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Abstract 

Distal reward refers to a class of problems where reward is temporally distal from actions that lead to reward.  The 
difficulty for any biological neural system is that the neural activations that caused an agent to achieve reward may no 
longer be present when the reward is experienced.  Therefore in addition to the usual reward assignment problem, there is 
the additional complexity of rewarding through time based on neural activations that may no longer be present.  Although 
this problem has been thoroughly studied over the years using methods such as reinforcement learning, we are interested in 
a more biologically motivated neural architectural approach. This paper introduces one such architecture that exhibits 
rudimentary distal reward learning based on associations of bottom-up visual sensory sequences with bottom-up 
proprioceptive motor sequences while an agent explores an environment.  After sufficient learning, the agent is able to 
locate the reward through chaining together of top-down motor command sequences.  This paper will briefly discuss the 
details of the neural architecture, the agent-based modeling system in which it is embodied, a virtual Morris water maze 
environment used for training and evaluation, and a sampling of numerical experiments characterizing its learning 
properties. 
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1. Introduction 

Animals learn much about the world they live in by interacting with it.  Trial and error behavior provides them 
with valuable learning opportunities about cause (action) and effect (reward) relationships.  Aside from 
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reflexive behavior, there is usually a significant time delay between trial and error that confounds standard 
correlational (i.e. Hebbian [1]) learning approaches. This problem is known as delayed reward [2] or distal 
reward [3] and has been thoroughly studied over the last two decades under the broad topic of reinforcement 
learning (RL) [4].  Roughly speaking, RL uses a (possibly stochastic) rule set called a policy to map states of 
perception into actions of an agent. The short-term goal of the agent is defined by a reward function that maps 
perceptual states into a graded reward value.  The long-term expected reward is the value of a state and is 
estimated using learning algorithms.  In the RL paradigm, an agent chooses an action that maximizes this 
expected reward.   

From a biological perspective, distal reward describes a class of agent behavior that requires associating 
sensory observations, motor actions, and rewards through time using only neural mechanisms. Learning these 
associations involves reinforcement of neuronal activity and synaptic adaptation due to the experienced reward 
[5]. Often the reward becomes evident to the agent a significant time after the reward-predicting sensory 
observations and motor planning have occurred. This creates an explanatory conundrum known in the 
behavioral literature as the “distal reward problem” [3] and in the reinforcement learning literature as the 
“credit assignment problem” [6].  In order to learn to attain reward in the future, the agent must assign credit 
(or penalty) to the preceding actions that participated in the attainment of the initial reward. Its neural system 
must determine which out of all possible sensory-motor neural activation sequences determined those actions 
and adapt the appropriate synapses. The key problem is that the responsible sensory-motor sequence may no 
longer be active when the reward arrives. 

The Morris Water Maze [7] is a good example of this effect, where the agent but must perform a sequence 
of behaviors that will, over time, lead to the hidden reward.  Typically a rat is placed in a round tank that is 
partially filled with murky water and allowed to freely swim.  A small invisible platform is submerged in the 
tank just below the surface of the water providing an escape from drowning (Fig. 1).  Over a number of trials, 
rats tend to learn the location of the platform, allowing them to shorten swim times. Through distal learning 
processes, the reward arriving at a safe perch is associated with a temporal sequence of motor plans in the past 
that moved the rat from its release point to the hidden platform. 

 

Fig. 1. An illustration of the Morris Water Maze to evaluate rodent learning.  The rays emanating from the agent represent its visual field.  
The compass headings are classical rat release points in the tank. 

Associating observations, actions, and rewards through time differs from learning problems that involve 
instantaneous decisions that can be thought of as sense-react behavior. In distal reward tasks, immediate cues at 
the time of action do not tell an agent a priori what action might lead to reward.  In order to address this, 
episodic memories that encode temporal sequences of sensory and motor activity are required to link actions 
with temporally distant consequences. 

Once the agent reaches the target, what neural process detects that a rewarding event has occurred? Nitz, 
Kargo, and Fleischer [8] present an experiment which links dopamine signaling with distal reward behavior.  
Dopamine receptor deficient rats exhibit impaired decision making at the choice points that are temporally 
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distal to the reward, while normal control rats do not. This result leads to consideration of dopaminergic action 
as an important component of distal reward behavior. 

This paper introduces a biologically motivated fully embodied self-organizing neural architecture that 
exhibits distal reward learning in a rudimentary form in the Morris Water Maze.  By full embodiment, we mean 
that an agent receives information only from sensory observation of its environment and itself, and that all 
actions are based on internally generated motor commands.  The neural architecture’s operation is based on 
associating multiple learned sequences of bottom-up visual and somatosensory inputs, and the top-down recall 
of the somatosensory sequences as motor plans, reminiscent of Common Code Theory [9] notions.  This recall 
“drives” the agent to the ultimate reward based upon a chaining-together of  several previously learned motor 
plans. Although functionally similar to RL approaches, delayed reward behavior is accomplished here with no 
explicit function approximation or stochastic modeling, using only the autonomous interaction between 
multiple self-organizing neural modules.  

The following section briefly describes the neural architecture.  Section 3 presents the experimental method 
for testing it in a virtual water maze. Following that, Section 4 presents the results of the experiments, briefly 
discusses these results in the context of statistical analysis, and concludes the paper. 

2. The Agent and Neural Architecture 

A schematic of the architecture is given in Fig. 2.  It is composed of a small number of subnetwork 
components including Fuzzy ART (FA) [10], Fuzzy LAPART [11], Temporal Integrators (TI) [12], gating 
logic, sensors, and actuators.  FA is a self-organizing neural module that learns to classify input patterns.  
Fuzzy LAPART is a self-organizing neural module that learns associations between two FAs; i.e. classes of 
inputs are learned as well as associations between them.  A TI module is a layer of leaky temporal integration 
nodes. 

The agent has a visual sensor composed of an array of optical detectors, proprioceptive sensors that measure 
motor activity, touch sensors that detect contact with objects in the world, and finally motor actuators that 
control the speed and direction of the agent in the world.  The neural architecture is divided into five major 
components: 1) V, the visual temporal sequence component, 2) P, the proprioceptive temporal sequence 
component, 3) L, the Fuzzy LAPART association component, 4) D, the dopaminergic component, and 5) M, 
the default motor plans component.   The latter causes the agent to execute random path motor plans in the 
absence of a learned motor plan recall.  The V and P components are composed of FA  TI  FA 
“sandwiches” interconnected with reciprocal connections, while the L component contains two laterally 
connected FA modules.  Note that V, P and L are loosely analogous to visual cortex, motor cortex, and 
hippocampus [13] respectively. These components are interconnected with connection bundles, some of which 
are modulated by switches.  Details of the agent and the architecture may be found in Taylor [14]. 

Since learning temporal sequences is central to this architecture, a more detailed explanation of the 
“sandwich” mentioned in the previous paragraph is in order.  The dynamics of this component are as follows.  
As a temporal sequence of complemented coded real-valued input patterns is presented to the input of the lower 
FA, designated S in Fig. 2, it performs unsupervised pattern classification resulting in a sequence of activations 
of S-F2 nodes.  Note that the F2 layer of an FA is winner-takes-all.  The resultant S-F2 activations (unit strength) 
are directed as input into the TI layer. When a node in the TI module receives a unit level signal, it rapidly 
integrates to its maximum value in one time step.  When a TI node receives a zero level input, its output decays 
with an exponential time constant.  When its output reaches a minimum noise threshold level, it is reset to zero.  
Each TI neuron may be thought of as an RC circuit with different rise and fall time constants. As a result, a 
recency gradient of activations will form across the TI layer, encoding the order of input stimulus – the most 
recent S class input will have the largest TI node activation, with decreasing magnitude representing the reverse 
order of previous S classes. At each time step, the current complement coded real-valued recency gradient is 
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directed from TI to the input of the upper FA, designated L in Fig. 2, which again performs unsupervised 
pattern classification.  Note that the classification process is the same in both networks, resulting in learned 
template patterns in S and L based on their respective input sequences. Through this hierarchical process, L-F2 
layer produces codes for short temporal sequences of patterns presented to S. The two FA units’ vigilance 
parameters S and L control the granularity of their respective classifications.   

This network may also recall short temporal sequences through a top-down process. During recall mode, an 
L-F2 node is activated by higher-level circuitry, reading out a recency gradient stored in one of its templates TLh 
into the L-F1 layer.  This gradient template is transferred through reciprocal connections from the L-F1 layer to 
the TI layer, initializing its nodes. The TI nodes are then allowed to naturally decay over time. Through 
reciprocal connections from TI to the S-F2 layer, S-F2 nodes are stimulated in the sequence order, reading out a 
sequence of templates TSk into the S-F1 layer.  This “movie” of templates constitutes a short-term episodic 
recall. 

 

Fig. 2.  The complete neural architecture. The boxes along the bottom represent sensors and actuators available to the agent.  The visual 
sequence learning component(V), proprioceptive sequence learning component (P), dopaminergic system component (D), association 
component (L), and motor system (M) are connected with connection bundles indicated by the solid lines.  The polygons S1, S2, and S3 are 
switches that modulate connection bundles. The boxes labeled S, L, A, and B are Fuzzy ART modules, TI are temporal integrator modules, 
and M is an associative memory modules. 

Given this background, we are prepared to discuss how this architecture learns to find its target through 
distal reward learning.  For this paper, we will use the Morris Water Maze [7] as an example scenario (Fig. 3) 
where the hidden platform is located at position XN. We will use two notional learning trials to illustrate the 
processing:  1) In Trial 1, the agent is released at a point XN-1 near the platform and moves by random chance to 
XN, receiving the reward. 2) In Trial 2, the agent is released form a point XN-2 a little further away from the 
platform and by random chance encounters the first release point XN-1.   

In Trial 1, assuming no previous learning, the agent is released from point XN-1 and executes a random walk 
default motor plan gated through switch S3 that causes exploratory behavior.  Fig 3 illustrates a successful 
random walk starting at point XN-1 and ending at reward point XN.  During this walk, the V and P components 
are actively capturing visual and motor perceptual sequences encoded as V L-F2 and P L-F2 node activations. 
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When the agent encounters the reward at location XN, the touch sensor activates the D component indicating the 
presence of a reward in the environment.  The D component then may initiate two possible processes: 1) 
retrospective learning [15], and 2) prospective action.  In Trial 1, the agent has encountered the reward for the 
first time and therefore the D component enables only the retrospective learning process since not action is 
required. 

Retrospective learning process occurs in the L component of the architecture as follows.  Due to D 
component activation, the V component undergoes episodic recall using the most recent V L-F2 active node.  
This recall would, if allowed to completely unfold, play back a sequence of visual templates in the V S-F1 layer 
representing the visual sequence from XN-1 to XN. For the purposes of learning a distal reward, only the first 
(oldest) S visual template is recalled and forwarded to the A-side of the L component through switch S1 (left 
center of Fig. 2). In parallel with this action, the D component gates the current P L-F2 layer code into the B-
side of the L component through switch S2.  The A and B-side FAs in the L component perform their self-
organizing classifications, and if a lateral reset does not occur, a new lateral association in M is learned 
between L A-F2 and L B-F2. This creates an association between the visual scene at location XN-1 and the 
proprioceptive motor sequence that leads from XN-1 to XN. 

In Trial 2, the agent starts further away at point XN-2 (Fig. 3) and executes a random walk motor plan that 
happens to move the agent to location XN-1.  Like in Trial 1, the V and P components are actively capturing 
visual and motor perceptual sequences during this walk.  Note that the D component is not active during this 
walk, allowing raw visual patterns to be simultaneously directed to the A-side of the L component through 
switch S1 as well as to the V component.  During most of the walk, none of these visual patterns resonates with 
an existing L A-F2 template, leaving the A FA module of the L component inactive.  However, when the walk 
reaches the previously visited location XN-1, the current visual pattern will likely resonant with a template 
learned during the previous walk, initiating two actions: a) the D component is activated through a connection 
from the L A-F2 layer indicating the presence of a “pseudo reward”, and b) through previously learned lateral 
priming connections, the B FA of the L component will read out a learned association with a P F2 node.  (Note 
that P F2 nodes encode temporal sequences of motor commands.)  We refer to the action a) as detecting a 
pseudo reward in the sense that the agent is at least partially aroused as if an actual reward has occurred, 
because it now knows how to get to the reward location from this familiar location.  As before, given an active 
D component, as with Trial 1, two possible processes may occur: 1) retrospective learning, and 2) prospective 
action.  

 

Fig. 3. An example of the agent moving between points to arrive at the reward platform. Either a learned or a default motor plan moves the 
agent from one point to another. 

Retrospective learning in Trial 2 is identical to Trial 1.  Episodic recall of the oldest V S-F2 template is 
recalled and forwarded to the L A-side.  In parallel with this action, the D component gates the current P L-F2 
layer code into the B-side of the L component.  The A and B-side FAs in the L component perform their self-
organizing classifications, and if a lateral reset does not occur, a lateral priming connection is learned between 
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L A-F2 and L B-F2. This creates an association between the visual scene at location XN-2 and the proprioceptive 
plan representing the motion from XN-2 to the pseudo reward at location XN-1.   

When this is complete, the architecture initiates the second process: prospective action, moving the agent 
from XN-1 to XN.  Activation of the P L-F2 layer by the L B module initiates episodic recall of the proprioceptive 
sequence that was stored when the agent traversed from XN-1 to XN in Trial 1.  A unique aspect of this approach 
is the use of proprioceptive recall to replay motor function, reminiscent of Common Coding Theory [9].  As 
this occurs, P S-F2 templates are channeled to the motor actuators in the same sequence that they were learned, 
reproducing the motion from location XN-1 to XN, thus walking to the reward. By recursive application of Trial 2 
notions with multiple agent release locations and orientations, the agent will learn to chain together trees of 
proprioceptive sequences to use as motor plans to move to the reward location from possibly any location in the 
tank. 

3. Experiment in a virtual Morris Water Maze 

There are three objects in the virtual Morris Water Maze environment in addition to the agent: i) the rim of 
water tank, ii) the virtual “room” surrounding the tank, and iii) the hidden platform (Fig. 1). The virtual tank is 
a circular region that confines the agent’s range of movement as well as providing proximal visual stimulus. 
Three main classes of experiment were performed: a) distal reward learning, b) persistence to goal, and c) rapid 
transfer learning.  Only the first experiment will be briefly discussed here, while the details of the other two 
may be found in Taylor [14].   

For the experiment, one trial consists of agent release from the four release points N, E, S & W (illustrated 
in Fig. 3) in a block design. One hundred trials were performed for each agent.  The distal reward learning 
experiment characterized the performance of this embodied architecture under two conditions: 1) fixed 
platform location and 2) randomly located platform.   Moving the platform to a location chosen “at random” at 
each release creates an experimental condition in which little distal reward learning is expected.  This provides 
a baseline condition for comparison. 

In this experiment, the measure of performance is the sum of distance an agent travels from each of the four 
release point for a trial.  If an individual agent is benefiting from the distal reward learning, then the distance it 
travels should decrease as a function of trial number.  For this study, individual agents differ only in the choice 
of the pseudo-randomly chosen parameters associated with their default random walk motor plans.  The null 
hypothesis is for this experiment is that agent’s performance will be the same under the two experimental 
conditions: 1) fixed platform location and 2) randomly located platform.   

 
(a)     (b) 

Fig. 4.  a) Example for one agent from fixed platform condition one showing path length data for each of the four release points verses 
learning trail number.  Path lengths are in arbitrary units fixed by the diameter of the virtual water tank. b) Example of an agent from 
varying platform location condition two showing path length data for each of the four release points verses learning trail number. 
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4. Results, Discussion, and Conclusion  

For this experiment, 40 agents were tested, 20 in condition one with the fixed platform location, and 20 in 
condition two with the platform location placed randomly per release. An example of the resulting data is given 
in Figure 4.  Comparing Fig. 4a to Fig. 4b clear shows learning differences.  ANOVA was used to compare the 
combined results for the two conditions giving a p-value of 1.956x10-4.  This indicates that a significant amount 
of distal reward learning is present in this experiment. See Taylor [14].  

This paper presented a fully autonomous neural architecture designed to implement distal reward behavior in 
embodied agents. Numerical experiments were conducted to study its performance in a virtual Morris Water 
Maze.  Analysis of these experiments showed statistically significant distal reward behavior resulting from the 
processing of this architecture.  Other more difficult learning tasks are planned for the future to challenge this 
architecture, as well are comparisons with other forms of reinforcement learning algorithms. 
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