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1 Author Contributions

Mondragon wrote the code for problems 1-4, Minnich wrote the code for problems 5 and 7, and

Loyd wrote the code for problem 6. Mondragon, Minnich, and Loyd wrote the Methods and Results

sections and edited the report together. Mondragon wrote the ReadMe and formatted the report and

figures, Loyd wrote the Introduction, and Minnich wrote the Conclusion.

2 Introduction

Our goal for this report is to discuss the logistic model and how well it does or does not describe pop-

ulation data sets and their corresponding dynamics. In general, a logistic model predicts population

values over time, xt, as a function of the initial population, x0; birth and death rates, encapsulated

by R; and the carrying capacity, K, which is the maximum population supported by an environment.

The logistic model is generated using the expression xi+1 = Rxi(1− xi).

One interesting characteristic of this model is that it defines behavior for both stable and chaotic

systems, depending on the value of R. Chaotic systems are defined as systems with infinite periodicity

and completely deterministic behavior, with periods of embedded stability and ergodicity. The logistic

map does not have strong predictive power for chaotic systems over long time periods due to their

sensitive dependence on initial conditions and sentivity to the precision of the measurement of the

population at each time step. However, logistic map simulations do allow us to study and learn more

about the behavior of chaotic systems, as well as to examine the aforementioned periods of embedded

stability and ergodicity.
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The logistic model is considered to be a reasonable model for complex adaptive systems with

well-defined initial conditions. A complex adaptive system is generally defined to be a system in

which many components, or even collections of components, with no hierarchical governance and non-

complex individual behaviors demonstrate complex aggregate behavior, highly developed mechanisms

for information processing, and adaptation as the result of learning or evolving [4]. In this report we

employ the logistic model to more completely understand complex population phenomena.

3 Methods

For questions 1 to 3, in order to analyze the logistic map we wrote a function that calculates a

population vector at discrete time steps using the logistic map equation. With the goal of finding

synchronization points, behavior at different inital conditions, and sensitive dependence of numerical

precision calculations, we varied input parameters to generate multiple plots. For many of the figures

we drew multiple population vectors in the same figure using MATLAB’s hold function to compare

population dynamics when varying a single parameter. The code to round to different number of

precision digits was adapted from [2].

To generate the bifurcation diagram for question 4 we used the arrayfun function of MATLAB.

This function takes a function and an array as arguments and applies the function to each element

of the array. In this case, the array contained values of R from 2.6 to 4 in 0.0005 increments, and the

function applied to that array computes and plots the logistic map for each value of R. This generates

a vector of xt values for each entry in the array. To produce a clearer figure, we plotted the second

half of the population vector for each R value, so as to only include asymptotic population values.

To see doubling regions in detail in the bifurcation diagram we enlarged the boxed region in

Figure 4 in order to get Figure 5, and similarly enlarged the boxed region in Figure 5 to get Figure 6.

The limits of Figure 5 were chosen to highlight the transition from 4 periodicity to chaos, and the

limits of Figure 6 were chosen to highlight the transition from 8 periodicity to chaos. To generate

Figure 7, which shows the chaotic region of the bifurcation diagram, we focused on a different region

of the diagram. To highlight periods of embedded stability, we plotted multiple red vertical lines

using Microsoft Paint and specified the period for each.

Figure 8 was generated using MATLAB’s plot and line functions.

To obtain estimates for x0, R, and K for question 6, we iterated over a range of values for each
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variable using MATLAB. At every iteration these values were passed to our logmap function. We

rounded the resulting vector using MATLAB’s built-in round function and compared it to the datasets

obtained from X.csv and Y.csv, respectively. During each iteration generated values were compared

to the values from the dataset. If these estimated values more closely resembled the values from

the dataset than the previous best estimate, the baseline values were updated. Once our function

generated optimal values, we plotted the dynamics of this estimated system alongside the time series

data, generating Figures 9 and 10.

For dataset X, x0 ranged from 0.44 to 0.52, R ranged from 3.44 to 3.52, and K ranged from 700 to

1000. For dataset Y, x0 ranged from 0.08 to 0.15, R ranged from 3.8 to 4.1, and K ranged from 400

to 700. We chose these ranges based on visual inspection of the graphs of the datasets. We asserted

minimum carrying capacities based on knowledge that the maximum population divided by carrying

capacity could not be greater than 1. The maximum values were picked to be reasonably larger than

the minimum values. The X time series was clearly 4 periodic, so according to the bifurcation diagram

R must be restricted to values between 3.44 and 3.52. The Y data was chaotic, so the R values had to

be at least 3.8, and 4.1 seemed like a sufficient upper bound. We chose the x0 ranges to correspond

to the carrying capacity ranges; the minimum x0 value was the initial population value divided by

the maximum carrying capacity, and the maximum x0 was the initial population value divided by the

minimum carrying capacity.

Figure 11 was created using MATLAB’s fft function, followed by normalization. Instructions on

this normalization method came from MATLAB’s website [3].

4 Results

Figure 1: Logistic Map for R=3.25 and K=200
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Figure 1 shows systems that are not sensitive to initial conditions. With R = 3.25, populations will

become synchronized no matter what the initial population values are. In this case, with an x0a of

0.3 and an x0b of 0.7, Population A and B become synchronized after 2 months. Both populations

settle into a period-2 cycle at 16 months. The population values then oscillate between 100 rabbits

and just over 160 rabbits.

As with any model, the logistic map works based on certain assumptions, and it is only accurate as

long as these assumptions hold true. One assumption we make is that the population has a constant

carrying capacity. Another is that the birth and death rates of the population, and therefore R,

remain constant. Both of these assumptions completely ignore changes in the environment that can

affect population dynamics. The environment includes things like weather as well as interactions with

other species. This model assumes that the species in question exists in a static environment and that

there are no changing cross-species interactions affecting population dynamics. A third assumption is

that the initial population is measured accurately to infinite precision. Depending on the R value of

the system, if there is even a very small error in the measurement of the initial population the entire

model of the system could be completely inaccurate.

Figure 2: Logistic Map for R=3.7 and K=200

Figure 2 shows logistic maps with R = 3.7. These systems have infinite periods, so although there

are visible spots of ergodicity and embedded stability, these populations are chaotic. Normally chaotic

systems are very sensitive to even minute differences in initial conditions. With x0a of 0.3 and x0b of

0.7, it seems like these two systems should never become synchronized, but clearly they do. This is

because the logistic equation is of the form xi+1 = Rxi(1 − xi). If x0 equals 0.3, then 1 − x0 equals

0.7. Since x0a and x0b are reciprocals of each other, they become synchronized. In real populations,

it is unlikely that chaotic systems could become synchronized in this way because they would have to
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have reciprocal initial population values calculated with infinite precision. If they differ even slightly

from being the reciprocals of each other, they will quickly diverge.

Figure 3: Logistic Maps for R=3.7, K =200

Figure 3a illustrates sensitive dependence on initial conditions. Population A and Population B

both have R = 3.7 and a K = 200. However, Population A, illustrated by a blue line, has an x0a of 0.5,

while Population B, illustrated by the red line, has an x0b of .51. Although these initial population

values are very close, these chaotic systems diverge at t=10 because of this minor difference.

Figure 3b illustrates the sensitivity of chaotic systems to differences in precision. Two systems are

graphed, both with an R value of 3.7, a K value of 200, and an x0 value of 0.3. However, Population A,

illustrated by the blue line, rounds to one decimal place at every step, and Population B, illustrated

by the red line, rounds to two. Although these two populations have similar dynamics initially, they

diverge as time passes. In other words, small differences in population size amplify over time in

chaotic systems.
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Figure 4: Bifurcation Diagram for R = 2.6 to 4

Figure 5: Bifurcation diagram for R = 3.4 to 3.6

Figure 6: Bifurcation diagram for R = 3.54 to 3.58

Figures 4 and 5 show the transition to chaos in the logistic map. Bifurcations in the period happen

repeatedly as R increases. Eventually the period goes to infinity, which is called chaos. A comparison

of Figures 4, 5, and 6 illustrates the fractal nature of the bifurcation diagram. This self-similarity

hints that there may be a constant that defines how the rate of bifurcation changes over time. This

fact was verified by Mitchell Feigenbaum, who found this rate of change in the rate of bifurcation to

be ≈ 4.6692 [1] . He calculated this value using the formula dk = (ak − ak−1)/(ak+1− ak), taking the
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limit as k goes to ∞, where dk represents the rate at which the next bifurcation will occur relative

to the previous bifurcation[1]. This rate turns out to hold for all unimodel maps[4]. This means that

for any chaotic system that is governed by this kind of map, by measuring when the first bifurcations

occur you can get an estimate of the point when the system will become chaotic, which is quite

powerful[1].

Figure 7: Bifurcation diagram highlighting periods of stability in chaos

Figure 7 highlights periods of embedded stability that occur within chaotic dynamics. This means

that for certain values of R which fall within the chaotic range, a system will actually have unstable

periodicity. Mathematically, this happens anywhere that the function fm(x) intersects the identity

line y = x[1]. This embedded stability is a fundamental propery of chaotic systems.

Figure 8: Shannon Entropy as R increases

Shannon Entropy gives an informative measure of how much uncertainty or randomness there is

in a dataset. Entropy is defined by Hx = −
∑

pxlog(px), where px equals the probability of being in

state x. As R increases, the period increases as well. By plugging in values corresponding to number

of bifurcations in the period per step, we can clearly see how the entropy changes as a system moves

towards chaos. In chaos, a system is defined to have an infinite period. As Figure 8 shows, Shannon’s
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Entropy goes to infinity as we move into chaotic dynamics.

Figure 9: Population X Time Series

For Population X, R = 3.5, K = 800, and x0 = 400. Population X has a period of 4 and was clearly

generated by a logistic map. As shown in Figure 9, our estimated parameters match this population

exactly. We believe we are able to accurately predict Population X at time step 105 and time step

120. At time step 105, Population X is 401, and at time step 120, Population X is 662.

Figure 10: Population Y Time Series

For Population Y, R = 4, K = 400, and x0 = 40. Population Y is a chaotic system, so small

differences in precision can cause differences in behavior over time. Figure 10 shows this divergence;

at first our estimated parameters track Population Y accurately, but at around t = 53 they diverge.

As a result, we are unable to predict Population Y at future time steps with high confidence. Our

estimate of Population Y at time step 105 is 240, and our estimate of Population Y at time step 120

is 392.

At first glance, Population Z looks like it has a period of 4. However, upon closer inspection it

becomes clear that there are no constant threshold values for each set of peaks.
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Figure 11: Fourier Transfer for population X, Y and Z

To better judge the period, we performed a Discrete Fourier transform of the data. As shown in

Figure 11c, there is a clear peak at around 9.4. This indicates that the period of the graph is 9.4.

There are several indications that this time series could not have been generated by a logistic

map. The first is that the highest peak increases in height each time, so there is no clear carrying

capacity. A second is that, as stated before, although the data looks periodic, it is not. A third is

that it is clearly not chaotic either. Figure 11 compares the Fourier transforms of Populations X, Y,

and Z. Population X has only 1 peak at 4; it is periodic. Population Y has an apparently random

distribution; it is chaotic. While Population Z does have a peak at 9.4, it also has smaller peaks

at other values. This is neither a random chaotic distribution nor a purely periodic function. This

means that this series is neither periodic nor chaotic and therefore could not have been generated by

a logistic map. Furthermore, even if we ignore the noise and assume it has a period of 9.4 and it is

truly periodic, this is still not an allowable period for the logistic map. The period of any function

generated by a logistic map must be a power of 2.

5 Conclusion

Our results indicate that as R increases from 3 to 4, population systems that are governed by the

logistic map go from periodicity to chaos. Shannon’s entropy also increases as R increases, with the

uncertainty of the dataset going to infinity as the system becomes chaotic.
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Our results illustrate the positives and negatives of using a logistic map to predict population

dynamics. For a population in a neutral environment with non-chaotic dynamics, the logistic map

has strong predictive power. However, if a system has chaotic dynamics, the logistic map fails long-

term. While it may initially make accurate predictions, over time even very small differences between

prediction values and actual population values can cause complete divergence in population estimates.

Thus, while the logistic map can shed light on chaotic system dynamics, it is not accurate as a long-

term predictor of population values for chaotic systems. For a population whose dynamics are neither

2n periodic nor chaotic, as in time series Z, the logistic map has no predictive power at all.

One important caveat of using the logistic map as a model of population dynamics is that it

completely ignores any changes in the environment. When the model is set up, a population has

a certain birth rate, death rate, and carrying capacity, and these values are then set for the entire

model. In real environments, these parameters are constantly shifting, so this is a major shortcoming

of the logistic map. However, in an environment that has fairly stable species relations and weather

patterns, it can be a useful tool in understanding how populations change over time.
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