
Motivation Program Representation Genetic Operators Conclusion Discussion

Automatically Finding Patches Using Genetic
Programming

Authors: Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
Stephanie Forrest

Presented by: David DeBonis, Qi Lu, Shuang Yang

Department of Computer Science

University of New Mexico

February 11, 2013

Motivation Program Representation Genetic Operators Conclusion Discussion

Outline

1 Motivation

2 Program Representation

3 Genetic Operators
Mutation
Crossover

4 Conclusion

5 Discussion

Motivation Program Representation Genetic Operators Conclusion Discussion

Error Correction in Source Code

Based on positive / negative test cases

Program isolation

Repair by insert / delete / swap

Repeat until a variant passes all tests

Minimize difference

Motivation Program Representation Genetic Operators Conclusion Discussion

Example of Errant Code

Listing 1: Euclid’s greatest common divisor algorithm

1 /* requires: a >= 0, b >= 0 */

2 void gcd(int a, int b) {

3 if (a == 0) {

4 printf("%d", b);

5 }

6 while (b != 0)

7 if (a > b)

8 a = a - b;

9 else

10 b = b - a;

11 printf("%d", a);

12 exit (0);

13 }

Motivation Program Representation Genetic Operators Conclusion Discussion

Variants Creation and Representation

Restricted to code substitutions from other parts

Mutation / Crossover constrained to area relevant to error

Abstract Syntax Tree (AST)

Weighted program path

Fitness =
∑N

i=1wi passed test cases

Motivation Program Representation Genetic Operators Conclusion Discussion

Program Representation

An abstract syntax tree(AST). It includes all of the statements in the
program.

A weighted path through the program, (statement, weight). The
weighted path is a list of pairs, each pair contains a statement and a
weight based on that statement’s occurrences in various testcases.

Motivation Program Representation Genetic Operators Conclusion Discussion

The algorithm of mutation

Motivation Program Representation Genetic Operators Conclusion Discussion

The example for Mutation

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 return a;

variable: b

variable: a variable: b variable: b variable: a

bin op:
−

compare
op: >

compare
op: !=

statement
sequence

returnwhile

branch

variable: a variable: b

variable: a

constant: 0variable: b

0.010.01

1

1

0.01

10

bin op:
+

assignassign

variable: a

Figure: The AST of the program

Motivation Program Representation Genetic Operators Conclusion Discussion

The example for Mutation

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 return a;

variable: b

variable: a variable: b variable: b variable: a

bin op:
−

compare
op: >

compare
op: !=

statement
sequence

returnwhile

branch

variable: a variable: b

variable: a

constant: 0variable: b

0.010.01

1

1

0.01

10

bin op:
+

assignassign

variable: a

Figure: The AST of the program

Motivation Program Representation Genetic Operators Conclusion Discussion

Mutation: Swap

variable: b

compare
op: >

compare
op: !=

statement
sequence

returnwhile

branch

variable: a

variable: a

constant: 0variable: b

0.010.01

1

1

0.01

10 assignassign

variable: b variable: abin op:
+

variable: b variable: a

bin op:
−

variable: bvariable: a

Motivation Program Representation Genetic Operators Conclusion Discussion

Mutation: Swap

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 return a;

1 while (b != 0)

2 if (a > b)

3 b = b + a;

4 else

5 a = a - b;

6 return a;

Motivation Program Representation Genetic Operators Conclusion Discussion

Mutation: Insertion

variable: b

compare
op: >

compare
op: !=

statement
sequence

while

branch

variable: a

constant: 0variable: b

assign

variable: a

variable: b

bin op:
−

0.01

variable: a

0.01

1 0

1

if−bodycondition

condition

body

return

0.01

variable: b bin op:
+

variable: b variable: a

variable: a

assign

else−body

bin op:
−

variable: bvariable: a

assign

variable: a

1

Motivation Program Representation Genetic Operators Conclusion Discussion

Mutation: Insertion

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 return a;

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 a = a - b;

7 return a;

Motivation Program Representation Genetic Operators Conclusion Discussion

Mutation: Deletion

variable: b

compare
op: >

compare
op: !=

statement
sequence

return

variable: a

variable: a

constant: 0variable: b

assignassign

variable: bvariable: a bin op:
+

variable: b variable: a

bin op:
−

variable: b

0.01

variable: a

0.01

1 0 1

1

0.01

if−body else−bodycondition

condition

body

while

branch

Deletion

Motivation Program Representation Genetic Operators Conclusion Discussion

Mutation: Deletion

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 else

5 b = b + a;

6 return a;

1 while (b != 0)

2 if (a > b)

3 a = a - b;

4 return a;

Motivation Program Representation Genetic Operators Conclusion Discussion

Crossover

Choose a cutoff point for each program

Combine the ”first part” of one program with the ”second part” of
another and vice versa

Input: [P1, P2, P3, P4] and [Q1, Q2, Q3, Q4] with cutoff 2
Child: [P1, P2, Q3, Q4] and [Q1, Q2, P3, P4]

Motivation Program Representation Genetic Operators Conclusion Discussion

Crossover

1 if (a > b)

2 a = a - b;

3 else

4 b = b - a;

1 if (a > b)

2 a = a + b;

3 else

4 b = b + a;

cutoff point at 4

Motivation Program Representation Genetic Operators Conclusion Discussion

Crossover

else-bodyif-body

branch

compare

op: >
assign

bin op

op: −

assign

bin op

op: −

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: b

variable

name: b

variable

name: b

variable

name: b

condition else-bodyif-body

branch

compare

op: >
assign

bin op

op: +

assign

bin op

op: +

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: b

variable

name: b

variable

name: b

variable

name: b

condition

Motivation Program Representation Genetic Operators Conclusion Discussion

Crossover

else-bodyif-body

branch

compare

op: >
assign

bin op

op: −

assign

bin op

op: +

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: b

variable

name: b

variable

name: b

variable

name: b

condition else-bodyif-body

branch

compare

op: >
assign

bin op

op: +

assign

bin op

op: −

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: b

variable

name: b

variable

name: b

variable

name: b

condition

Motivation Program Representation Genetic Operators Conclusion Discussion

Crossover

1 if (a > b)

2 a = a - b;

3 else

4 b = b + a;

1 if (a > b)

2 a = a + b;

3 else

4 b = b - a;

Motivation Program Representation Genetic Operators Conclusion Discussion

Crossover

Motivation Program Representation Genetic Operators Conclusion Discussion

Crossover

else-bodyif-body

branch

compare

op: >
assign

bin op

op: +

assign

bin op

op: −

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: b

variable

name: b

variable

name: b

variable

name: b

condition else-bodyif-body

branch

compare

op: >
assign

bin op

op: −

assign

bin op

op: +

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: b

variable

name: b

variable

name: b

variable

name: b

condition

Motivation Program Representation Genetic Operators Conclusion Discussion

Conclusion

Demonstrated GP approach

Based on AST representation
Mutate / Crossover algorithm
Minimal code changes

Experiments over 10 test cases

Sizeable code bases
Orthogonal errors present
Reasonable solution found (50%)

Efficacy to code maintenance

Experiments using Amazon Cloud
Equated to under $8 per bug on average
Who wants to manually debug anyway!

Motivation Program Representation Genetic Operators Conclusion Discussion

Discussion

Limitations and Assumptions

Only as good as your test cases
Not necessarily memory / computing time optimized
Expects redundant code segments

How well does it scale?

by number of bugs...
by number of revisions...
by number of LOC...

Will this technique work on another GP?

	Motivation
	Program Representation
	Genetic Operators
	Mutation
	Crossover

	Conclusion
	Discussion

