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Error Correction in Source Code

Based on positive / negative test cases

Program isolation

Repair by insert / delete / swap

Repeat until a variant passes all tests

Minimize difference
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Example of Errant Code

Listing 1: Euclid’s greatest common divisor algorithm

1 /* requires: a >= 0, b >= 0 */

2 void gcd(int a, int b) {

3 if (a == 0) {

4 printf("%d", b);

5 }

6 while (b != 0)

7 if (a > b)

8 a = a - b;

9 else

10 b = b - a;

11 printf("%d", a);

12 exit (0);

13 }
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Variants Creation and Representation

Restricted to code substitutions from other parts

Mutation / Crossover constrained to area relevant to error

Abstract Syntax Tree (AST)

Weighted program path

Fitness =
∑N

i=1wi passed test cases
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Program Representation

An abstract syntax tree(AST). It includes all of the statements in the
program.

A weighted path through the program, (statement, weight). The
weighted path is a list of pairs, each pair contains a statement and a
weight based on that statement’s occurrences in various testcases.
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The algorithm of mutation
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The example for Mutation

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 return a;

variable: b

variable: a variable: b variable: b variable: a

bin op:
−

compare
op: >

compare
op: !=

statement
sequence

returnwhile

branch

variable: a variable: b

variable: a

constant: 0variable: b
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10

bin op:
+

assignassign

variable: a

Figure: The AST of the program
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Mutation: Swap

variable: b
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Mutation: Swap

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 return a;

1 while (b != 0)

2 if (a > b)

3 b = b + a;

4 else

5 a = a - b;

6 return a;
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Mutation: Insertion

variable: b
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Mutation: Insertion

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 return a;

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 a = a - b;

7 return a;
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Mutation: Deletion

variable: b

compare
op: >

compare
op: !=

statement
sequence

return

variable: a
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Mutation: Deletion

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 return a;

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 return a;
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Crossover

Choose a cutoff point for each program

Combine the ”first part” of one program with the ”second part” of
another and vice versa

Input: [P1, P2, P3, P4] and [Q1, Q2, Q3, Q4] with cutoff 2
Child: [P1, P2, Q3, Q4] and [Q1, Q2, P3, P4]
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Crossover

1 if (a > b)

2 a = a - b;

3 else

4 b = b - a;

1 if (a > b)

2 a = a + b;

3 else

4 b = b + a;

cutoff point at 4
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Crossover
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Crossover
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Crossover

1 if (a > b)

2 a = a - b;

3 else

4 b = b + a;

1 if (a > b)

2 a = a + b;

3 else

4 b = b - a;
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Crossover
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Crossover
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Conclusion

Demonstrated GP approach

Based on AST representation
Mutate / Crossover algorithm
Minimal code changes

Experiments over 10 test cases

Sizeable code bases
Orthogonal errors present
Reasonable solution found ( 50%)

Efficacy to code maintenance

Experiments using Amazon Cloud
Equated to under $8 per bug on average
Who wants to manually debug anyway!



Motivation Program Representation Genetic Operators Conclusion Discussion

Discussion

Limitations and Assumptions

Only as good as your test cases
Not necessarily memory / computing time optimized
Expects redundant code segments

How well does it scale?

by number of bugs...
by number of revisions...
by number of LOC...

Will this technique work on another GP?
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