

Assignments – HW2 Point Distribution
N

um
be

r o
f S

tu
de

nt
s

Points (Roughly aligned with fractional letter grade)

A+

B A

C+

Median: 90% (i.e half the class got more than 90%)

Mean: 82%

B+

Please check our addition!

Assignments – HW2 Point Distribution
N

um
be

r o
f S

tu
de

nt
s

Points (Roughly aligned with fractional letter grade)

A+

B A

C+

Median: 90% (i.e half the class got more than 90%)

Mean: 82%

B+
Please check we added up your points correctly

Booting and the Kernel

Git Clone A little Kernel

• git clone https://github.com/gmfricke/bootkernel.git

"I'm an egotistical bastard, and I name
all my projects after myself. First 'Linux',
now 'git’.” –Linus Torvolds

Git Clone A little Kernel

git clone https://github.com/gmfricke/bootkernel.git

[matthew@moonshine bootkernel]$ ls -lh
total 24K
-rw-r--r--. 1 matthew matthew 261 Feb 14 12:00 boothello.asm
-rw-r--r--. 1 matthew matthew 1.4K Feb 14 12:00 bootsect.asm
-rw-r--r--. 1 matthew matthew 445 Feb 14 12:00 kernel.c
-rw-r--r--. 1 matthew matthew 186 Feb 14 12:00 kernel_entry.asm
-rw-r--r--. 1 matthew matthew 742 Feb 14 12:00 Makefile
-rw-r--r--. 1 matthew matthew 43 Feb 14 12:00 README.md
drwxr-xr-x. 2 matthew matthew 158 Feb 14 12:00 utils

https://github.com/gmfricke/bootkernel.git

Main Memory
(RAM)
• RAM is a large collection of addressable

bits.
• The CPU(s) fetch bits from a particular

address in RAM and treat them as an
instruction.

• The CPU(s) fetch bits from RAM and
treat them as data.

• The CPU decodes the instruction bits
into an operation to execute on the
data.

Nearly everything the Kernel does
revolves around main memory.

The Kernel – Memory Management

• One of the Kernels jobs is to divide the bits in RAM into regions.
• It has to allocate a region of RAM to each process on the system and

remember who owns that memory.
• The Kernel also has to make sure no process accesses RAM that

doesn’t belong to it.

The Kernel

The Kernel has four main jobs
1. Decide when each program gets to use the CPU
2. Keep track of all memory allocations and which programs own them
3. Interface with hardware through device drivers
4. Support System Calls. System calls are functions programs can use

to interact with the Kernel.

Process Management

• Processes vs Programs: A program is a set of instructions. A process is a
program plus its current data laid out in memory.
• The Kernel is responsible for starting, pausing, resuming, scheduling, and

terminating processes.
• On a typical computer many processes are running simultaneously
• Vi and Chrome might be running at the same time for example (but they

are not really running at exactly the same time [on a one core system]).
• These processes run using a time-slice approach. Each processes uses the

CPU to execute instructions for a fraction of a second before the next
process uses the CPU.
• The Kernel is responsible changing which processes is executing.

Process Management – A Single Time Slice.
• The CPU interrupts the current process execution based on a timer, switches to “Kernel Mode” and begins

executing the Kernel process.
• The Kernel records the current state of the CPU and its registers (including the program counter which keeps

track of which instruction is to be executed next).
• The process’ memory region is made read-only so it can’t change before the next time it gets a time-slice.
• The Kernel processes and events that were queued up since the last time it had control of the CPU. (maybe a

TCP/IP network packet arrived and is queued up in a buffer ready for reading or maybe a keystroke was
detected)

• The Kernel analyzes the list of processes waiting to run on the CPU and chooses one.
• The Kernel restores the registers for the process it chose (it recorded them in step 2 above last time it saw

this processes) – this is called a “Context Switch”
• The Kernel tells the CPU how long to execute this process.
• The Kernel switches the CPU into User Mode.
• The CPU begins executing the next instruction in the process (using the program counter to keep track.)

The Kernel – Memory Management

• One of the Kernels jobs is to divide the bits in RAM into regions.
• It has to allocate a region of RAM to each process on the system and

remember who owns that memory.
• The Kernel also has to make sure no process accesses RAM that

doesn’t belong to it.

The Kernel – Memory Management

• The Kernel has its own region of RAM that other processes can’t access.
• This is accomplished by the CPU not allowing any process executing while

the CPU is in User Mode from accessing the Kernel memory.
• This is enforced at the hardware level. Only when the CPU is in Kernel

Mode can it load data from Kernel Memory.
• The Kernel controls access to memory owned by User Processes. Some

Processes can share their memory (shared vs private memory)
• Some processes want their memory space to be read only.
• The Kernel also has to handle paging memory to the swap partition if it

runs out of physical RAM.

Memory Management Unit (MMU)

• To help the Kernel do its job modern computers have hardware called the
Memory Management Unit.
• Each User process on the computer sees a “virtual memory” space. On 32

bit systems virtual memory is 3 GB per process, on 64-bit systems it is 256
TB. (This is just the address space).
• The MMU maps addresses in virtual memory to real physical addresses in

actual RAM.
• The Kernel’s job is to keep track of the mapping between virtual memory

addresses and real memory addresses*.
• That’s how the Kernel controls what regions of physical memory user

processes can actually use.
*This mapping from virtual to physical memory is called a page table. It is also how the Kernel can send some memory pages to
swap on disk if needed.

The Kernel – Device Management

• Only the Kernel can tell hardware what to do. This is to prevent user
processes from doing things like telling the system to turn off.
• Devices, even of the same type, rarely have the same API (application

programming interface).
• Device drivers provide a common interface for similar devices, and

the kernel exposes an even more standard interface to user programs.
Most devices are reduced to a device file that can read and/or write
data.
• This is all the usual layers of abstraction you will have seen all through

programming to make managing the complexity of using a computer
manageable.

The Kernel - System Calls

• User processes interact with the Kernel through System Calls
(syscalls).
• You already saw the read() and write() system calls. You ran them

directly when reading and writing to the pseudo-terminal.

Install Additional Manual Pages

[matthew@localhost ~]$ sudo yum install man-pages man-db man

Last metadata expiration check: 0:43:29 ago on Wed 14 Feb 2024 12:33:11 AM CST.

Package man-db-2.9.3-7.el9.x86_64 is already installed.

Package man-db-2.9.3-7.el9.x86_64 is already installed.

Dependencies resolved.

==
===================

Package Architecture Version Repository
 Size

==
===================

Installing:

man-pag noarch 6.04-1.el9 baseos 5.7 M

Installing weak dependencies:

man-pages-overrides noarch 9.0.0.0-1.el9 appstream 16 k

Fork and Exec Syscalls

• The Kernel starts executing processes through two main system calls:

Fork – makes a copy of the current process.

The Fork Syscall (Manual Section 2)
[matthew@moonshine ~]$ man 2 fork
fork(2) System Calls Manual fork(2)

NAME

 fork - create a child process

LIBRARY

 Standard C library (libc, -lc)

SYNOPSIS

 #include <unistd.h>

 pid_t fork(void);

DESCRIPTION

 fork() creates a new process by duplicating the calling process. The

 new process is referred to as the child process. The calling process

 is referred to as the parent process.

 The child process and the parent process run in separate memory spaces.

 At the time of fork() both memory spaces have the same content. Memory

 writes, file mappings (mmap(2)), and unmappings (munmap(2)) performed

 by one of the processes do not affect the other.

Fork and Exec Syscalls

• The Kernel starts executing processes through two main system calls:

Fork – makes a copy of the current process.
Exec(program) – replaces the current process with the one containing
the binary “program”.

The Exec library functions (Manual Section 3)
[matthew@moonshine ~]$ man 3 exec
exec(3) Library Functions Manual exec(3)

NAME

 execl, execlp, execle, execv, execvp, execvpe - execute a file

DESCRIPTION

 The exec() family of functions replaces the current process image with

 a new process image. The functions described in this manual page are

 layered on top of execve(2). (See the manual page for execve(2) for

 further details about the replacement of the current process image.)

 The initial argument for these functions is the name of a file that is

 to be executed.

 The functions can be grouped based on the letters following the "exec"

 prefix.

Process Tree

• These fork and exec commands create a tree structure of processes
• The root of this tree is the “init” process (we will talk about init at the

end of this lecture)

For example,
When you run “ls” this is what happens:

Shell Process Fork()

Process Tree

• These fork and exec commands create a tree structure of processes
• The root of this tree is the “init” process (we will talk about init at the

end of this lecture)

For example,
When you run “ls” this is what happens:

Shell Process Fork() Shell Process

Shell Process
Shell Process
Duplicated

Process Tree

• These fork and exec commands create a tree structure of processes
• The root of this tree is the “init” process (we will talk about init at the

end of this lecture)

For example,
When you run “ls” this is what happens:

Shell Process Fork() Shell Process

Shell Process Exec(ls) ls

One shell process
replaced with “ls”

Shell Process

Let’s print the process tree (systemd is the most
popular Linux init program at the moment)

[matthew@moonshine ~]$ pstree -a
systemd --switched-root --system --deserialize 31

 ├─NetworkManager --no-daemon
 │ └─2*[{NetworkManager}]
 ├─rdma-ndd --systemd
 ├─rsyslogd -n
 │ └─2*[{rsyslogd}]
 ├─sshd
 │ └─sshd
 │ └─sshd
 │ └─bash
 │ └─pstree -a
 │ └─dbus-broker --log 4 --controller 9 --machine-id...
 ├─firewalld -s /usr/sbin/firewalld --nofork --nopid
 │ └─{firewalld}
 └─systemd-udevd

Let’s print the process tree (we can see our own
pstree process running under sshd and bash)

[matthew@moonshine ~]$ pstree -a
systemd --switched-root --system --deserialize 31
 ├─NetworkManager --no-daemon
 │ └─2*[{NetworkManager}]
 ├─rdma-ndd --systemd
 ├─rsyslogd -n
 │ └─2*[{rsyslogd}]
 ├─sshd
 │ └─sshd
 │ └─sshd
 │ └─bash
 │ └─pstree -a
 │ └─dbus-broker --log 4 --controller 9 --machine-id...
 ├─firewalld -s /usr/sbin/firewalld --nofork --nopid
 │ └─{firewalld}
 └─systemd-udevd

Linux is written in C and used the GNU C
Library to access many Kernel Syscalls

[matthew@moonshine ~]$ ldd --version
ldd (GNU libc) 2.34
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying
conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
Written by Roland McGrath and Ulrich Drepper.

Programs on Disk
(Images*)
• Executables and Object files

(parts of a compiled program
that can be linked together)
are stored on disk as ELF
(Executable and Linkable
Format).
• This binary file is called a

“program image”.
• Program Images can be loaded

into memory and executed
with the exec() syscall.

*nothing to do with pictures

The GNU C Compiler writes executables in ELF
(Executable and Linkable Format)

[matthew@moonshine ~]$ readelf --all /usr/bin/ls
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little
endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: DYN (Shared object file)
 Machine: Advanced Micro Devices X86-64

The GNU C Compiler writes executables in ELF
[matthew@moonshine ~]$ readelf --file-header helloworld
ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x401090

 Start of program headers: 64 (bytes into file)

 Start of section headers: 24480 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 13

 Size of section headers: 64 (bytes)

 Number of section headers: 31

 Section header string table index: 30

[matthew@moonshine ~]$ cat helloworld.cpp
#include <iostream>

using namespace std;

int main()
{
 cout << "Hello World" << endl;

 return 0;
}

[matthew@moonshine ~]$ cat helloworld.f90

program helloworld
 print *, "Hello World"
end program helloworld

The GNU C Compiler writes executables in ELF format

[matthew@moonshine ~]$ readelf --file-header helloworldf
ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x401090

 Start of program headers: 64 (bytes into file)

 Start of section headers: 24480 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 13

 Size of section headers: 64 (bytes)

 Number of section headers: 31

 Section header string table index: 30

The GNU Fortran Compiler writes executables in ELF too

[matthew@moonshine ~]$ readelf --file-header helloworldf
ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x401090

 Start of program headers: 64 (bytes into file)

 Start of section headers: 24480 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 13

 Size of section headers: 64 (bytes)

 Number of section headers: 31

 Section header string table index: 30

C ELF Helloworld – Text Section (Instructions)

[matthew@moonshine ~]$ readelf --hex-dump .text helloworld

Hex dump of section '.text':
 0x00401090 f30f1efa 31ed4989 d15e4889 e24883e41.I..^H..H..
 0x004010a0 f0505445 31c031c9 48c7c776 114000ff .PTE1.1.H..v.@..
 0x004010b0 152b2f00 00f4662e 0f1f8400 00000000 .+/...f.........
 0x004010c0 f30f1efa c3662e0f 1f840000 00000090f..........
 0x004010d0 488d3d79 2f000048 8d05722f 00004839 H.=y/..H..r/..H9
 0x004010e0 f8741548 8b05fe2e 00004885 c07409ff .t.H......H..t..
 0x004010f0 e00f1f80 00000000 c30f1f80 00000000
 0x00401100 488d3d49 2f000048 8d35422f 00004829 H.=I/..H.5B/..H)
 0x00401110 fe4889f0 48c1ee3f 48c1f803 4801c648 .H..H..?H...H..H

These are virtual addresses

Fortran ELF Helloworld – Text Section (Instructions)

[matthew@moonshine ~]$ readelf --hex-dump .text helloworldf

Hex dump of section '.text':
 0x00401080 f30f1efa 31ed4989 d15e4889 e24883e41.I..^H..H..
 0x00401090 f0505445 31c031c9 48c7c7d4 114000ff .PTE1.1.H....@..
 0x004010a0 15532f00 00f4662e 0f1f8400 00000000 .S/...f.........
 0x004010b0 f30f1efa c3662e0f 1f840000 00000090f..........
 0x004010c0 488d3d81 2f000048 8d057a2f 00004839 H.=./..H..z/..H9
 0x004010d0 f8741548 8b050e2f 00004885 c07409ff .t.H.../..H..t..
 0x004010e0 e00f1f80 00000000 c30f1f80 00000000
 0x004010f0 488d3d51 2f000048 8d354a2f 00004829 H.=Q/..H.5J/..H)
 0x00401100 fe4889f0 48c1ee3f 48c1f803 4801c648 .H..H..?H...H..H

These are virtual addresses

Program Image Display Read-Only Data

[matthew@moonshine ~]$ readelf --hex-dump .rodata helloworldf

Hex dump of section '.rodata':

 0x00402000 01000200 00000000 00000000 00000000

 0x00402010 68656c6c 6f776f72 6c642e66 39300048 helloworld.f90.H

 0x00402020 656c6c6f 20576f72 6c640000 00000000 ello World......

 0x00402030 44080000 ff0f0000 00000000 01000000 D...............

 0x00402040 01000000 00000000 1f000000

[matthew@moonshine ~]$ readelf --hex-dump .rodata helloworld

Hex dump of section '.rodata':

 0x00402000 01000200 00000000 00000000 00000000

 0x00402010 48656c6c 6f20576f 726c6400 Hello World.

Program Image Display Read-Only Data

[matthew@moonshine ~]$ readelf --hex-dump .rodata helloworldf

Hex dump of section '.rodata':

 0x00402000 01000200 00000000 00000000 00000000

 0x00402010 68656c6c 6f776f72 6c642e66 39300048 helloworld.f90.H

 0x00402020 656c6c6f 20576f72 6c640000 00000000 ello World......

 0x00402030 44080000 ff0f0000 00000000 01000000 D...............

 0x00402040 01000000 00000000 1f000000

[matthew@moonshine ~]$ readelf --hex-dump .rodata helloworld

Hex dump of section '.rodata':

 0x00402000 01000200 00000000 00000000 00000000

 0x00402010 48656c6c 6f20576f 726c6400 Hello World.

In both programs we defined the
output as a literal string, i.e. a constant:
“Hello World”

You can see the calls to glibc in the “ls” binary

[matthew@moonshine ~]$ readelf --all /usr/bin/ls
Symbol table '.dynsym' contains 125 entries:

 Num: Value Size Type Bind Vis Ndx Name
 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
 1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __[...]@GLIBC_2.3 (2)
 2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND [...]@GLIBC_2.2.5 (3)
 3: 0000000000000000 0 FUNC GLOBAL DEFAULT UND cap_to_text
 4: 0000000000000000 0 OBJECT GLOBAL DEFAULT UND [...]@GLIBC_2.2.5 (3)
 5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND [...]@GLIBC_2.2.5 (3)
 6: 0000000000000000 0 FUNC GLOBAL DEFAULT UND [...]@GLIBC_2.3.4 (4)
 7: 0000000000000000 0 FUNC GLOBAL DEFAULT UND raise@GLIBC_2.2.5 (3)
 8: 0000000000000000 0 FUNC GLOBAL DEFAULT UND free@GLIBC_2.2.5 (3)
 9: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _[...]@GLIBC_2.34 (5)

The Kernel is also an ELF file names vmlinux. It is normally compressed
into a vmlinuz file. You can find it in the /boot directory
Let’s install a decompression tool.
[matthew@moonshine ~]$ sudo yum install kernel-devel
Last metadata expiration check: 0:01:43 ago on Wed 14 Feb 2024 10:40:13 AM CST.

Dependencies resolved.
==
==

Package Architecture Version
 Repository Size

==
==

Installing:

kernel-devel x86_64 5.14.0-
362.18.1.el9_3 appstream 20 M

Upgrading:
openssl x86_64 1:3.0.7-
25.el9_3 baseos 1.2 M

openssl-libs x86_64

Create a directory under temp to store the
decompressed kernel program image.
[matthew@moonshine ~]$ mkdir /tmp/kernel-extract

Uname –r returns the version of the running
kernel
[matthew@moonshine ~]$ uname –r
5.14.0-362.8.1.el9_3.x86_64

Copy the compressed kernel image into your
temp directory

[matthew@moonshine ~]$ sudo cp /boot/vmlinuz-$(uname -r)
/tmp/kernel-extract/

Copy the compressed kernel image into your
temp directory

[matthew@moonshine ~]$ sudo cp /boot/vmlinuz-$(uname -r)
/tmp/kernel-extract/

We captured output of the uname –r command and used it in
a command with $(uname -r).

$(uname -r) is substituted for 5.14.0-362.8.1.el9_3.x86_64

Capturing output like this to use in a command is very
common and useful.

Let’s make sure the extract-vmlinux script was installed.
We use the “file” command to see what type of file
extract-vmlinux is.

[matthew@moonshine]$ file /usr/src/kernels/5.14.0-362.18.1.el9_3.x86_64/scripts/extract-vmlinux

This kernel source version might be later than the installed kernel – just tab
complete the version you see in

When I tested this the path had version x.18 instead of version x.8

Let’s make sure the extract-vmlinux script was installed.
We use the “file” command to see what type of file
extract-vmlinux is.
[matthew@moonshine]$ file /usr/src/kernels/5.14.0-
362.18.1.el9_3.x86_64/scripts/extract-vmlinux
/usr/src/kernels/5.14.0-362.18.1.el9_3.x86_64/scripts/extract-vmlinux: a
/usr/bin/sh script, ASCII text executable

Let’s make sure the extract-vmlinux script was installed.
We use the “file” command to see what type of extract-
vmlinux.
[matthew@moonshine ~]$ cd /tmp/kernel-extract/
[matthew@moonshine kernel-extract]$ ls -lah
total 13M

drwxr-xr-x. 2 matthew matthew 64 Feb 14 10:50 .

drwxrwxrwt. 11 root root 4.0K Feb 14 10:43 ..

-rwxr-xr-x. 1 root root 13M Feb 14 10:45 vmlinuz-5.14.0-362.8.1.el9_3.x86_64

Run the extract script on vmlinuz

[matthew@moonshine kernel-extract]$ /usr/src/kernels/5.14.0-
362.18.1.el9_3.x86_64/scripts/extract-vmlinux vmlinuz-5.14.0-
362.8.1.el9_3.x86_64 > vmlinux

Send the output to a file

Run the extract script on vmlinuz and check it is
there.
[matthew@moonshine kernel-extract]$ /usr/src/kernels/5.14.0-
362.18.1.el9_3.x86_64/scripts/extract-vmlinux vmlinuz-5.14.0-
362.8.1.el9_3.x86_64 > vmlinux

[matthew@moonshine kernel-extract]$ ls -lah

total 84M

drwxr-xr-x. 2 matthew matthew 64 Feb 14 10:50 .

drwxrwxrwt. 11 root root 4.0K Feb 14 11:14 ..
-rw-r--r--. 1 matthew matthew 72M Feb 14 11:14 vmlinux

-rwxr-xr-x. 1 root root 13M Feb 14 10:45 vmlinuz-5.14.0-
362.8.1.el9_3.x86_64

Inspect the kernel image with readelf.

[matthew@moonshine kernel-extract]$ readelf --headers vmlinux

[matthew@moonshine kernel-extract]$ readelf –hex-dump .text vmlinux

[matthew@moonshine kernel-extract]$ readelf –hex-dump .rodata vmlinux

Inspect the kernel image with readelf.

[matthew@moonshine kernel-extract]$ readelf --headers vmlinux

[matthew@moonshine kernel-extract]$ readelf –hex-dump .text vmlinux

[matthew@moonshine kernel-extract]$ readelf –hex-dump .rodata vmlinux

The point of all this is to show you that the Kernel Image is just an ELF that can be loaded into
memory like any other program you might write.

Pseudodevices

• Lastly the Kernel provides some convenient, but fake, devices.
• You have already seen /dev/random.

Overview of the Boot Process

1. BIOS (Basic-Input-Output System) loads with settings stored on a
CMOS (Complementary Metal-Oxide Semiconductor) chip
 and/or
 UEFI (Unified Extended Firmware Interface) loads from NVRAM
(Non-Volatile Random-Access Memory) chip.

Overview of the Boot Process

1. BIOS (Basic-Input-Output System) loads with settings stored on a CMOS
(Complementary Metal-Oxide Semiconductor) chip
 and/or
 UEFI (Unified Extended Firmware Interface) loads from NVRAM (Non-
Volatile Random-Access Memory) chip.
2. The BIOS tell the CPU to execute a program starting at the first
byte of the MBR.
 or
 The UEFI tell the CPU to begin executing a boot loader program
from the EFI partition.

Overview of the Boot Process

1. BIOS (Basic-Input-Output System) loads with settings stored on a CMOS
(Complementary Metal-Oxide Semiconductor) chip
 and/or
 UEFI (Unified Extended Firmware Interface) loads from NVRAM (Non-
Volatile Random-Access Memory) chip.
2. The BIOS tell the CPU to execute a program starting at the first byte of the
MBR.
 or
 The UEFI tell the CPU to begin executing a boot loader program from the
EFI partition.
3. The bootloader finds the kernel program, loads it into “Kernel Space”
RAM and starts executing it. The bootloader finishes.

Overview of the Boot Process

1. BIOS (Basic-Input-Output System) loads with settings stored on a CMOS (Complementary
Metal-Oxide Semiconductor) chip
 and/or
 UEFI (Unified Extended Firmware Interface) loads from NVRAM (Non-Volatile Random-
Access Memory) chip.
2. The BIOS tell the CPU to execute a program starting at the first byte of the MBR.
 or
 The UEFI tell the CPU to begin executing a boot loader program from the EFI partition.
3. The bootloader finds the kernel program loads it into “Kernel Space” RAM and starts
executing it. The bootloader finishes.

4. The Kernel discovers devices and loads the
appropriate drivers.

Overview of the Boot Process

1. BIOS (Basic-Input-Output System) loads with settings stored on a CMOS (Complementary
Metal-Oxide Semiconductor) chip
 and/or
 UEFI (Unified Extended Firmware Interface) loads from NVRAM (Non-Volatile Random-
Access Memory) chip.
2. The BIOS tell the CPU to execute a program starting at the first byte of the MBR.
 or
 The UEFI tell the CPU to begin executing a boot loader program from the EFI partition.
3. The bootloader finds the kernel program loads it into “Kernel Space” RAM and starts
executing it. The bootloader finishes.
4. The Kernel discovers devices in and attached to the computer and loads the appropriate
drivers.

5. The Kernel mounts the root filesystem.

Overview of the Boot Process
1. BIOS (Basic-Input-Output System) loads with settings stored on a CMOS (Complementary Metal-Oxide
Semiconductor) chip
 and/or
 UEFI (Unified Extended Firmware Interface) loads from NVRAM (Non-Volatile Random-Access Memory)
chip.
2. The BIOS tell the CPU to execute a program starting at the first byte of the MBR.
 or
 The UEFI tell the CPU to begin executing a boot loader program from the EFI partition.
3. The bootloader finds the kernel program loads it into “Kernel Space” RAM and starts executing it. The
bootloader finishes.
4. The Kernel discovers devices in and attached to the computer and loads the appropriate drivers.
5. The Kernel mounts the root filesystem.

6. The Kernel loads ”Init” (usually the systemd program) program into
“User space” RAM.

Booting and the Kernel - Timeline

BIOS

• Basic I/O System
• First program that runs when you turn-

on/reset the computer
• Initial interface between the hardware

and the operating system
• Responsible for allowing you to control

your computer’s hardware settings for
booting up
• In a multi-processor or multi-core

system one CPU is dynamically chosen
to be the bootstrap processor (BSP)
that runs all of the BIOS and kernel
initialization code, others are called
application processors(AP)
• So when these processors come

into play?? Wait, we will get there!!

• BIOS ROM
• Stored on EEPROM

(programmable)
• Called flash BIOS

• BIOS CMOS Memory
• Non-volatile storage for boot-up

settings
• Need very little power to operate
• Powered by lithium battery

x86 Compatible CPUs have 16 bit (real mode)
and 32 bit (protected mode)

The x86 dominated
the CPU market since
1978 when Intel
introduces the 16-bit
8086 microprocessor.
It will become an
industry standard.

x64 was invented by Advanced Micro
Devices (AMD)
64bits: 16 EB (exabyte=billion GB)
RAM

16bit: 64KB RAM
32bit: 4GB RAM

x86 Compatible
CPUs have 16 bit
and 32 bit modes

• All the x86 compatible chips
maintain compatibility and go
through their 16 bit and 32 bit
modes before 64 bit.

• ARM CPUs (like your phone or a
new Mac) don’t have 16 bit mode
and are not x86 compatible.

Basic BIOS Startup Routine

• Check CMOS setup for custom settings

• Load the interrupt handlers and device
drivers

• Initialize registers and power management
settings (ACPI)

• Initializes RAM

• POST (Power on Self-test)

• Display BIOS settings
• Determine which devices are bootable

• Initiate bootstrap sequence

;--
; WRITE_TTY :
; THIS INTERFACE PROVIDES A TELETYPE LIKE INTERFACE TO THE VIDEO :
; CARD. THE INPUT CHARACTER IS WRITTEN TO THE CURRENT CURSOR :
; POSITION, AND THE CURSOR IS MOVED TO THE NEXT POSITION. IF THE :
; CURSOR LEAVES THE LAST COLUMN OF THE FIELD, THE COLUMN IS SET :
; TO ZERO, AND THE ROW VALUE IS INCREMENTED. IF THE ROW VALUE :
; LEAVES THE FIELD, THE CURSOR IS PLACED ON THE LAST ROW, FIRST :
; COLUMN, AND THE ENTIRE SCREEN IS SCROLLED UP ONE LINE. WHEN :
; THE SCREEN IS SCROLLED UP, THE ATTRIBUTE FOR FILLING THE NEWLY :
; BLANKED LINE IS READ FROM THE CURSOR POSITION ON THE PREVIOUS :
; LINE BEFORE THE SCROLL, IN CHARACTER MODE. IN GRAPHICS MODE, :
; THE 0 COLOR IS USED. :

; ENTRY
 :
; (AH) = CURRENT CRT MODE
 :
; (AL) = CHARACTER TO BE WRITTEN
 :
; NOTE THAT BACK SPACE, CAR RET, BELL AND LINE FEED ARE HANDLED :
; AS COMMANDS RATHER THAN AS DISPLAYABLE GRAPHICS :
; (BL) = FOREGROUND COLOR FOR CHAR WRITE IF CURRENTLY IN A :
; GRAPHICS MODE
 :
; EXIT
 :
; ALL REGISTERS SAVED
 :
;--
 ASSUME CS:CODE,DS:DATA
WRITE_TTY PROC NEAR
 PUSH AX ; SAVE REGISTERS
 PUSH AX ; SAVE CHAR TO WRITE
 MOV AH,3
 MOV BH,ACTIVE_PAGE ; GET THE CURRENT ACTIVE PAGE
 INT 10H ; READ THE CURRENT
CURSOR POSITION
 POP AX ; RECOVER CHAR

;----- DX NOW HAS THE CURRENT CURSOR POSITION

 CMP AL,8 ; IS IT A BACKSPACE
 JE U8 ; BACK_SPACE
 CMP AL,0DH ; IS IT CARRIAGE RETURN
 JE U9 ; CAR_RET
 CMP AL,0AH ; IS IT A LINE FEED
 JE U10 ; LINE_FEED
 CMP AL,07H ; IS IT A BELL
 JE U11 ; BELL

https://github.com/philspil66/IBM-PC-BIOS/blob/main/PCBIOSV3.ASM

;----- WRITE THE CHAR TO THE SCREEN

 MOV AH,10 ; WRITE CHAR ONLY
 MOV CX,1 ; ONLY ONE CHAR
 INT 10H ; WRITE THE CHAR

;----- POSITION THE CURSOR FOR NEXT CHAR

 INC DL
 CMP DL,BYTE PTR CRT_COLS ; TEST FOR COLUMN OVERFLOW
 JNZ U7 ; SET CURSOR
 MOV DL,0 ; COLUMN FOR CURSOR
 CMP DH,24
 JNZ U6 ; SET_CURSOR_INC

;----- SCROLL REQUIRED

U1:
 MOV AH,2
 INT 10H ; SET THE CURSOR

IBM BIOS Assembly Language Source Code

Startup Messages (-k for this boot, -b for
previous kernel boot logs)
[matthew@moonshine ~]$ sudo journalctl -k
Feb 06 20:21:02 localhost kernel: microcode: microcode updated early to revision 0x71a, date = 2020-03-24

Feb 06 20:21:02 localhost kernel: Linux version 5.14.0-362.8.1.el9_3.x86_64 (mockbuild@iad1-prod-
build001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20230>

Feb 06 20:21:02 localhost kernel: The list of certified hardware and cloud instances for Enterprise Linux 9 can be viewed
at the Red Hat Ecosystem Catalo>

Feb 06 20:21:02 localhost kernel: Command line: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-362.8.1.el9_3.x86_64
root=/dev/mapper/rl_dhcp52-root ro crashkernel=>

Feb 06 20:21:02 localhost kernel: x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'

Feb 06 20:21:02 localhost kernel: x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'

Feb 06 20:21:02 localhost kernel: x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'

Feb 06 20:21:02 localhost kernel: x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256

Feb 06 20:21:02 localhost kernel: x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using 'standard'
format.

Feb 06 20:21:02 localhost kernel: signal: max sigframe size: 1776

Feb 06 20:21:02 localhost kernel: BIOS-provided physical RAM map:
Feb 06 20:21:02 localhost kernel: BIOS-e820: [mem 0x0000000000010000-0x000000000009ffff] usable

Feb 06 20:21:02 localhost kernel: BIOS-e820: [mem 0x0000000000100000-0x00000000c42d4fff] usable

Kernel Init & Boot Options
Feb 06 20:21:02 localhost kernel: Built 2 zonelists, mobility grouping on. Total pages:
16491006

Feb 06 20:21:02 localhost kernel: Policy zone: Normal
Feb 06 20:21:02 localhost kernel: Kernel command line:
BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-362.8.1.el9_3.x86_64
root=/dev/mapper/rl_dhcp52-root ro crash>
Feb 06 20:21:02 localhost kernel: Unknown kernel command line parameters
"BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-362.8.1.el9_3.x86_64", will be passed to u>
Feb 06 20:21:02 localhost kernel: mem auto-init: stack:off, heap alloc:off, heap free:off

Feb 06 20:21:02 localhost kernel: software IO TLB: area num 32.
Feb 06 20:21:02 localhost kernel: Memory: 2739448K/67011080K available (16384K kernel
code, 5596K rwdata, 11444K rodata, 3824K init, 18424K bss, 1954084K>

Feb 06 20:21:02 localhost kernel: random: get_random_u64 called from
kmem_cache_open+0x1e/0x310 with crng_init=0

Feb 06 20:21:02 localhost kernel: SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=32,
Nodes=2

Feb 06 20:21:02 localhost kernel: Kernel/User page tables isolation: enabled

The Kernel needs to know which partition
contains the root filesystem
Feb 06 20:21:02 localhost kernel: Built 2 zonelists, mobility grouping on. Total pages:
16491006

Feb 06 20:21:02 localhost kernel: Policy zone: Normal
Feb 06 20:21:02 localhost kernel: Kernel command line: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-
5.14.0-362.8.1.el9_3.x86_64 root=/dev/mapper/rl_dhcp52-root ro crash>
Feb 06 20:21:02 localhost kernel: Unknown kernel command line parameters
"BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-362.8.1.el9_3.x86_64", will be passed to u>

Feb 06 20:21:02 localhost kernel: mem auto-init: stack:off, heap alloc:off, heap free:off
Feb 06 20:21:02 localhost kernel: software IO TLB: area num 32.

Feb 06 20:21:02 localhost kernel: Memory: 2739448K/67011080K available (16384K kernel
code, 5596K rwdata, 11444K rodata, 3824K init, 18424K bss, 1954084K>
Feb 06 20:21:02 localhost kernel: random: get_random_u64 called from
kmem_cache_open+0x1e/0x310 with crng_init=0
Feb 06 20:21:02 localhost kernel: SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=32,
Nodes=2

Feb 06 20:21:02 localhost kernel: Kernel/User page tables isolation: enabled

Any arguments the Kernel doesn’t understand gets passed to init later.
For example, BOOT_IMAGE is not something the Kernel understands.

Feb 06 20:21:02 localhost kernel: Built 2 zonelists, mobility grouping on. Total pages:
16491006

Feb 06 20:21:02 localhost kernel: Policy zone: Normal
Feb 06 20:21:02 localhost kernel: Kernel command line:
BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-362.8.1.el9_3.x86_64
root=/dev/mapper/rl_dhcp52-root ro crash>
Feb 06 20:21:02 localhost kernel: Unknown kernel command line parameters
"BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-362.8.1.el9_3.x86_64", will be passed to u>
Feb 06 20:21:02 localhost kernel: mem auto-init: stack:off, heap alloc:off, heap free:off

Feb 06 20:21:02 localhost kernel: software IO TLB: area num 32.

Feb 06 20:21:02 localhost kernel: Memory: 2739448K/67011080K available (16384K kernel
code, 5596K rwdata, 11444K rodata, 3824K init, 18424K bss, 1954084K>

Feb 06 20:21:02 localhost kernel: random: get_random_u64 called from
kmem_cache_open+0x1e/0x310 with crng_init=0

Feb 06 20:21:02 localhost kernel: SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=32,
Nodes=2
Feb 06 20:21:02 localhost kernel: Kernel/User page tables isolation: enabled

The kernel eventually starts the init process
(systemd)
[matthew@moonshine ~]$ sudo journalctl -k | grep -A15 "init process"

Get the Kernel boot log

The kernel eventually starts the init process
(systemd)
[matthew@moonshine ~]$ sudo journalctl -k | grep -A15 "init process"

Get the Kernel boot log “Pipe” the output
 to grep

The kernel eventually starts the init process
(systemd)
[matthew@moonshine ~]$ sudo journalctl -k | grep -A15 "init process"

Get the Kernel boot log “Pipe” the output
 to grep

Filter the output
on “init process”

The kernel eventually starts the init process
(systemd)
[matthew@moonshine ~]$ sudo journalctl -k | grep -A15 "init process"

Print 15 lines
After the line that matches

“init process”

The kernel eventually starts the init process
(systemd)
[matthew@moonshine ~]$ sudo journalctl -k | grep -A15 "init process"
Feb 06 20:21:02 localhost kernel: Run /init as init process
Feb 06 20:21:02 localhost kernel: with arguments:
Feb 06 20:21:02 localhost kernel: /init
Feb 06 20:21:02 localhost kernel: with environment:
Feb 06 20:21:02 localhost kernel: HOME=/
Feb 06 20:21:02 localhost kernel: TERM=linux
Feb 06 20:21:02 localhost kernel: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-362.8.1.el9_3.x86_64
Feb 06 20:21:02 localhost kernel: ERST: NVRAM ERST Log Address Range not implemented yet.
Feb 06 20:21:02 localhost kernel: usb 1-1.5: new low-speed USB device number 4 using ehci-pci
Feb 06 20:21:02 localhost systemd[1]: systemd 252-18.el9 running in system mode (+PAM +AUDIT +SELINUX -
APPARMOR +IMA +SMACK +SECCOMP +GCRYPT +GNUTLS +OPENSSL +ACL +BLKID +CURL +ELFUTILS -FIDO2 +IDN2 -IDN -
IPTC +KMOD +LIBCRYPTSETUP +LIBFDISK +PCRE2 -PWQUALITY +P11KIT -QRENCODE +TPM2 +BZIP2 +LZ4 +XZ +ZLIB
+ZSTD -BPF_FRAMEWORK +XKBCOMMON +UTMP +SYSVINIT default-hierarchy=unified)
Feb 06 20:21:02 localhost systemd[1]: Detected architecture x86-64.
Feb 06 20:21:02 localhost systemd[1]: Running in initrd.
Feb 06 20:21:02 localhost systemd[1]: No hostname configured, using default hostname.
Feb 06 20:21:02 localhost systemd[1]: Hostname set to <localhost>.
Feb 06 20:21:02 localhost kernel: usb 1-1.5: New USB device found, idVendor=413c, idProduct=2105,
bcdDevice= 3.52
Feb 06 20:21:02 localhost kernel: usb 1-1.5: New USB device strings: Mfr=1, Product=2, SerialNumber=0

The kernel eventually starts the init process
(systemd)
[matthew@moonshine ~]$ sudo journalctl -k | grep -A15 "init process"
Feb 06 20:21:02 localhost kernel: Run /init as init process
Feb 06 20:21:02 localhost kernel: with arguments:
Feb 06 20:21:02 localhost kernel: /init
Feb 06 20:21:02 localhost kernel: with environment:
Feb 06 20:21:02 localhost kernel: HOME=/
Feb 06 20:21:02 localhost kernel: TERM=linux
Feb 06 20:21:02 localhost kernel: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-362.8.1.el9_3.x86_64
Feb 06 20:21:02 localhost kernel: ERST: NVRAM ERST Log Address Range not implemented yet.
Feb 06 20:21:02 localhost kernel: usb 1-1.5: new low-speed USB device number 4 using ehci-pci
Feb 06 20:21:02 localhost systemd[1]: systemd 252-18.el9 running in system mode (+PAM +AUDIT +SELINUX
-APPARMOR +IMA +SMACK +SECCOMP +GCRYPT +GNUTLS +OPENSSL +ACL +BLKID +CURL +ELFUTILS -FIDO2 +IDN2 -IDN
-IPTC +KMOD +LIBCRYPTSETUP +LIBFDISK +PCRE2 -PWQUALITY +P11KIT -QRENCODE +TPM2 +BZIP2 +LZ4 +XZ +ZLIB
+ZSTD -BPF_FRAMEWORK +XKBCOMMON +UTMP +SYSVINIT default-hierarchy=unified)
Feb 06 20:21:02 localhost systemd[1]: Detected architecture x86-64.
Feb 06 20:21:02 localhost systemd[1]: Running in initrd.
Feb 06 20:21:02 localhost systemd[1]: No hostname configured, using default hostname.
Feb 06 20:21:02 localhost systemd[1]: Hostname set to <localhost>.
Feb 06 20:21:02 localhost kernel: usb 1-1.5: New USB device found, idVendor=413c, idProduct=2105,
bcdDevice= 3.52
Feb 06 20:21:02 localhost kernel: usb 1-1.5: New USB device strings: Mfr=1, Product=2, SerialNumber=0

You can see the kernel’s boot arguments with

[matthew@moonshine ~]$ cat /proc/cmdline
BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-
362.8.1.el9_3.x86_64 root=/dev/mapper/rl_dhcp52-root ro
crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M
resume=/dev/mapper/rl_dhcp52-swap
rd.lvm.lv=rl_dhcp52/root rd.lvm.lv=rl_dhcp52/swap

Kernel Space vs User Space RAM

• This separation of RAM spaces can be enforced at the hardware level
(e.g. on x86 chips SMEP/SMAP)

Boot Loaders

• The boot loader (remember it’s in the MBR or EFI) starts the
kernel.
• To do this it needs two things:

1. Where is the Kernel image located
2. What arguments should be passed to the Kernel
3. The Kernel is usually in the root filesystem, but it’s the Kernel’s job to

know about filesystems and devices like harddrives and its not loaded
yet.

To get around this BIOS and UEFI systems provide an LBA (Logical Block
Addressing) interface to the hard disk. This works but is very slow. After
the Kernel is loaded it can use high-speed drivers.

The bootloader used LBA to open and read the Kernel image into RAM
and the Kernel starts executing.

You can check the boot settings (and if it uses
EFI)
[matthew@moonshine ~]$ efibootmgr
BootCurrent: 0007

Timeout: 0 seconds

BootOrder: 0007,0006,0000,0008,0001,0002,0003,0004,0005

Boot0000* HL-DT-ST DVD-ROM DU30N

Boot0001* Broadcom NetXtreme Gigabit Ethernet (BCM5720)

Boot0002* Broadcom NetXtreme Gigabit Ethernet (BCM5720)

Boot0003* Broadcom NetXtreme Gigabit Ethernet (BCM5720)

Boot0004* Broadcom NetXtreme Gigabit Ethernet (BCM5720)

Boot0005* USB DISK 3.0

Boot0006* Windows Boot Manager

Boot0007* Rocky Linux

Boot0008* EFI Fixed Disk Boot Device 1

The Grand Unified Bootloader

• Grub is the most common boot loader program.
• It is just powerful enough to understand partitions tables and how to

use LBA to read files from disk.
• It is able to display a menu to the user in case they want to select

from multiple Linux Kernels, or give Kernels different options, or even
boot from Windows.

When troubleshooting a Linux boot problem, the first program you
have to interact with will be the bootloader.

Grub2 Showing Rocky 9 Boot Options

GRUB2

• Grub is only able to read disks with LBA, but that’s enough to read
long config files stored outside the MBR if needed.

[matthew@moonshine ~]$ sudo ls /boot/grub2/
[sudo] password for matthew:
fonts grub.cfg grubenv

GRUB2

[matthew@moonshine ~]$ sudo less /boot/grub2/grub.cfg
#
DO NOT EDIT THIS FILE
#

It is automatically generated by grub2-mkconfig using templates
from /etc/grub.d and settings from /etc/default/grub
#

BEGIN /etc/grub.d/00_header
set pager=1

if [-f ${config_directory}/grubenv]; then
 load_env -f ${config_directory}/grubenv

elif [-s $prefix/grubenv]; then
 load_env

fi
if ["${next_entry}"] ; then

 set default="${next_entry}"
 set next_entry=
 save_env next_entry
 set boot_once=true

else
 set default="${saved_entry}"

fi

GRUB2 – Config File
[matthew@moonshine ~]$ sudo cat /etc/default/grub
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M
resume=/dev/mapper/rl_dhcp52-swap rd.lvm.lv=rl_dhcp52/root
rd.lvm.lv=rl_dhcp52/swap"
GRUB_DISABLE_RECOVERY="true"
GRUB_ENABLE_BLSCFG=true

GRUB2 – Config Directory
[matthew@moonshine ~]$ sudo ls -l /etc/grub.d/
total 104
-rwxr-xr-x. 1 root root 9346 Nov 8 08:28 00_header
-rwxr-xr-x. 1 root root 236 Nov 8 08:28 01_users
-rwxr-xr-x. 1 root root 835 Nov 8 08:28 08_fallback_counting
-rwxr-xr-x. 1 root root 19665 Nov 8 08:28 10_linux
-rwxr-xr-x. 1 root root 833 Nov 8 08:28 10_reset_boot_success
-rwxr-xr-x. 1 root root 892 Nov 8 08:28 12_menu_auto_hide
-rwxr-xr-x. 1 root root 410 Nov 8 08:28 14_menu_show_once
-rwxr-xr-x. 1 root root 13613 Nov 8 08:28 20_linux_xen
-rwxr-xr-x. 1 root root 2562 Nov 8 08:28 20_ppc_terminfo
-rwxr-xr-x. 1 root root 10869 Nov 8 08:28 30_os-prober
-rwxr-xr-x. 1 root root 1122 Nov 8 08:28 30_uefi-firmware
-rwxr-xr-x. 1 root root 725 Nov 8 07:29 35_fwupd
-rwxr-xr-x. 1 root root 218 Nov 8 08:28 40_custom
-rwxr-xr-x. 1 root root 219 Nov 8 08:28 41_custom
-rw-r--r--. 1 root root 483 Nov 8 08:28 README

GRUB2 – For UEFI Systems with an GPT
Partition Scheme and EFI Partition

[matthew@moonshine ~]$ sudo file
/boot/efi/EFI/rocky/grubx64.efi
/boot/efi/EFI/rocky/grubx64.efi: PE32+ executable (EFI application) x86-
64 (stripped to external PDB), for MS Windows

Windows 64-bit Program (PE is Portable Executable) not ELF format.

This is because the EFI Bootloader has to be Windows compatible to boot Windows.

GRUB2 – For UEFI Systems with an GPT
Partition Scheme and EFI Partition
[matthew@moonshine ~]$ sudo objdump -x -D /boot/efi/EFI/rocky/grubx64.efi | head -n 20

/boot/efi/EFI/rocky/grubx64.efi: file format pei-x86-64
/boot/efi/EFI/rocky/grubx64.efi
architecture: i386:x86-64, flags 0x00000103:
HAS_RELOC, EXEC_P, D_PAGED
start address 0x0000000000001000

Characteristics 0x20e
executable
line numbers stripped
symbols stripped
debugging information removed

Time/Date Wed Dec 31 18:00:00 2014
Magic 020b (PE32+)
MajorLinkerVersion 0
MinorLinkerVersion 0
SizeOfCode 0000000000019000
SizeOfInitializedData 000000000024e000
SizeOfUninitializedData 0000000000000000

GRUB2 – Here is some of the bootloader
assembly code.
[matthew@moonshine ~]$ sudo objdump -x -D /boot/efi/EFI/rocky/grubx64.efi

…

 180be8: 83 e0 01 and $0x1,%eax
 180beb: 89 c2 mov %eax,%edx
 180bed: 0f b6 45 e0 movzbl -0x20(%rbp),%eax
 180bf1: 83 e0 fe and $0xfffffffe,%eax
 180bf4: 09 d0 or %edx,%eax
 180bf6: 88 45 e0 mov %al,-0x20(%rbp)
 180bf9: 48 8b 45 c8 mov -0x38(%rbp),%rax
 180bfd: 48 83 c0 2e add $0x2e,%rax
 180c01: 48 8d 55 e0 lea -0x20(%rbp),%rdx
 180c05: 48 83 c2 08 add $0x8,%rdx
 180c09: 48 89 d6 mov %rdx,%rsi
 180c0c: 48 89 c7 mov %rax,%rdi
 180c0f: 48 b8 00 00 00 00 00 movabs $0x0,%rax

…

A tiny bootloader and kernel

Git Clone A little Kernel

mfricke@wheeler$ git clone https://github.com/gmfricke/bootkernel.git
mfricke@wheeler$ cd bootkernel
[mfricke@wheeler bootkernel]$ ls -lh
total 24K
-rw-r--r--. 1 matthew matthew 261 Feb 14 12:00 boothello.asm
-rw-r--r--. 1 matthew matthew 1.4K Feb 14 12:00 bootsect.asm
-rw-r--r--. 1 matthew matthew 445 Feb 14 12:00 kernel.c
-rw-r--r--. 1 matthew matthew 186 Feb 14 12:00 kernel_entry.asm
-rw-r--r--. 1 matthew matthew 742 Feb 14 12:00 Makefile
-rw-r--r--. 1 matthew matthew 43 Feb 14 12:00 README.md
drwxr-xr-x. 2 matthew matthew 158 Feb 14 12:00 utils

https://github.com/gmfricke/bootkernel.git

mfricke@wheeler:~/bootkernel [main ?]$ module load nasm qemu

mfricke@wheeler:~/bootkernel [main ?]$ module load nasm qemu

Loading the Network Assembler (most popular assembly program) and qemu.
Qemu is an emulator that will let us run our little bootloader and kernel
without having to burn a disk.

mfricke@wheeler:~/bootkernel [main ?]$ cat Makefile
Some useful Makefile abbreviations
$@ = target file
$< = first dependency
$^ = all dependencies
\

First rule is the one executed when no parameters are fed to the Makefile
all: run

Notice how dependencies are built as needed
kernel.bin: kernel_entry.o kernel.o
 ld -m elf_i386 -s -o $@ -Ttext 0x1000 $^ --oformat binary

kernel_entry.o: kernel_entry.asm
 nasm $< -f elf -o $@

kernel.o: kernel.c
 gcc -fno-pic -m32 -ffreestanding -c $< -o $@

Rule to disassemble the kernel - may be useful to debug
kernel.dis: kernel.bin
 ndisasm -b 32 $< > $@

bootsect.bin: bootsect.asm
 nasm $< -f bin -o $@

boothello.bin: bootsect.asm
 nasm $< -f bin -o $@

os-image.bin: bootsect.bin kernel.bin
 cat $^ > $@

run: os-image.bin
 qemu-system-i386 -curses -fda $<

clean:
 rm *.bin *.o *.dis

mfricke@wheeler:~/bootkernel [main]$ cat boothello.asm

mov ah, 0x0e ; tty
mode

mov al, 'H'
int 0x10
mov al, 'e'
int 0x10
mov al, 'l'
int 0x10
int 0x10 ; 'l' is still on al,
remember?

mov al, 'o'
int 0x10

jmp $; jump to current address = infinite
loop

; padding and magic
number

times 510 - ($-$$) db 0
dw 0xaa55

mfricke@wheeler:~/bootkernel [main]$ make boothello.bin
nasm bootsect.asm -f bin -o boothello.bin

This is gets compiled into binary. It’s the
MBR bootloader.

Launch an interactive shell on a Wheeler
compute node
mfricke@wheeler:~ $ qgrok

First, we check to make sure there are CPUs
available for us to use with qgrok.

Launch an interactive shell on a Wheeler
compute node
mfricke@wheeler:~ $ qgrok

First, we check to make sure there are CPUs
available for us to use with qgrok.

Launch an interactive shell on a Wheeler
compute node
mfricke@wheeler:~/bootkernel $ srun --pty bash
mfricke@wheeler005:~/bootkernel $

srun is a SLURM command that allocates compute
resources. –-pty creates a pseudoterminal. Bash is
the process we start on the compute node.

mfricke@wheeler005:~/bootkernel $ qemu-system-i386 -curses -hda boothello.bin

Qemu emulates a standard BIOS.
We set our boot disk to be the code we
compiled.

Boothello meets the requirements for an
MBR bootloader

mfricke@wheeler005:~/bootkernel $ qemu-system-i386 -curses -hda boothello.bin

After running this command. You can kill
the process by closing your terminal.

You will have to login to wheeler again to
run the next part.

[org 0x7c00]
KERNEL_OFFSET equ 0x1000 ; The same one we used when linking
the kernel

 mov [BOOT_DRIVE], dl ; The BIOS sets the boot drive in
'dl' on boot
 mov bp, 0x9000
 mov sp, bp

 mov bx, MSG_REAL_MODE
 call print
 call print_nl

 call load_kernel ; read the kernel from
disk

 call switch_to_pm ; disable interrupts, load GDT, etc.

Finally jumps to 'BEGIN_PM'
 jmp $; Never

executed

[bits 16]
load_kernel:
 mov bx, MSG_LOAD_KERNEL
 call print
 call print_nl

 mov bx, KERNEL_OFFSET ; Read from disk and store in
0x1000
 mov dh, 2
 mov dl, [BOOT_DRIVE]
 call disk_load
 ret

[bits 32]
BEGIN_PM:
 mov ebx, MSG_PROT_MODE
 call print_string_pm
 call KERNEL_OFFSET ; Give control to the
kernel

 jmp $; Stay here when the kernel returns control
to us (if
ever)

BOOT_DRIVE db 0 ; It is a good idea to store it in
memory because 'dl' may get
overwritten
MSG_REAL_MODE db "Started in 16-bit Real Mode", 0
MSG_PROT_MODE db "Landed in 32-bit Protected Mode", 0
MSG_LOAD_KERNEL db "Loading kernel into memory", 0

;
padding

times 510 - ($-$$) db 0
dw 0xaa55

This bootloader loads the kernel and jumps to address 0x1000 where the kernel is in RAM.

/* This will force us to create a kernel entry function instead of jumping
to kernel.c:0x00 */
void dummy_test_entrypoint() {
}

void main() {
 char text[] = "My CS499 Kernel";
 unsigned int text_length = sizeof(text)/sizeof(char);

 char* video_memory = (char*) 0xb8000;
 unsigned int i;
 for (i = 0; i < text_length; i++)
 {
 *video_memory = text[i];
 video_memory=video_memory+2; // 2 because to skip colour
bytes
 }
}

This kernel was compiled into machine code and added to os-image.bin.
Whenour bootloader runs this kernel it prints some text.

This kernel was compiled into machine code and added to os-image.bin.
Whenour bootloader runs this kernel it prints some text.

mfricke@wheeler:~/bootkernel $ module load nasm qemu
mfricke@wheeler:~/bootkernel $ srun --pty bash
mfricke@wheeler005:~/bootkernel $ make

This kernel was compiled into machine code and added to os-image.bin.
Whenour bootloader runs this kernel it prints some text.

mfricke@wheeler:~/bootkernel [main]$ make

After running this command. You can kill
the process by closing your terminal.

Conclusions

• Now you know a lot about how Linux starts up and the role of the
Kernel.

• Next you will learn about user space and how to manage system
services.

