
Synergy in Ant Foraging Strategies: Memory and 

Communication Alone and In Combination
Kenneth Letendre 
Department of Biology 

Department of Computer Science 
University of New Mexico 

Albuquerque, New Mexico 87131, USA 

kletendr@unm.edu 

Melanie E. Moses 
Department of Biology 

Department of Computer Science 
University of New Mexico 

Albuquerque, NM 87131, USA 

melaniem@unm.edu 

 
 

 

ABSTRACT 

Collective foraging is a canonical problem in the study of social 

insect behavior, as well as in engineered systems inspired by this 

behavior.  The use of pheromone trails is a well-studied 

mechanism by which ants coordinate their foraging.  Another 

important mechanism for information use is the memory of 

individual ants, which allows an ant to return to a site it has 

previously visited.  We hypothesized that there is synergy in the 

use of social and private information: ants with poor private 

information can follow pheromone trails; while ants with better 

private information can ignore trails and instead rely on memory.  

We developed an agent-based model of foraging by harvester 

ants, and optimized the model to maximize foraging rate using 

genetic algorithms.  We found that ants' individual memory 

provided greater benefit in terms of increased foraging rate than 

pheromone trails in a variety of food distributions.  However 

when the two strategies are used together, they out-perform either 

strategy alone.  We compare the behavior of these models to 

observations of harvester ants in the field.  We discuss why 

individual memory is more beneficial in this system than 

pheromone trails. We suggest that individual memory may be an 

important addition to ant colony optimization and swarm robotics 

systems, and that genetic algorithms may be useful in finding an 

adaptive balance with recruitment.   

Categories and Subject Descriptors 

I.2.8 [Artificial Intelligence]: Problem Solving, Control 

Methods, and Search; I.2.11 [Artificial Intelligence]: Distributed 

Artificial Intelligence – multiagent systems. 

General Terms 

Algorithms, Experimentation. 

Keywords 

Keywords are your own designated keywords. 

1. INTRODUCTION 
Collective behavior among social insects is a subject that has 

caught the attention of computer scientists and engineers as a 

model for distributed problem-solving.  For example, algorithms 

for ant colony optimization (ACO: [1]) and swarm robotics [2], 

[3], have been inspired by ants' use of pheromones to coordinate 

collective search.  A great deal of attention has been paid to the 

mechanisms by which social insects share information, and how 

this shared information leads a colony to reach collective 

decisions, or to allocate its effort adaptively to different tasks or to 

different food sources.  Less attention has been paid to the role of 

private information in individual insects' memory, but this is a 

subject that is attracting more attention recently (e.g [4], [5]). 

Many species of ants and other social foragers make use of both 

private and social information in their foraging.  Private 

information is information acquired through individual interaction 

with the environment, while social information is acquired 

through interaction with other individuals [6], for example via the 

use of pheromone trails in ants [7], [8]. Private and social 

information can conflict, however, as a worker with private 

information about one location and social information about 

another cannot simultaneously travel to both [5], [10].  If workers 

are to make optimal use of private and social information, they 

must adaptively resolve this conflict. 

In this paper, we present an agent-based model (ABM) of ant 

colony foraging, based on published descriptions and our own 

observations of the foraging behavior of harvester ants, and which 

incorporates both shared and private information use.  We use 

genetic algorithms (GAs) to explore this complex, nonlinear 

system, and to estimate the potential benefits of each of these 

sources of information in foraging on different distributions of 

food, as well as to find an optimal balance that allows colonies to 

take best advantage of both types of information.  We make an 

empirical comparison of the foraging behavior of our optimized 

models to that of harvester ants, in order to make an inference 

about information use among ants in the field.  We argue that the 

addition of individual memory to recruitment in engineered 

systems such as ACO and swarm robotics [11] may provide 

important benefits; and that GAs can be used to find the optimal 

tradeoff between the two, and thus maximize the benefits of each, 

for particular applications. 
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2. BACKGROUND 
Pheromone recruitment is a well-studied mechanism by which 

ants and other social insects share information about the location 

and coordinate acquisition of food and other resources such as 

potential nest sites [12–15].  Successful foragers lay pheromone 

trails from foraging sites back to their nest.  Foragers departing 

the nest can follow these trails to sites where food has previously 

been found and where, in environments where food is distributed 

patchily, there may be more food and search times may be lower 

than in other locations.  Recruited foragers who also find food at 

these sites reinforce the trails, ultimately allowing the colony to 

allocate its foragers' effort to the best foraging sites on the 

territory. 

However, pheromone recruitment can be detrimental if it causes 

recruitment of workers to low quality sites where workers waste 

time searching for scarce foods.  This may happen because there 

was no more food to be found at the site when the first successful 

forager laid a pheromone trail, or because any additional food has 

already been collected by other recruited foragers (“overshoot” 

[16]).  While there are mechanisms that reduce the problem of 

overshoot (for example a minimum volume of nectar in the crop is 

required to stimulate trail-laying among Lasius niger [17]; and 

Pogonomyrmex workers may sample the availability of nearby 

food before recruiting [18–20]) these mechanisms do not entirely 

eliminate the problem. 

Another foraging strategy that is less prone to overshoot is site 

fidelity [18], [21–24].  Individual foragers retain private 

information about a location where they found food previously.  If 

more food was available at the site, it can return there without 

reliance on pheromone trails or other social information signals, 

and with reduced risk that other foragers will have depleted the 

area before it completes its trip to the nest and back again. 

Site fidelity and recruitment may complement one another.  

Honeybee foragers make use of both information shared via the 

waggle dance [9], and also private information about sites they 

have visited before; but it appears that honeybees very often 

ignore waggle dances they observe in favor of sites of which they 

have personal knowledge [25].  Similarly, Lasius niger foragers 

rely heavily on private information in their choices at trail 

junctions, even when the weight of pheromone trails contradicts 

their choice [5].  In these systems it appears that shared 

information about foraging sites is primarily for naïve foragers 

with no knowledge about foraging sites; after a forager obtains 

some personal information by visiting a site, private information 

is heavily favored.  In this way ants and bees can maximize the 

benefits and minimize the costs of using both private and social 

information together [4], [25]. 

In the present study, we are interested in examining the benefits – 

in terms of increased food collection rate relative to uninformed, 

random search – of pheromone recruitment and site fidelity alone 

and in combination.  We hypothesize that pheromone recruitment 

will increase foraging rate more than site fidelity in environments 

where food is distributed most patchily, i.e. where all food is 

found in dense piles, and where we hypothesize the benefit of 

rapid recruitment of ants to foraging sites will outweigh the cost 

of overshoot.  We hypothesize that site fidelity will be of more 

benefit in environments where food is distributed patchily, but is 

found in less dense piles, as site fidelity allows ants to use 

personal information to exploit patchiness in the environment 

with reduced chance of over-recruitment to small piles of food.  

Finally, we hypothesize that a strategy that balances use of both 

recruitment and site fidelity can increase food collection rate over 

either strategy alone. 

We built an ABM of ant foraging, based on the foraging behavior 

and ecology of harvester ants as described in the literature, and 

based on our own observations.  ABMs are particularly useful for 

modeling systems with spatial or temporal heterogeneity [26], 

[27], and systems in which complex behavior emerges as the 

result of interactions among individual agents with relatively 

simple behaviors, such as in ant colonies [15], [28], [29].  We 

designed our model to test the benefits of recruitment and site 

fidelity in different foraging environments.  The particular 

behaviors expressed by these models and their efficacy at 

collecting food can vary with different parameter values [29] 

(described below, and see Table 1); and the optimal values for 

these parameters likely vary with model conditions (e.g. different 

food distributions, available foraging strategies).  In order to 

observe each model making good use of the behaviors available to 

it, we selected parameters using GAs ([30], [31]; see also [3], 

[32], [33]) to maximize food collection rate. 

We use GAs to optimize the behavior of our models to forage in 

three different food environments, using site fidelity alone, 

recruitment alone, neither strategy, or both together.  We then 

observe the models foraging in the environments for which they 

were optimized, to evaluate overall foraging rate and search times.  

Finally we compare the behavior of our models to observations of 

harvester ant colonies in the field. 

3. METHODS 
Our model is based on that described in [19], [20], based on 

descriptions and observation of the foraging behavior of harvester 

ants of the genus Pogonomyrmex.  Some parameters in the model 

are subject to selection, and produce important differences in 

foraging success depending on conditions, such as distribution of 

food (i.e. random vs. piled foods).  Within each colony, every ant 

shares the same set of floating point parameters that determines 

their behavior.  We describe the behavior of the GA-Integrated 

Ant (GIAnt) model and relevant parameters.  We will then 

describe selection of parameter values using a GA. 

3.1 Agent-Based Ant Foraging Model 
Ants forage on a grid of 4000 X 4000 cells, with 25,600 pieces of 

food (seeds) placed on the grid in a random process in various 

distributions (described below).  At model initialization, 100 ants 

begin at a nest located at the center of the grid.  Pseudocode for 

the simulation is shown below.  All ants carry out these 

instructions in parallel for 10,000 time steps. 

3.1.1 ABM Pseudocode 
 

3.1.2 Random Travel From Nest 
Ants travel in a random from direction from the nest, in order to 

distribute themselves around the territory before beginning to 

search.  They do this on their first trip from the nest, and may do 

this on subsequent departures from the nest if they have not 

chosen to follow trails or to return to a known site. 

3.1.3 Uninformed Search 
Ants that have traveled at random from the nest search for food by 

moving in a correlated random walk.  At each time step their new 

direction of travel is selected from a normal distribution with a 



Table 1: ABM Pseudocode 

 

Initialize ants at nest, food on grid; 

Do Random Travel From Nest; 

Do Uninformed Search; 

while t < 10,000 do 

 if food is found then 

  Pick up food; 

  Sense count c of other food in neighborhood around current location lf; 

  if rand(0,1) < λr + C / μr then //Begin Recruiting 

   Increment stop pheromone at lf; 

   Begin incrementing recruitment pheromone at each location on return to nest; 

  end 

  while not at nest, Move at full speed in direction of nest; //Return To Nest 

Drop off food; 

  if recruitment pheromone is present in neighborhood of nest and rand(0,1) < λt - C / μt then 

// Follow Pheromone Trails 

while pheromone present out-bound and (stop pheromone is absent or rand(0,1) > 

∑Π
out-bound

∑Π adjacent ) 

Move to out-bound cells with probability proportional to pheromone weight 

end 

Do Informed Search; 

  else if rand(0,1) < λs + C / μs then //Return To Site 

   while not at lf 

Move at full speed in direction of lf; 

end 

Do Informed Search; 

else 

Do Random Travel From Nest 

Do Uninformed Search; 

  end 

 end 

 for all x, y, set Пx,y,t = Пx,y,t-1 * (1 – η); //Evaporate Pheromones 

 if Пx,y,t < 0.001 

set Пx,y,t = 0; //Pheromone is below ants' detection threshold 

 end 

end 

 

Random Travel From Nest; 

Select random direction Θ 

while rand(0,1) < α do 

 Random Travel From Nest 

 Travel in direction Θ at full speed; 

end 

end 

 

Uninformed Search 

while food is not found, Select direction Θt from normal distribution N(Θt-1, ω), Move at ¼ speed. 

end 

 

Informed Search 

ts = 0; 

while food is not found 

Select direction Θt from normal distribution N(Θt-1, ω + γ / tsδ), Move at ¼ speed; 

ts = ts + 1; 

end 

end 



constant standard deviation determined by a single parameter, ω, 

which gives a constant degree of turning that, after optimization, 

is adaptive for searching random areas on the grid.  Searching 

ants move at ¼ the speed of ants traveling from the nest to 

foraging sites or returning to the nest with food [24]. 

3.1.4 Informed Search 
Ants that have traveled to a location via pheromone trails or site 

fidelity, and are therefore searching an area where food may be 

more likely to be found than at a random location on the grid, 

search via a correlated random walk, by selecting from a normal 

distribution with a standard deviation that is a function of the 

time since beginning to search, ts.  This allows an increased 

degree of turning and more localized search early on in an ant's 

search in an area where food is likely to be found, but as ts 

increases allows the degree of turning to decrease and approach 

ω if no food has been found.  The ant then tends to move off to 

search for food in a new area. 

3.1.5 Begin Recruiting 
Ants detect and move to seeds within 1 grid cell (½ cm for 

Pogonomyrmex in the field [24]).  When an ant arrives in a cell 

containing a seed, it takes a count C of the other available seeds 

in the Moore neighborhood of the location.  Ants in the field 

may sample the availability of other food in the local area by 

handling other foods before returning to the nest [18], or 

perhaps by a scent of food in the vicinity.  If the model has 

pheromone recruitment enabled, the ant decides to lay a 

recruitment trail probabilistically based on this count.  We 

model two types of pheromone.  Trail-laying ants deposit a 'stop' 

pheromone on the cell where they have picked up food, which 

marks the end of the trail to other ants that may follow the trail 

to the site.  Then, as they return to the nest they deposit trail 

pheromone, incrementing the weight of pheromone on each cell 

across which they move. 

3.1.6 Return to Nest 
After picking up food, ants return to the nest by traveling at full 

speed in the direction of the nest. 

3.1.7 Follow Pheromone Trails 
After returning to the nest, ants decide to follow pheromone 

trails, if they are present, based on the count C of seeds at the 

last location where food was found.  If so, ants move at full 

speed to cells out-bound from the nest, with probability linearly 

proportional to the weight of pheromone on those cells [34].  

Ants stop following pheromone trails and begin searching when 

out-bound cells contain no pheromone; or they stop following 

trails probabilistically when they encounter cells with stop 

pheromone (cells where food has been found previously). 

3.1.8 Return to Site 
If the model has site fidelity enabled, and the ant has not 

decided to follow pheromone trails, the ant decides to return to 

the last location based on the count C of seeds at that location.  

It travels at full speed in the direction of that grid cell. 

3.1.9 Evaporate Pheromones 
At each time step, pheromones evaporate from the grid at an 

exponential decay rate.  When the weight of trail or spot 

pheromone on a cell falls below a threshold of 0.001, it is 

considered to be below the ants' ability to detect it, and the 

weight of pheromone on that cell is set to zero. 

3.2 Optimization by Genetic Algorithm 
GAs are an optimization scheme inspired by natural selection.  

They operate on a population of potential solutions to a 

problem, in this case a population of parameter sets that control 

the behavior of our ant colony models.  GAs discover solutions 

by iteratively evaluating each parameter set in the population 

against a fitness function, and then selecting successful 

parameter sets to populate the next generation.  This process is 

repeated until the population converges on a solution to the 

problem.  Here, we use the GA to select parameter sets for three 

different food distributions (piled, power-law distributed, and 

random; described below) and four foraging strategies (site 

fidelity alone, recruitment alone, both strategies together, or 

neither).  By optimizing our model for each combination of food 

distribution and foraging strategy, we are able to observe how 

much each foraging strategy can improve foraging success 

above that obtained by foraging without information (i.e. neither 

site fidelity nor recruitment) in each type of food distribution. 

Each colony is represented by 100 workers and a parameter set.  

We initialize a population of 200 parameter sets by randomly 

assigning values to each parameter.  We evaluate each colony by 

running the model with each set of parameters, and assign a 

“fitness” value to each colony equal to the number of seeds it 

collects.  Because the models are stochastic, and the number of 

seeds collected is subject to chance in the placement of food and 

the behavior of the ants, we repeat these evaluations in each 

generation.  For each generation, we generate eight standard 

grids each with a randomly generated food layout.  We evaluate 

each colony on each of the eight grids for 10,000 time steps 

each.  Each colony's fitness is the sum of seeds it collects on all 

eight grids. 

Following evaluation, we select successful colonies using 

tournament selection [35] and recombine their parameters to 

form the next generation.  We compare the fitness of two 

colonies selected at random from the population, and select the 

one with greater fitness as the first parent.  We then select 

another two colonies at random from the remaining 199, and 

keep the one with greater fitness as the second parent.  Parental 

genomes are recombined with a crossover rate of 10% at each 

parameter.  We then mutate the offspring's parameter values 

with probability 0.05, by selecting from a normal distribution 

with mean equal to the current parameter value and standard 

deviation equal to the current value * 0.05.  We then return both 

parental colonies to the pool of potential parents, and repeat this 

200 times to generate a new generation of colonies. 

We repeat the above for 100 generations.  Over time, the GA 

converges on good solutions to the foraging task given the 

distribution of food and the foraging strategies available in the 

model.  In this way, we obtained models optimized for 

combinations of foraging strategy (with recruitment alone 

enabled, site fidelity alone, neither strategy enabled, and both 

strategies together) and food distribution (random, power-law 

distributed, and piled). 

In all food distributions, the total number of seeds on the grid is 

25,600, but seed placement differs (Figure 1). In the random 

distribution, all seeds are placed at random on the grid 

independently of one another, in a homogeneous spatial Poisson 

process; in the piled distribution all the available food is found 

in 25 large, dense, randomly placed piles of 1024, each with a 

radius of ceiling((1024/π)1/2) = 19 cells; while in the power-law 

distributed environment, 1/5 of the food is distributed at  



 

 

 

Fig. 1. Food distributions on which models were optimized and tested. A through C: Each grid contains the same number of seeds, but 

seeds are distributed A) in a piled distribution in which all available seeds are found in dense piles; B) in a power law distribution with a 

single dense pile (red), four piles of ¼ the density (orange), 16 piles of 1/16 the density (green), 64 piles of 1/64 the density (purple), and a 

random scattering of seeds (blue); C) or randomly scattered. Central black circle indicates the location of the nest. Note that for illustrative 

purposes, pile sizes and total number and density of seeds have been altered from that described in the text. D through F: Seeds collected in 

each of 100 generations during a GA run selecting parameters for the: D) piled food environment; E) power law food environment; and F) 

the random food environment. Variation in seeds collected from one generation to the next is greater for the piled and power law food 

environments than the random environment. Optimization occurs more quickly for the random food environment due to a less challenging 

search task. 

random, 1/5 is distributed in randomly placed piles of 16 seeds 

each, 1/5 is distributed in randomly placed piles of 64, 1/5 is 

distributed in piles of 256, and 1/5 is distributed in piles of 1024 

(all piles have radius of 19 cells so that they vary in density 

rather than area).  All food is placed such that there is at most 

one food at each cell on the grid. 

Food distributions and representative fitness curves are shown 

in Figure 1. 

3.3 Observation of Optimized Colonies 

3.3.1 Foraging Success 
Following optimization, we observed GIAnt models foraging on 

each of the three food distributions using parameters determined 

by the GA to maximize seed collection rates for those 

distributions. We recorded number of seeds collected in 10,000 

time steps. In order to investigate the cause of differences in 

foraging success, we also recorded time spent searching during 

each model run. 

We also observed GIAnt colonies foraging on distributions other 

than the one for which they had been optimized, in order to 

illustrate that the parameter sets and behaviors discovered by our 

GA produce important differences in the optimal behavioral 

response to different food environments.  In addition, we test the 

hypothesis that the suite of behaviors that are optimal given a 

power law distributed food environment are an effective mixed 

strategy for unknown food distributions, because this 

environment selects for both the ability to find randomly 

distributed foods and also the ability to exploit piles of food 

when they are discovered.  We focus this analysis on models 

using both recruitment and site fidelity together, because of 

previous research indicating that Pogonomyrmex in the field are 

capable of both behaviors [21], [36], [37]. 

 



A  B  

Fig. 2.  Foraging success  A: Seeds collected by models optimized for piled, power law, and random food distributions, using both site 

fidelity and recruitment together, site fidelity alone, recruitment alone, or neither.  B: Seeds collected by models optimized to use both site 

fidelity and recruitment together, on one of three food distributions, and foraging on all three food distributions. Models perform best on 

the food distribution for which they were optimized.  Models optimized for power law distributed food have best performance over all food 

distributions. 

We report the results of our analyses of the effects of seed 

distribution, foraging method, and the distribution X method 

interaction, using full factorial general linear model (GLM) 

except where otherwise noted. 

3.3.2 Comparison to Field Data 
In order to compare the behavior of our optimized models to 

that of harvester ants in the field, we simulated bait experiments 

that we and colleagues carried out in a related field study [19], 

[38].  In that study, we baited colonies of P. desertorum (among 

two other species), a species whose colonies have on the order 

of 100 workers [39], with dyed seeds arrayed around the nest in 

four different distributions. In each observation, we baited a 

focal colony with a large single pile of 32 seeds; 32 seeds 

divided into four piles of eight; seeds divided into 16 piles of 

two; and 32 seeds scattered randomly. We placed seed baits 

within a minimum and maximum radius of 1 and 3 m 

respectively.  Each pile of seeds was placed in a 10X10 cm area. 

We then observed the colony as it foraged for one hour, or until 

the colony ceased activity for the day, and recorded the time of 

retrieval of seeds from each of the four baits to the nest. 

We simulated foraging observations using models parameterized 

by our GA. Because the seeds that make up the bulk of the diet 

of Pogonomyrmex in the field is spatially variable [40], [41] we 

simulated foraging by colonies that were optimized for power 

law distributed foods. Because the ant colonies we observed in 

the field also foraged on naturally occurring seeds while 

collecting our bait seeds, we initialized our simulated foraging 

observations with the same power law distribution of foods for 

which these parameter sets were selected, along with foods 

simulating the experimental baits we used in the field (described 

above, and see [19], [38]). 

Following the procedure we used with our field data [19], [38], 

we produced cumulative intake curves from these observations, 

and calculated mean rates of seed collection from each seed 

distribution, by dividing the number of seeds collected by the 

time from the first to the last seed collected from each bait. We 

normalized the rates of collection from piled distributions by 

producing a ratio of the rate of collection from each piled 

distribution to the rate of collection from the random 

distribution in each observation.  Thus each ratio indicates how 

rapidly seeds were collected from each piled distribution relative 

to the rate of collection of randomly scattered seeds. This 

allowed us to produce a measure of the effect of heterogeneity 

on seed collection rate that is comparable to observations of ants 

in the field. For ant colonies in the field, the number of active 

foragers may vary from colony to colony or from day to day, 

producing variation in the rates of collection of all foods, and 

this normalization helps control for this variation as well. We 

analyzed these ratios using repeated measures ANOVA, a 

method that takes into account the non-independence between 

the rate of collection of food from each distribution (within a 

single observation, an ant retrieving a seed from one distribution 

is not at the same time available to collect seeds from other 

distributions). Repeated measures ANOVA accounts for this 

non-independence, and gives greater statistical power with data 

involving multiple measures within each observation. 

4. RESULTS 

4.1 Foraging Success 
Across all foraging methods, we found that our models perform 

best, in terms of number of seeds collected, in the random food 

environment, followed by the power-law distributed 

environment, followed by the piled environment (Least Squares 

Mean seeds collected: 591.7, 442.8, and 132.3, respectively).  

The counter-intuitive result that randomly distributed seeds are 

collected faster arises because because individual seeds scattered 

at random are found much more quickly than sparse piles of 

seeds, and this outweighs benefit of exploiting large piles after 

they arediscovered, at least during the 10,000 time steps we 

observed. 

We found that our models perform best across all food 

distributions when both recruitment and site fidelity are enabled, 

followed by site fidelity alone, followed by recruitment alone, 

followed lastly by models with neither method enabled (LS 

Mean seeds collected: 458.3, 417.2, 369.3, and 310.9, 

respectively; Figure 2a).  In pairwise comparisons we found that 

site fidelity performs significantly better than recruitment alone  

in the power law, piled, and even the random food environments 



 

 

Fig. 3.  Comparison of models to Pogonoymyrmex foraging in 

the field.  Seed collection ratios are the rate of collection of piles 

of seeds normalized by the rate of collection of randomly 

distributed seeds within each observation.  A value of one 

indicates that seeds from a piled bait were collected at the same 

rate as randomly scattered seeds, while a value of two indicates 

piled seeds were collected twice as fast. Observations of 

Pogonomyrmex colonies in the field foraging on seed baits are 

compared to the foraging model using both recruitment and site 

fidelity together, each strategy on its own, or neither strategy. 

 (t-tests: all p < 0.01; n = 160 each); and that models using both 

foraging methods significantly out-perform either foraging 

method alone in all food environments (t-tests: all p < 0.01; n = 

480 each).  The improved performance of models with site 

fidelity in random food environments is due to the fact that site 

fidelity enables ants to retrieve seeds that are placed next to each 

other by chance. 

4.2 Foraging Success on Other Distributions 
We found that for each food distribution, the colony optimized 

for that food distribution had the greatest foraging success 

(Figure 2b).  We test the hypothesis that the power-law 

optimized colony is the best strategy when the food distribution 

is not known a priori, by comparing the mean number of seeds 

collected across all three food distributions.  The power law 

optimized colony collected the most seeds across all 

distributions (foraging on power law distributed food, piled 

food, and random), 474.2 seeds, as compared to 389.8 by the 

pile optimized colony and 397.8 by the random optimized 

colony.  Thus the strategy for foraging on power-law distributed 

foods represents a good mixed strategy capable of foraging 

reasonably well on a variety of food distributions. 

4.3 Comparison to Field Data 
Pairwise comparison of each of our model strategies to field data 

reveal significant differences between field data and the no-

information model in which ants use neither recruitment or site 

fidelity.  A significant effect of data source (i.e. field data vs. 

model data: Repeated-measures ANOVA: n = 29 [9 field and 80 

model]; p < 0.001) indicates that the no-information model 

collected piled seeds in general more slowly relative to random, 

compared to ants in the field.  A significant interaction of data 

source and bait distribution (p < 0.001) indicates that the rates 

of collection of piled foods relative to piles of different densities 

differ from field observations as well.  These can be seen in 

Figure 3, where the model colony using neither foraging strategy 

has lower foraging ratios overall than ants in the field, and also 

the relative ratios for different bait distributions are opposite that 

seen in the other observations: increasingly densely piled baits 

are collected more slowly by this model, whereas ants in the 

field collected the most densely piled baits most rapidly. 

We observed no other significant effects in pairwise 

comparisons of the other models to the field data (all main and 

interaction effects p > 0.10), because of the high variance in our 

field data.  However we do see a significant interaction of bait 

distribution and model type when comparing models with site 

fidelity alone enabled vs. recruitment alone enabled (p = 0.018) 

which indicates that the site fidelity models are able to collect 

less densely piled baits more rapidly, while recruitment models 

are able to collect the densest piles more rapidly. 

5. DISCUSSION 
We found that site fidelity and recruitment together out-perform 

either strategy alone in all three food distributions, and that site 

fidelity alone out-performs recruitment alone in the power law 

and piled food distributions.  Variation in search time per 

foraging trip explains much of the difference in foraging success 

using different foraging strategies.  We found that site fidelity 

and recruitment together complement each other in a way that 

allows increased foraging rate over either strategy alone.  

Other researchers have examined the value of private vs. social 

information based on imposed differences on the quality of that 

information (e.g. error in the communication of spatial 

information by the waggle dance in honeybees [42]).  In this 

model, shared and private information are equally accurate; both 

recruitment trails and site fidelity guide ants to a precise location 

on the grid.  Here, the difference in quality of shared vs. private 

information is not imposed as an assumption of the model, but is 

instead entirely a product of the collection and depletion of 

seeds in a pile by the ants as they forage.  The greater benefit of 

site fidelity in our models is caused by the greater susceptibility 

of recruitment to the problem of overshoot. 

We found that site fidelity out-performs pheromone recruitment 

in both the power law and piled distributions, and trends toward 

better performance in the random environment.  The prevalence 

of pheromone recruitment across ant taxa suggests that there 

must be some foraging ecologies for which pheromone 

recruitment is more effective than site fidelity.  The food 

distributions we experimented with here are based on the 

foraging ecology of seed-harvester ants.  Seed-harvester ants' 

primary food is scattered across the landscape, but with 

significant spatial variation and in skewed distributions 

consistent with a power law distribution [40], with a few large 

piles of seeds, such as those dropped at the base of seeding 

plants, many small piles of seeds, and many randomly 

distributed seeds scattered by wind and other random processes.  

We imagine that for other types of food sources, e.g. animal 

carcasses, social insect colonies, or nectar sources, recruitment 

alone may be a more effective foraging strategy than site fidelity 

alone, as these may present foods where at a single point there 

may be enough food for multiple forager trips, reducing the 

problem of overshoot relative to the amount of food available.  

Additionally, recruitment may be more advantageous for 

ephemeral foods that will disappear or be taken by competitors 

before one or a few ants are able to collect it all. 

We found that optimized models using neither recruitment nor 

site fidelity provide a poor fit to field observations of 

Pogonomyrmex foraging on seed baits.  These models are able 



to make no use of information about the location of food, and 

therefore search essentially at random – although aspects of their 

search behavior have been adjusted by the GA for particular 

types of food distributions, they cannot use information about 

where food has been found previously.  As a result, they collect 

random foods fastest, and increasingly densely piled foods more 

slowly, as larger, denser piles of food are increasingly difficult 

to find by random search.  This is opposite what we observed in 

ants in the field as well as in other models where ants are able to 

make use of this information, either by recruitment, or site 

fidelity, or both together.  We found that our models of 

information use by ant colonies are statistically indistinguishable 

from the foraging behavior of ant colonies in the field.  This is 

particularly interesting because we did not use GAs to fit our 

model behavior to field data, but rather we used GAs to 

maximize food collection rate given the constraints of the 

model.  Presumably ants in the field have been selected to 

maximize food collection rate as well, among other goals and 

constraints. 

6. CONCLUSIONS 
We conclude that site fidelity as a foraging strategy has the 

potential to be more effective, at least in some environments 

more effective, than pheromone recruitment.  In addition, we 

have quantified the extent to which site fidelity and recruitment 

may act synergystically to improve the success of colonies using 

both strategies over either strategy alone when foraging for 

seeds.  Pheromone recruitment has benefits in sharing 

information about the location of food sources, and allowing 

rapid recruitment of ants to a site, as well as colony convergence 

on the most productive foraging sites; while site fidelity suffers 

less from the problem of overshoot and allows foragers to more 

reliably find seeds in a known patch.  Once an adaptive balance 

is struck between reliance on these two sources of information, 

ants using these two foraging tactics in combination enjoy the 

benefits of both while reducing the associated costs.  This 

synergy between private and social information may be an 

important feature of collective foraging in ants and social insects 

in general. 

Finally, our approach to combining social and private 

information may be useful in the fields of ACO [1] and swarm 

robotics.  Here, we used GAs to optimize models using different 

information use tactics for various food distributions, in order to 

observe the maximum benefit a colony might extract from 

various sources of information.  GAs can also be used to 

optimize engineered systems.  We believe the addition of site 

fidelity to recruitment may help reduce the problem of 

premature convergence in some ACO applications, by allowing 

individual agents to sample the solution space while minimizing 

the overhead of communication between agents.  GAs have also 

been used to optimize swarm robots [3], [11], [43].  The 

combination of recruitment and site fidelity may be a valuable 

and important way to improve the performance of swarms in 

collective foraging tasks, using GAs to find an optimal balance 

between the two tactics for information use, potentially 

including communication overhead among the constraints to 

optimize. 
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