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Abstract. Ants use individual memory and pheromone communication
to achieve effective collective foraging. We implement these strategies as
distributed search algorithms in robotic swarms. Swarms of simple robots
are robust, scalable and capable of exploring for resources in unmapped
environments. We test the ability of individual robots and teams of three
robots to collect tags distributed at random and in clustered distribu-
tions. Teams of three robots that forage based on individual memory
without communication collect RFID tags from all three distributions
approximately twice as fast as a single robot using the same strategy.
Adding pheromone-like communication in the teams of three robots im-
proves foraging success. Our simulation system mimics the foraging be-
haviors of the robots and replicates our results, with slight improvements
in the three robot teams. Simulated swarms of 30 and 100 robots collect
tags 8 and 22 times faster than teams of three robots. This work demon-
strates the feasibility of programming large robotic swarms for collective
tasks such as retrieval of dispersed resources, mapping and environmen-
tal monitoring. It also lays a foundation for evolving collective search
algorithms in silico and then implementing those algorithms in machina
in robust and scalable robotic swarms.

Keywords: swarm intelligence, robots, agent-based models, social in-
sect foraging, genetic algorithms

1 Introduction

One goal of swarm robotics is to engineer groups of simple, low-cost robots that
can cooperate as a cohesive unit to accomplish collection and exploration tasks
such as mapping, monitoring, search and rescue, and foraging for resources in
unmapped environments [4, 5, 8]. Ideally, robotic swarms are capable of exploring
unknown environments without the benefit of prior knowledge to guide them.
Individuals must adapt to sensor error and motor drift, and the swarm must
function given variation, errors and failures in individual robots.

Biology often provides inspiration for approaches to achieve these design goals
[4, 8, 21]. Biologically-inspired decentralized approaches in particular have en-
hanced scalability and robustness by removing single points of failure from com-
munication bottlenecks and rigid control structures. Thus far such approaches
have not yet reached the level of emergent coordination observed in natural
systems [28].
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Our contribution is inspired by colonies of seed harvester ants who forage for
seeds in a desert environment using a combination of individual memory and
information sharing through pheromone trails. Our robots are equipped with
a sensor suite which mimics the real ants: time-based odometry approximates
physical location analogous to the ants’ stride integration [33], and ultrasound
ranging measures distance to objects and corrects for drift similar to an ant’s
landmark-based navigation [16]. Like ants, the robots use individual memory
and communication of previously successful search locations to improve search
performance. Our robots search for radio-frequency identification (RFID) tags,
and upon finding them, return to a central nest.

The search algorithm utilized by individual members of the swarm is derived
from our previous work that used an agent-based model (ABM) guided by genetic
algorithms (GA) to replicate foraging behaviors of seed harvester ants [11, 18].
We duplicate parameters from the ant model in the robots. For example the
robots movement during uninformed search replicates the correlated random
walk of virtual ants that was evolved by the GA to produce colonies that find
seeds quickly. We modified the ABM to replicate the constraints of the robot
hardware, and to model the behavior and environment of the robots in their
search for RFID tags. This parallel physical and virtual implementation allows
us to compare results from identical experiments in machina as implemented in
physical robots and in silico in the ABM (as in [7, 19]. We conduct additional
experiments with the ABM in which we scale up the size of the swarm, the
number of tags, and the size of the area in which the virtual robots search.
Because we see similar foraging success in simulated and robotic swarms with
1 and 3 individuals, these trials suggest future capabilities of swarms of 30 and
100 robots.

2 Background

2.1 Swarm Robotics

Swarm robotics is necessitated by problems that are inherently too complex or
difficult for a single robot, and by the need to develop systems that are cheaper,
more adaptive, and robust to failures, errors and dynamic environments [5, 8].
Like ant colonies and other complex biological systems, robotic swarms have
potential to utilize efficient, robust, distributed approaches to physical tasks.
Effective algorithms for swarm robotics must extend beyond simulation to in-
telligently deal with the complexities of navigating in real environments [19, 20,
7]: sensors are imperfect and may fail, collisions with obstacles (including other
robots) are common, and real environments are dynamic, changing in response to
external factors and the activities of the robots themselves. Further, approaches
must balance the benefit of centralized information exchange with the scalability
of decentralized approaches [24, 2, 27]. Even highly decentralized robot interac-
tions show diminishing returns in which interference between robots can make
swarm efficiency decrease as the swarm size grows [17].

Recent work has demonstrated the feasibility of swarms in which collectively
intelligent behaviors emerge from distributed interactions among robots. Simul-
taneous localization and mapping (SLAM) enables robots to infer knowledge
about unknown environments [10, 1, 22]. Localization space-trails (LOST) facil-
itate a shared world view between robots without a global coordinate system
through the use of local landmarks and waypoints [32].
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Simple low-cost platforms have been designed specifically to form robot
swarms, e.g., [21, 7, 6, 30], but a great challenge exists in transforming a set of
simple mobile components into a functional swarm. Robotic swarms have not
yet approached the emergent intelligence of biological swarms [28], but a promis-
ing approach is to use evolutionary algorithms to determine the parameters of
individual behavior that result in effective collective action [26, 9, 31, 12].

2.2 Biological Ants

Our algorithms are largely inspired by foraging in desert seed-harvester ants
of the genus Pogonomyrmex [13]. These foragers typically leave their colony’s
single nest, travel in a relatively straight line to some location on their territory,
and then switch to a searching behavior. The forager searches by moving in
a correlated random walk, where the probability of turning is dependent on
whether the forager expects to find seeds in the area (informed by pheromone
trails or previous foraging success) or not. An informed ant has an initially high
tendency to turn, keeping the ant in a small area. Over time, if a seed is not
found, degree of turning decreases, which straightens out the search path, and
the ant tends to wander farther from its initial search location [12].

An ant with no prior expectations of finding seeds will use a smaller degree
of turning and therefore explore a relatively larger area. When a forager finds a
seed, it brings it directly back to the nest. Foragers often return to the location
where they previously found a seed, in a process called site fidelity[23, 3, 13].
Seeds are hard to find, so the duration of a foraging trip, which includes travel
time and search time, is dominated by the time spent searching for a seed [23,
3]. Effective search strategies for foragers will minimize the time spent searching
for seeds (which minimizes the risk of foraging in the hot, dry desert) while
maximizing the number of seeds collected. It is unclear exactly how often these
ants lay and follow pheromone trails [16, 15, 25], but our recent work indicates
laying and following pheromone trails to dense piles of food may be an effective
component of these ants’ foraging strategies [18, 12].

2.3 Agent-based Model

We have used Genetic Algorithms (GAs) to find the optimal balance of site
fidelity and pheromone communication in simulated ant colonies [18]. We sim-
ulated ant foraging using a set of agent-based models (ABMs) of foragers on a
grid, with parameters optimized by a GA to specify how ants travel from the
nest, search, and use site fidelity and pheromone communication. GAs are an
optimization technique that simulates the process of evolution by natural se-
lection [14], just as biological ants undergo evolutionary pressure to maximize
foraging success (among other goals and constraints). Therefore GAs were an
appealing method for selecting parameters for our ant foraging model [29, 26].
The foraging success of virtual ants evolved by the GA is shown in Figure 1.

The ant foraging ABM was modified to model our swarm robots and our
experimental setup. The simulation provides both a theoretical benchmark and
a basic architecture for using GAs to optimize real world parameters. All in
machina experiments have been duplicated in silico, and results are presented
side by side to allow comparison.
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Fig. 1: Bars represent number of seeds
collected during simulated foragin tri-
als by colonies of 100 foragers. Colonies
forage on clustered, random, and power
law distributed, after optimization by
GA to mazimize food collection rate on
those distributions. Simulations using
site fidelity, pheromone recruitment,
both methods together, or neither (no
information use) are used as the fitness
function in a GA that selects param-
eters governing travel from the nest,
turning during the foragers’ search be-
havior, and use of site fidelity and/or
recruitment.
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3 Methods

3.1 Hardware

While our algorithms and architecture are intended to be used with a variety
of platforms, swarm performance will depend on the particular specifications
of the hardware on which those algorithms are implemented. Our robots are
built using easily obtained off-the-shelf components (Table 1) at a total cost
of $450 per robot. System architecture is based on the Arduino open-source
hardware platform, allowing for straightforward programming in a C++-style
language based on Wiring. Sensor error is described in Table 2.

3.2 Search Algorithm

The search behavior used by the robots to locate RFID tags is shown in Fig. 2.

1. Set Search Site Location: The robot begins at the nest in the center and
selects an initial search site location, encoded as a direction, d, and heading,
h. This location is initially chosen at random, but may be influenced by
memory or communication in subsequent foraging trips.

2. Travel to Search Site(yellow path) Travelling robots iterate through behav-
iors to avoid collisions with other robots, correct for motor drift, and com-
municate events with the coordination server.

3. Search for Tag (blue path): The robot moves in a correlated random walk
with direction at time t drawn from a normal distribution centered around
direction θt−1 and standard deviation SD = ω + γ/tδs, where ω determines
the degree of turning during an uninformed search (i.e. at a random location),
and γ/tδs determines an additional degree of turning at the beginning of an
informed search, and which decreases over time spent searching. Equation 1
results tight turns in an initially small area that expand to explore a larger
area over time.

4. Travel to Nest (pink path): The robot leaves the location of the found tag,
stepping toward the known nest location. The robot lays a pheromone on
its return trip if count C of other tags detected in the 8-cell neighborhood
of the collected tag is > 1. Pheromone evaporates exponentially with time.
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Table 1: Robots components

Component Description
Chassis The Open Source Robotics OSbase chassis is a four-motor,

treaded differential drive platform powered by a 7.4V LiPo
rechargeable battery

Microprocessor The Arduino Uno is an open-source, low-cost development board
for the Atmel ATmega328 microprocessor. The ATmega328 is
an 8-bit, 16 Mhz processor with 32K of onboard memory for
program storage, and +5V logic and onboard power regulation

Motor Shield The SparkFun Electronics L298 H-Bridge motor driver board
controls the four onboard motors. The shield attaches via stack-
ing headers onto the Arduino Uno

Wireless Shield The SparkFun Electronics WiFly Shield provides wireless com-
munication via standard 802.11b/g TCP protocol through the
Roving Networks RN-131C module. Control is via the Uno SPI
bus

Compass The SparkFun Electronics HMC6352 digital compass board uses
the Honeywell 6352 compass chip to report magnetic headings
with a published accuracy of 2.5◦. Module communication is via
Arduino Uno TWI bus

GPS The US GlobalSat EM-406a GPS receiver has a ceramic chip
antenna and reports data via NEMA-formatted strings over the
Arduino Uno hardware serial port with a 1Hz update rate. The
GPS is not used in these experiments

Ultrasound The Devantech SRF-05 ultrasonic rangefinder provides distance
measurements up to 4 meters and communicates via two stan-
dard Arduino Uno digital pins

RFID Reader/Writer The Parallax RFID module reads and writes data using standard
125kHz RFID tags and communicates over Arduino Uno pins
using serial port emulation via the Arduino library

Table 2: Sensor error: Compass data show errors in degrees at a fixed heading.
GPS data measures error from true location across 5000 data points collected in
each location. Odometry data are from 20 trials for each location and measures
ability to navigate to a point 5 meters away using programmed motor turning
rate, time and compass heading. Ultrasound errors are measured from a concrete
barrier 0.5 and 1.5 meters away.

Location 1 Location 2
Compass (◦) 2.5 (σ = 1.7) 3.0 (σ = 0.78)

GPS (m) 6.6 (σ = 3.6) 13 (σ = 5.7)
Odometry (cm) 20 (σ = 7.7) 22 (σ = 5.5)
Ultrasound (cm) 1.3 (σ = 0.38) 4.1 (σ = 4.1)
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5. Set Next Search Location: On subsequent trips, d and h are determined by
either returning to the previously found tag location if C > 0, or following
a pheromone to a location identified by another robot.

Start

Travel to
Search Site

Travel to
Nest

Set Search
Location

Search for
Resources

Fig. 2: A robot begins its search at a globally shared central nest site (center
circle) and sets a search location. The robot then travels to the search
site (yellow line). Upon reaching the search location, the robot searches for
tags (blue line) until tags (red squares) are found or a probabilistic timeout
occurs. After searching, the robot travels to the nest (purple line).

3.3 Experimental Design

We conducted experiments on outdoor concrete surfaces. Each trial runs for a
maximum of one hour. A cardboard cylinder marks the center point and repre-
sents a home or ‘nest’ to which the robots return once they have located a tag.
This center point is used for localizing and error correction by the robots’ ultra-
sonic sensors. All robots involved in a trial are initially placed near the cylinder
to minimize dead reckoning error. We program each robot to stay within a 3m
radius ‘virtual fence’ to deter drift outside of the experimental area.

In every experiment, 32 RFID tags are arranged in one of three different
patterns: random, clustered, or power law. The random layout has tags scattered
throughout a ring between 50 cm and 200 cm in a uniform distribution (Figure
3(a)). The clustered layout has four piles of eight tags placed at 90◦ intervals at
50, 100, 150, and 200 cm in relation to the central nest (Figure 3(b)). The power
law layout uses piles of varying size and number: one large pile of eight tags at
125 cm, two medium piles of four tags at 75 and 175 cm, four small piles of two
tags at 50, 100, 150, and 200 cm, and eight randomly placed tags (Figure 3(c)).
Experiments are replicated under identical conditions for individual robots and
for groups of three bots.

Robot locations are continually transmitted over WiFi to a central server
and logged for analysis. When a tag is found, its unique identification number
is transmitted back to the server, providing us with a detailed record of tag
discovery. Note that tags can only be read once, simulating seed retrieval. The
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central server also acts as a coordinator for virtual pheromone trails. Locations
deemed important enough to require a pheromone value (i.e. those with two
or more tags discovered by the robot) are added to a list data structure. Each
location’s associated pheromone value is decayed over time by the server; when a
location’s pheromone value has dropped below a threshold of 0.001, it is removed
from the list. As each robot returns to the nest, the server randomly selects a
location from the list (if available) and transmits it to the robot.

Our simulations are design to replicate the behavior of the robots and their
experimental area. We measured the physical dimensions of the robots, their
speed while traveling and searching, and the range over which their RFID reader
can detect an RFID tag. We built the simulation with spatial dimensions that
reproduce the properties of the robot, their 3-m radius experimental area, and
the distribution of tags in this area. Like the real robots, simulated robots avoid
collisions by turning to the right to move past other robots. We allow the sim-
ulated robots to search for tags for an amount of time equivalent to an hour,
which we calibrated by the speed of the robots as they search and travel around
the experimental area. In addition to simulating the 3-m radius area to which
the physical robots were restricted, we also simulated the behavior of the robots
in a much larger area in which movement is not restricted to 3 m of the nest,
and tags are distributed in the same density but in such large numbers that even
large swarms of robots collect only a fraction of the available tags. We simulated
1- and 3-robot swarms, and also scaled up to 30 and 100 robot swarms to observe
the scaling properties of the system.

50 cm 200 cm

(a) (b) (c)

Fig. 3: 32 RFID tags layed out in (a) random, (b) clustered, and (c) power law
distributions.

4 Results

We analyze the rates at which robots retrieve tags from each distribution, indi-
vidually or in teams of three, in real robots and in simulation. Unless otherwise
noted, result for each experimental treatment are averaged over five robot exper-
iments and twenty experiments in simulation. Error bars indicate one standard
deviation of the mean.
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Time to collect 32 randomly distributed tags in 5 physical and 20 virtual
experiments is shown in Figure 4. In robots and in simulation, three robots
collect tags faster than one robot, however, the speedup varies over the course of
the experiments (i.e., the red and blue lines are not parallel). When we average
time to collect n tags, where n varies between 1 and the maximum number of
tags collected, we find that 3 robots collect tags approximately twice as fast as
1 robot. The simulated experiments show slightly better scaling than the real
robots. It is not surprising that simulated teams of 3 robots are faster than real
teams of 3 robots because real robots have more difficulty with avoiding each
other, physical hardware limitations, imperfect localization and the possibility
that real robots confuse each other with the nest.
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Fig. 4: Time to collect tags in a random distribution for one and three robots in
physical (5 replicates) and virtual (20 replicates) experiments.

As more tags are found over the course of each experiment, it becomes in-
creasingly difficult to find new, remaining tags, and the foraging rate sometimes
decelerates. This ceiling effect limits our ability to observe differences between 1
and 3 robot teams. Figure 5 shows data from both physical and virtual experi-
ments for one and three robots. We also analyzed time to collect 25% of the tags
from the random, clustered, and power law distributions. We observe improved
performance with three robots which collect 25% of the tags 2.8 times faster
than one robot in the physical experiment and 2.3 times faster in the model.

Figure 6 illustrates the the rate of tag collection per minute of experiment
time for physical and virtual swarms. Each bar denotes the collection rate for a
swarm size over a particular tag distribution. This provides a normalized com-
parison between swarm sizes as well as distributions, regardless of overall exper-
iment runtime which may vary between trials. We were not able to distinguish
a significant effect of tag distribution on tag collection rate by the robots (Gen-
eral Linear Model [GLM]: p > 0.1; n = 18); but we did find a significant effect
of distribution on tag collection rate using the larger sample size afforded by
simulation (GLM: p < 0.001; n = 120). In the simulations, the greatest rate
of tag collection was in the clustered distribution, followed by the power law
distribution, followed by random. Note that this the reverse of the pattern with
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respect to distribution in Figure 1, a result of greater overall density of tags in
the robots’ experimental area, and therefore greater ease of discovering piles,
relative to the food densities used in our previous modeling work.

We look at the effects of pheromone trails on tag collection rate in Fig-
ure 7. Figure 7(a) compares physical and virtual results for three robots using
pheromones while searching for tags in a power law distribution. Results from the
physical experiment are averaged over three trials. Figures 7(b) and 7(c) show
simulated results for 1, 3, 30, and 100 robots collecting power law distributed
tags in an unbounded world.

5 Discussion

We have used Agent Based Models (ABM) and Genetic Algorithms (GA) to
translate foraging behaviors of seed harvesting ants into algorithms for robotic
swarms searching for RFID tags. We tested two sets of algorithms: one in which
robots rely on individual memory of locations of previously found tags (mimick-
ing site fidelity), and one in which robots communicate locations of previously
found tags (mimicking pheromones) as waypoints to a central server that acts
as the robots’ nest’. We tested each approach in single robots and teams of 3
robots, and observed that 3 robots find tags approximately twice as fast as 1
robot when using site fidelity. Pheromone-like communication improves forag-
ing success robots in simulation. We did not observe that pheromones improved
foraging in real robots, but in addition to small sample size, we attribute the
lack of success primarily to errors that were propagated by miscommunication.
Pheromones decrease performance when robots get lost and communicate incor-
rect locations to other robots. In simulation we found that pheromones improved
foraging in 3-robot teams by 10% to 50% (depending on distribution) over site
fidelity alone. Additionally, in simulation, the combination of pheromones and
site fidelity provided an approach that is scalable to swarms of 100 robots. We
suspect that improving the robots’ ability to navigate will reduce this problem.
The close correspondence between simulation and real robots in smaller swarms
make us optimistic that these results could be replicated in large robot swarms.

As in the ants, we found that site fidelity is an effective strategy for foraging.
This behavior has several benefits. First, it is extremely simple and easily en-
coded into very simple devices, including devices much simpler than the robots
we used here. Second, the approach is highly parallelizable because it requires
no communication among robots. Third, it leads to effective and small teams.

Our simulations of ants and our simulations of robots show that adding
pheromone communication increases foraging success, particularly on clustered
distributions (Figs. 1, 6). We demonstrated that it is possible to implement
pheromone communication in robots by having robots report the location where
they found a tag to a central server if the robot saw at least 2 additional tags
in the vicinity. The server then implements a simple pheromone algorithm and
reports those locations to other robots. When we add this pheromone-like be-
havior to our robots, we observe robots clearing large clusters of tags faster.
Simulations show more success with pheromones because simulated ants don’t
get lost or miscommunicate. Simulations suggest that this approach is highly
scalable. When we scale up to 100 robots, each robot is about half as efficient
as a single robot, meaning that teams of 100 robots collect resources 50 times
faster than a single robot (Fig. 7). This per-robot decline is largely due to the
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Fig. 5: Time to collect 25% of the tags from three different distributions for one
and three robots.

Random Clustered Power law
0

0.2

0.4

0.6

0.8

T
ag

s 
pe

r 
m

in
ut

e

 

 

1 robot
3 robots

(a) Physical

Random Clustered Power law
0

0.2

0.4

0.6

0.8

T
ag

s 
pe

r 
m

in
ut

e

 

 

1 robot
3 robots

(b) Virtual

Fig. 6: Rate of tag discovery calculated as total tags found normalized by exper-
iment length in minutes.
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Fig. 7: Effects of using pheromone trails on tag collection
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increased distance the simulated robots travel–an unavoidable consequence of
central place foraging.

Our results suggest that the approach of combining individual memory with
communication at a central nest can transform simple robots into effective
swarms that are scalable and robust to the loss or malfunction of a few in-
dividuals. Results of our 3 robot experiments include several instances in which
one robot became lost or malfunctioned, but the other two robots continued their
task. Such systems could be used for search and rescue, searching for resources
or obstacles, and even biomedical applications using nano-robots. Our approach,
similar to the approach by [7] helps to lay a foundation to further explore the
interplay between simulation and experiments with real robots. Our next steps
are to use GAs to optimize parameters that lead to maximum efficiency and/or
robustness in the ABM, and then import those parameters into the robots. For
example, currently the robots’ turning angles during their random walk are based
on a rough approximation of how our simulated ants evolved to forage from GAs.
In future work, we will take the same approach and evolve optimal parameters
given the physical attributes of the robots already encoded in the ABM. We will
also evolve parameters to determine the optimal balance between reliance on in-
dividual memory versus pheromone communication. We will extend our analysis
to different kinds of resource distributions, including ones that may be dynamic
by encoding tags with resources that appear and disappear over time. Finally,
this work will be extended by simulating and replicating in our robots, features
of some large ant colonies–the use of mobile nests (as exemplified by army ants)
and the use of multiple nests (as exemplified by invasive argentine ants).
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