh tree 'Manhgrove warbler  warbler
inch inch = finch e finch finch
e et 7 T
: G. fuliginosa G. conirostris | C. crassi- | C. C. Certhidea Certhidea
G. magnirostris rostris psittacula heliobates | olivacea fusca
[ L
Sharp-beaked
ground finch

G. difficilis Cactus |

Seed eaters flower Bud Insect eaters
I eaters “l'" |
] I |
Ground finches Tree finches Warbler finches
Genus Camarhynchus Genus Certhidea
J

Genus Geospiza
L

1 |
|

Common ancestor from

(b) The Galapagos finches South American mainland

Copyright © Pearson Educaiion, Inc., pubishing as Bargamen Cusnmings.

Recall Darwin’s famous finches. The diversity is in part due to evolution on islands.



Diversity: Island GAs

What would this look like as an algorithm?



Diversity: Elitism

* Diversity is great for avoiding local minima.

* How do we keep from moving too far from regions we know are
good.

* Roulette selection can easily discard the most fit individuals.



Diversity: Elitism

* Diversity is great for avoiding local minima.

* How do we keep the population from forgetting about regions we
know are good.

* Roulette selection can easily discard the most fit individuals.

* High mutation rates can move the whole population to a lower local
maxima.

* Copying the highest fitness individual into the next generation
unchanged is called elitism.



Diversity: Elitism

* Elitism guarantees that the GA will converge*
(Applies to simulated annealing and artificial immune system optimization as well)

*Villalobos-Arias et al, “Asymptotic Convergence of Some
Metaheuristics Used for Multiobjective Optimization”, Foundations of
Genetic Algorithms, 2005



Selection Pressure: Tournaments

* Selection pressure is a measure of how harsh we make
the world.

* At one extreme only the very fittest individual would
survive.

* At the other extreme everyone survives.



Selection Pressure: Tournaments

* |f selection pressure is too high the GA will converge
prematurely on a local minima.

o |f selllection pressure is too low the GA will not converge
at all.



Selection Pressure: Tournaments

* Tournament selection is one way to tune the selection pressure.



Evolving Programs

Project 2



Project 2: Core Wars

* Alexander Dewdney, Mathematician and Computer Science

* Wrote a series of articles called Mathematical Recreation
for Scientific American

* One of these was Core Wars

* Inspired by a real life incident (Creeper and Reaper).

* Christopher Langton invited Dewdney to present core wars

At the first Alife conference.
* Playing with Core Wars was once considered dangerous.
 Capable of self-mutation...



Battle Info Max Processes: 8000

Core Size: 8000 Max Cycles: 80000 Imp 0% 1
Battle Status: Stopped Mice 0% 1
Completion: 0% 0 Midget 1
Tournament Type: Round Robin ~ Show Results Piper ]

Round 1 of 1 Matchup 1 of B



Some x86 Assembly language

Address Instruction
7T7ES14EE mov
TTE814F1 mov
77E814F8 add
77E814FB jmp
77E81500 push
77E81501 xor
7TE81503 cmp
77E81505 push
77E81506 push

Register or RAM Address
esi,dword ptr [edi+8]
dword ptr [ebp+64h], 0Ah
es1, 4Ah

7TETE91A

ebx

ebx,ebx

ecx,ebx

esl
edi



‘redcode

‘author: T77

'name: Examplel

‘assert CORESIZE=8000 & & MAXLENGTH > 100

MOV O, 1



;redcode # - immediate addressing

‘author: T77

'name: Example2

‘assert CORESIZE=8000 & & MAXLENGTH > 100
ADD #4,3 ¢ Program counter is here

MOV 2, @2
JMP -2
DAT #0, #0



‘redcode

‘author: T77

'name: Example2

‘assert CORESIZE=8000 & & MAXLENGTH > 100

ADD #4, 3
MOV 2, @2 = Program counter is here

JMP -2
DAT #0, #4



;redcode @ - indirect addressing
‘author: T77

'name: Example2
‘assert CORESIZE=8000 && MAXLENGTH > 100

ADD #4, 3
MOV 2, @2

IMP -2 | +2
DAT #0, #4 \

DAT #0, #4

B field points here



;redcode @ is indirect addressing
‘author: T77

:name: Example2
‘assert CORESIZE=8000 && MAXLENGTH > 100

ADD #4, 3
MOV 2, @2

IMP -2 +2
DAT #0, #4

+4 = B field points here

DAT #0, #4



This program places dats
separated by 4 addresses forever.

ADD #4, 3

MOV 2, @2

IMP -2 +2
DAT #0, #4

+4 = B field points here

DAT #0, #4



‘redcode
-author: T77

‘name: Example3
-assert CORESIZE=8000 & & MAXLENGTH > 100

spl O e (Create new thread
mov 2, <-1 And continue with next

jmp -1, -1 instruction



‘redcode
-author: T77

‘name: Example3
-assert CORESIZE=8000 & & MAXLENGTH > 100

spl O < Indirect with

mov 2, <-1 &
imp -1, -1 predecrement



