Name: _

CS423 Sample Final Exam.

This version of the exam is for students enrolled in CS423: Introduction to Complex Systems. If you are enrolled only in CS523: Complex Systems please ask for the corresponding exam. If are enrolled in both CS523 and CS423 ask for the CS523 version of the exam.

The questions in each section refer specifically to the associated reading printed in **bold**. Mark the best answer by filling in the circle next to it. Explanatory comments will not be considered.

The **real** exam is worth 15% of your final grade for this course, and contains 25 questions each equally weighted (1 point each). The exam period is 50 minutes. This sample exam has fewer questions.

Chapter 12: Information Processing in Living Systems

- 1. (1 point) Which of the following is not a system in which information processing plays a leading role, as described by Mitchell?
 - \bigcirc ant colonies.
 - \bigcirc the immune system.

$\sqrt{}$ Lorenz attractors

 \bigcirc cellular metabolism

Chapter 13: How to Make Analogies (if You Are a Computer)

- 2. (1 point) Which component of CopyCat are agents that continually explore possibilities for perceptual structures to build in the Workspace?
 - Temperature
 - $\sqrt{\text{Codelets}}$
 - Workspace
 - \bigcirc Slipnet

Chapter 14: Prospects of Computer Modeling

- 3. (1 point) The decision whether to cooperate or defect is the central component of:
 - \bigcirc the Cooperation model
 - \bigcirc Selfishness theory
 - \checkmark the Prisoner's Dilemma
 - \bigcirc the Social Norms game

Chapter 15: The Science of Networks

- 4. (1 point) The existence of largely separate tight-knit communities in networks is termed:
 - \bigcirc distribution
 - \bigcirc grouping
 - \bigcirc association
 - $\sqrt{\text{clustering}}$

Chapter 16: Applying Network Science to Real-World Networks

- 5. (1 point) What generates the complexity of humans as compared to plants with the same number of genes?
 - $\sqrt{}$ how the genes are organized into networks
 - \bigcirc how the genes multiply
 - \bigcirc how the genes reproduce
 - \bigcirc how the genes are scale-free

Chapter 17: The Mystery of Scaling

- 6. (1 point) Mitchell does not claim a power law distribution for:
 - \bigcirc the size of cities
 - O people's incomes
 - \bigcirc forest fires
 - $\sqrt{}$ the immune system

Mark Ehlen, Ph.D., Sandia National Labs

7. (1 point) Dr. Ehlen presented his work on modeling which of the following:

\checkmark the food distribution network

- \bigcirc the power grid
- $\bigcirc\,$ airline travel
- \bigcirc plague

Melanie Moses, Ph.D., UNM Computer Science

- 8. (1 point) Scaling laws we see in biology and computer processors are due to:
 - \bigcirc Power limitations
 - \bigcirc Volume divided by area
 - \bigcirc Convergent evolution
 - $\sqrt{}$ Fractal-like distribution networks
 - Stephen Wolfram

Lance Williams, Ph.D., UNM Computer Science

- 9. (1 point) The goal of the research presented is to:
 - Examine the complexity of cytokine signalling transduction networks using Haskell
 - Show the flaws in a self-reproducing robot built by Jon von Neumann
 - Present "SimSoup" an artificial-chemistry tool-kit
 - \bigcirc Design a cell that can replicate using a robot chemist to rapidly explore combinations of chemicals
 - $\sqrt{}$ Use a GA to evolve a system analogous to an artificial cell composed of devices borrowed from modern programming languages

Joshua Hecker, Ph.D., UNM Computer Science and Lockheed Martin

- 10. (1 point) Which of the following is not a characteristic of a swarm according to Manuel Brambilla:
 - \bigcirc Agents are autonomous
 - \bigcirc Agents cooperate
 - \surd Agents have access to a centralized control
 - \bigcirc Agents are situated