Lecture 2:
Disks and
Filesystems

High Performance Computers

Outline

* Disk Hardware
* Spinning Disks, Solid State Drives

* Partitioning
* Viewing, Modifying, Creating, Geometry, SSDs

* Filesystems
* Filesystem Types, Creating, Mounting, UUIDs, Caching, fstab, repairing

* Swap Space
* LVMs

* Internals
* Inodes, blocks

Platters

Spindle
Cache
R/W Head
Actuator Arm g t‘% NAND Flash
'8:3l v OCZ . : Memory
e
Actuator Axis '
Controller

Actuator

Shock resistant up to 350g/2ms Shock resistant up to 1500g/0.5ms

CHS Addressing (Cylinder, Head, Sector)
Maps to Logical Block Addresses (LBA)
5400, 7200, 10K, 15K RPM

Head is 2-3 nm above the spinning disk
(1/30k the width of a human skin cell)

The relative motion of the head over
Platter is 115 km/h at the outside and
30 km/h towards the center.

The HDD head can polarize the iron atoms
covering the HDD platter to store Os and 1s.

It can also detect the polarization to read data.

The area that stores the bit value is about 50 nm

wide.

A disk crash can literally mean that the head

crashed into the platter causing damage.

Hard Disk Drive

disk read-and-write head
floating on a cushion of air\

YT

magnetic layer |geoeleee|oee

aluminum plate 1 bit

track

sector

cylinder

disk read-and-write

: " heads

These regions can be rewritten an unlimited number of times.

Faster . .
(Recall NVME (25GB/s) vs SCS| Solid State Drive
(6GB/s))

OS LBA Space Physical NAND Flash Pages

Data sectors can only be rewritten a
limited number of times (a few 10Ks).

Write Amplification Factor (WAF)
makes the rewrite limit worse. The
problem is that data is written at
a more granular level (pages) EOEEES sSSD

than erasure happens (blocks). AT L Processor
/A EEn

Basically, an SSD has to erase
more storage than it writes.

As the drive fills up data gets more
fragmented (is spread across more
areas of the drive) and erasing
data in all those different areas
gets more and more expensive Flexible Logical to Physical Mapping
relative to the data written and the

rewrite limits are reached fast.

Current Samsung drives are good for about 300 TB of writing. That’s fine for a desktop but not for many HPC applications.

HOST accesses SSD through LBA (Logical Block Address). Each LBA represents a Sector (generally 512B in
size) and the operating system generally accesses SSD in 4K

https://www.hugdiy.com/blog

Harddrive Filesystem Layout

UNIX File System Layout

Hard
- Hard Disk | Disk Partition 1 Partition 2 Partition 3
Record

e We can do raw
reads and writes to

ik Boot | Super | Inode (ﬂData 7 Super |Inode (filzzt:nd
. Block Blocks | List es an Blocks | List
d |Sks th rough /d EV/ ine e = directories) e IS directories)

.............. Syclinder Group ""--~---....m,menzfgﬂﬁ......

e Butareusually @ oA~~~ e >
much more ol 2 3,7,9 Permissions etc.
organ ized so we can © dnum baigBlock Reference = iy
manage the data Directow‘i, ... A

oy 2 Kernel j 3|4 |s5|e|7]|8]59

Inum Filename

An older standard for
organizing disk storage
(sometimes called the
MSDOS partition
scheme).

The MBR tells boot
loaders where to find
things like the operating
system.

You can have multiple
operating systems on
different partitions.
Partitions might also be
used to separate data.
In homework 1 you
created separate
partitions for /boot and
/home

This is often done to
make sure that even if
users fill up their
partition that doesn’t
affect vital areas the OS
want’s to use. Like /boot.

Partitions: Master Boot Record

Master Boot Record

'f f et 0 1 2 3 4 5
0 33 CO 8E DO BC 00

16 06 B9 00 02 FC F3

32 BD BE 07 80 7E 00

43 E2 F1 CD 18 88 56

64 B4 41 BB AA 55 CD

80 F7 C1 01 00 74 03

96 26 66 68 00 00 00

112 7C 68 01 00 68 10

128 9F 83 C4 10 9E EB

144 8A 76 01 8A 4E 02

160 4E 11 75 0C 80 7E

176 55 32 E4 84 56 00

192 AA 75 6E FF 76 00

208 E8 83 00 BO DF E6

224 00 FB B8 00 BB CD

240 43 50 41 75 32 81

00 66 68 00 02 00
53 66 55 66 68 00
288 61 68 00 00 07 CD
304 18 A0 B7 07 EB 08
320 0S5 00 07 8B FO AC
336 10 EB F2 F4 EB FD
352 24 02 C3 49 6E 76
368 74 69 6F 6E 20 74
384 20 6C 6F 61 64 69
400 6E 67 20 73 79 73
416 67 20 6F 70 65 72
432 65 6D 00 00 00 63

6
7C
A4
00
00
13
FE
00
00
14
84
00
CcD
E8
60
14
F9
00
00
14
AD
3C
2B
61
61
6E
74
61
7B

7

8E
50
7cC
55
SD
46
66
B4
B8
6E
80
13
8D
E8
66
02
66
00
SA
B6
00
c9
6C
62
67
65
74
94

8
co
68
0B
Cé
72
10
FF
42
01
03
O0F
5D
00
7C
23
01
68
00
32
07
74
E4
69
6C
20
6D
69
00

9
8E
ic
0F
46
0F
66
76
84
02
CD
84
EB
75
00
co
72
08
66
F6
EB
09
64
64
65
6F
00
6E
00

A B CDEF

D8 BE 00 7C BF 00
06 CB FB B9 04 00
85 0OE 01 83 C5 10
11 05 Ce 46 10 00
81 FB 55 A4 75 09
60 80 7E 10 00 74
08 68 00 00 68 00
56 00 8B F4 CD 13
BB 00 7C 84 56 00
13 66 61 73 1C FE
84 00 B2 80 EB 84
9E 81 3E FE 7D 55
17 FA B0 D1 E6 64
BO FF E6 64 E8 75
75 3B 66 81 FB 54
2C 66 68 07 BB 00
00 00 00 66 53 66
68 00 7C 00 00 66
EA 00 7C 00 00 CD
03 A0 BS 07 32 E4
BB 07 00 B4 0E CD
EB 00 24 02 EO0 F8
20 70 61 72 74 69
00 45 72 72 6F 72
70 65 72 61 74 69
4D 69 73 73 69 6E
67 20 73 79 73 74
0 02

00 00 00 000

448 [03 00 06 FE 7F E1

80

00

00

00

80 37 76 0000 00

464/ 00 00 00 00 00 0O
00 00 00 00 00 0O
4% 00 00 00 0O 00 00

432 =D o

00
00
00

20

00
00
00

Y

00
00
00

o

00
00
00

&

00 00 00 00 00 0O
00 00 00 00 00 0O
00 00 00 00 55 AA

el

448 03 00 06 FE 7F E1 80 00

00 00 80 37 76 00

331D% [1A12% |
1 iioEPh Eg?
warr | o1 14
aNf IV UEF &F
‘A»2U1]r 4U2u
A t DPF £ 1™ t
&fh fyv h h
|lh h “BIV 16t
i 1e , » v
IviN Inl fas b
Noul™1 el
U2&1v 1]&81 >bh}U
2unyv & u u°'Nad
el ‘Bz'e| ‘yadeu
i, »I f#du f aT
CPAu2 4 r.fh »
fh fh £SE
StUfh fh f
ah 1 Z2ce 1

-e %9e p2a

15~< t » 1
eodey+Eade $ de
$ XInvalid parti
tion table Error
loading operati
ng system Missin
g operating syst
en c{l

b &l 17v

Primary
File System

Extended Partition

DOS partition table format

Bytes Purpose
0-445 Boot code
446-461 Partition Table Entry #1

462-477 Partition Table Entry #2
478-493 Partition Table Entry #3
494-509 Partition Table Entry #4
510-511 Signature value (OxAAS55)

DOS Partition Table Entry format

Bytes | Purpose

0 Bootable flag (OxB0=active; else 0x00)

1-3 Starting CHS address

4 Partition type (e.g., 0x00=empty. 0x01=FAT12,
0x07=NTFS, 0x0b=FAT32 (CHS). 0x83=Linux,
0xa5=FreeBSD, 0xa8=MacOS X)*

57 Ending CHS address

8-11 | Starting LBA address

Flag Starting CHS Partition Type Ending CHS ~ Starting LBA Size
00 000302 06 E17FFE 00000080
*Data is in an IA32-based system, Little endian (least significant byte is first)

12-15 | Size (in sectors)

. This is a hexadecimal
representation of the binary data
at the start of am MBR
partitioned disk.

. Useful because characters
become readable.

. You can display this data with

Log into your Roadrunner
cluster

sudo dd if=/dev/sda bs=1
count=1024 | hexdump -C

DOS partition table format
Bytes Purpose
0-445 Boot code
446-461 Partition Table Entry #1
462-477 Partition Table Entry #2
478-493 Partition Table Entry #3
494-509 Partition Table Entry #4
510-511 Signature value (OXAA55)

Also known as the magic number

Partitions: Master Boot Record

Of f set

0
14
" .

48
64
80
96

1l

128

144

160

176

192

208

240

256

272

288

304

320

336

352

368

384

400

416

432

44

46y

A

48
Y-

0

33
06
BD
E2
B4
F?
26
7C
9F
84
4E
55
Ad
E8
00
43
00
53
61
18
05
10
24
74
20
6E
67
65

1

co
B9
BE
F1
41
Cl
66
68
83
76
11
32
75
83
FB
50
66
66
68
AD
00
EB
02
69
6C
67
20
6D

2

8E
00
07
CD
BB
01
68
01
C4
01
75
E4
6E
00
B8
41
68
55
00
B?7
07
F2
C3
6F
6F
20
6F
00

3

DO
02
80
18
Al
00
00
00
10
84
ocC
84
FF
BO
00
75
00
66
00
07
8B
F4
49
6E
61
73
70
00

4

BC
FC
7E
88
55
74
00
68
9E
4E
80
56
76
DF
BB
32
02
68
07
EB
FO
EB
6E
20
64
79
65
00

5

00
F3
00
56
CD
03
00
10
EB
02
7E
00
00
E6
CD
81
00
00
CD
08
AC
FD
76
74
69
73
72
63

6

7C
Ad
0o
00
13
FE
00
00
14
84
00
CD
E8
60
14
F9
00
00
14
AD
3C
2B
61
61
6E
74
61
7B

7

8E
50
G
55
5D
46
66
B4
B8
6E
80
13
8D
E8
66
02
66
00
SA
B6
00
c9
6C
62
67
65
74
94

8

co
68
0B
Cé
id
10
FF
42
01
03
OF
SD
00
7C
23
01
68
00
32
07
74
E4
69
6C
20
6D
69
00

9

8E
1C
OF
46
OF
66
76
8A
02
CD
84
EB
75
00
Cco
72
08
66
F6
EB
09
64
64
65
6F
00
6E
00

A4 B C D E F

D8 BE 00 7C BF 00
06 CB FB B9 04 00
85 0OE 01 83 C5 10
11 05 Cé6 46 10 00
81 FB 55 AA 75 09
60 80 7E 10 00 74
08 68 00 00 68 0O
56 00 8B F4 CD 13
BB 00 7C 8A 56 00
13 66 61 73 1C FE
84 00 B2 80 EB 84
9E 81 3E FE 7D 55
17 FA BO D1 E6 64
B0 FF E6 64 E8 75
75 3B 66 81 FB 54
2C 66 68 07 BB 00
00 00 00 66 53 66
68 00 7C 00 00 66
EA 00 7C 00 00 CD
03 AD BS 07 32 E4
BB 07 00 B4 0E CD
EB 00 24 02 EO F8
20 70 61 72 74 69
00 45 72 72 6F 72
70 65 72 61 74 69
4D 69 73 73 69 6E
67 20 23 79 23 14

00 00 00 0000 02|

03

00

06

FE

7F

El

80

00

00

00

80 37 76 00)00 00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00
00
00

00 00 00 00 00 0O
00 00 00 00 00 OO
00 00 00 00 S5 AA

/

3AID% |1A12% |é
1 {io"Ph Ea?
T R I I P
Al IV UEF &F
“A»2Uf Jr aU2u
<A t DbF f'1™ t
&fh fyv h h
lh h “Bav 16t
i 182 , » [1v
Iv IN In I fas b
Nulil™111 %liel
u2a1v 1 1e1 >pU
2unyv & u u'Nad
el ‘Bz'e| °‘yadeu
i, »I f#Au.f aT
CPAu2 4 r.fh »
fh fh St
SfUfh fth | f
ah I Z2ce | 1
e T e p2a
18~< t » 1
eodey+Eade $ ae
$ Alnvalid parti
tion table Error
loading operati
ng system Missin
g operating syst
en c{l
b al 17v

Only 445
bytes
available
to contain
the boot

program (!)

O MaSTER BOOT RECORD I

BY: JARED ATKINSON
TEMPLATE BY: ANGE ALBERTIN

N

BOOT

FIELDS

jump to boot program

VALUES-

000: 33 cO 8E DO BC 00 7C 8E CO D8 BE dlSk parameters
010: 06 B9 00 02 FC F3 A4 50 68 lC 06 CB FB 9 01 DU
020: BD BE 07 80 7E 00 00 7C OB OF 85 OE 01 83 C5 10 boot program code
030: E2 F1 CD 18 88 56 00 55 C6 46 11 05 C6 46 10 00 disk signature 82D4BA7D
040: B4 41 BB AA 55 CD 13 5D 72 OF 81 FB 55 AA 75 09
050: F7 C1 01 00 74 03 FE 46 10 66 60 80 7E 10 00 74
060: 26 66 68 00 00 00 00 66 FF 76 08 68 00 00 68 00 status 0x00 - Non-Bootable
070: 7C 68 01 00 68 10 00 B4 42 8A 56 00 8B F4 CD 13 :
080: 9F 83 C4 10 9 EB 14 B8 01 02 BB 00 7C 8A 56 00 CHS ADDRESSING start!ng head 0x20
090: 8A 76 01 8A 4E 02 8A 6E 03 CD 13 66 61 73 1C FE e e starting sector 0x21
0AO: 4 11 75 OC 80 7e 00 80 OF 84 8A 00 B2 80 EB 84 §J > s Starting Cylinder OXOO
0BO: 55 32 E4 8A 56 00 ¢p 13 SD EB 9E 81 3E FE 7D 55 00100000 100001 0000000000 g
0C0: AA 75 6E FF 76 00 D1 E6 64 Head - 1st byte partition type 0x07 - NTFS
0D0: E8 83 00 BO DF E6 64 E8 75 sector - 2nd byte (0-5 bits) ending head OXFE
0EO: 00 FB B8 00 BB CD 81 FB 54 Cylinder - 2nd byte (6-7 bits))
OFO0: 43 50 41 75 32 81 07 BB 00 3rd:byte ending sector Ox3F
100: 00 66 68 00 02 00 66 53 66 ending cylinder Ox3FF
110: 53 66 55 66 68 00 00 00 66 . :
50y E1 6 8O DO 6 o0 b0 ok relative start sector 0x800
130: 18 A0 B7 07 EB 08 07 32 E4 total sectors 0x6369000
140: 05 00 07 88 FO AC B4 OE CD it (e o ! e, o i T S e Zima i
150: 10 EB F2 F4 EB FD 02 EO F8
160: 24 02 C3 49 6E 76 72 74 69 status 0x80 - Bootable
170: 74 69 6F 6E 20 74 72 6F 72 . starting head OXFE
180: 20 6C 6F 61 64 69 61 74 69 4 2
190: 6E 67 20 73 79 73 73 69 6E / starting sector Ox3F
1A0: 67 20 6F 70 65 72 79 73 74 starting cylinder Ox3FF
180: 65 6D 00 00 00 63 0000 20__ e s
1c0: 21 00 07 FE FF F¥ 06| 80 FE partltlon type 0x07 - NTFS
100: FF FF 07 FE FF FF 0 oo||oo 00_" ending head OxFE
1E0: 00 00 00 00 00 00 (0000 00 i
1F0: 00 00 00 00 00 00 00 0O 00 00{55 AA ::g:gg ieﬁlt'?drer 8)(3:;:
PARTITION TYPES i S nteur i e s
0x00 - EMPTY 0x83 - LINUX TR - SR X05
0x01 - FAT12 0x84 - HIBERNATION total sectors 0x96000
0x04 - FAT16 0x85 - LINUX_EXTENDED e I VU Lok L L S
0x05 - MS_EXTENDED 0x86 - NTFS_VOLUME_SET
0x06 - FAT16 0x87 - NTFS_VOLUME_SET_1 iti -
0x07 - NTFS 0xa0 - HIBERNATION_1 partltlon type OXOO EMPTY
0x0b - FAT32 Oxal - HIBERNATION_2 L e omoaem o e B it e O R e T AT, T e —
0x0c - FAT32 0Oxa5 - FREEBSD H
0x0e - FAT16 Oxa6 - OPENBSD partltlon type 0x00 - EMPTY
0x0f - MS_EXTENDED 0xa8 - MACOSX
0Ox11 - HIDDEN_FAT12 0xa9 - NETBSD
0x14 - HIDDEN_FAT16 Oxab - MAC_OSX_BOOT EHD OF MBR marker Ox55AA
0x16 - HIDDEN_FAT16 0xb7 - BSDI
Ox1lb - HIDDEN_FAT32 Oxb8 - BSDI_SWAP
Ox1c - HIDDEN_FAT32 Oxee - EFI_GPT_DISK
Oxle - HIDDEN_FAT16 Oxef - EFI_SYSTEM_PARTITION
0x42 - MS_MBR_DYNAMIC Oxfb - VMWARE_FILE_SYSTEM
0x82 - SOLARIS_X86 Oxfc - VMWARE_SWAP

0x82

LINUX_SWAP

How the Master Boot Code Works

1. System startup self-check - BIOS checks the system hardware and CMOS Settings.
2. Read the master boot record - detect bootable devices, BIOS reads the MBR sector into

memory.
3. Check whether the end flag of the MBR is 0000:7CO0H equals 55AAH. When the boot

device meets the requirements, the BIOS transfers control to the MBR to start the operating
system.

The master boot code uses what's called CHS fields (Starting and Ending Cylinder, Head, and
Sector fields) from the partition table to locate the boot sector portion of the partition.

The MBR can refer to partitions on other drives.

You can create a single partition on a drive and use it without an MBR.

FreeBSD: Bootstrap Source Code:
https://svnweb.freebsd.org/base/stable/8/sys/boot/i386/boot0/boot0.S?revision=196045&view=markup

* Ok Ok X X F X 3k X X X X X X X X X X X X X X X X ¥ X X X X ¥ * X

BOOT BLOCK STRUCTURE

This code implements a Master Boot Record (MBR) for an Intel/PC disk.
It is 512 bytes long and it is normally loaded by the BIOS (or another
bootloader) at 0:0x7c00. This code depends on %cs:%$ip being 0:0x7c00

The initial chunk of instructions is used as a signature by external
tools (e.g. boot0Ocfg) which can manipulate the block itself.

The area at offset 0x1lb2 contains a magic string ('Drive '), also
used as a signature to detect the block, and some variables that can
be updated by bootOcfg (and optionally written back to the disk).
These variables control the operation of the bootloader itself,

e.g. which partitions to enable, the timeout, the use of LBA

(called 'packet') or CHS mode, whether to force a drive number,

and whether to write back the user's selection back to disk.

As in every Master Boot Record, the partition table is at 0xlbe,
made of four 1l6-byte entries each containing:

OFF SIZE DESCRIPTION
0 1 status (0x80: bootable, 0: non bootable)
1 3 start sector CHS
8:head, 6:sector, 2:cyl bit 9..8, 8:cyl bit 7..0
4 1 partition type
3 end sector CHS
8 4 LBA of first sector
4 partition size in sectors

and followed by the two bytes 0x55, OxAA (MBR signature).
/

Bootstrap Loader Snippet

CONSTANTS

NHRDRV is the address in segment 0 where the BIOS writes the

LOAD is the original load address and cannot be changed.
ORIGIN is the relocation address. If you change it, you also nee
to change the value passed to the linker in the Makefile

* PRT OFF is the location of the partition table (from the MBR

standard).

* BO OFF is the location of the data area, known to bootOcfg so

* it cannot be changed. Computed as a negative offset from 0x200

* MAGIC is the signature of a boot block.

*/

.set
.set
.set

.set
.set

.set

.set
.set
.set

.set
.set

*
*
*
* total number of hard disks in the system.
*
*
*

NHRDRV, 0x475 # Number of hard drives
ORIGIN,0x600 # Execution address
LOAD,0x7c00 # Load address

PRT_OFF,0xlbe # Partition table
BO_OFF, (BO_BASE-0x200) # Offset of boot0 data

MAGIC,O0xaa55 # Magic: bootable

KEY_ENTER,Oxlc # Enter key scan code
KEY _F1,0x3b # Fl1 key scan code
KEY 1,0x02 # #1 key scan code

ASCII BEL, '#' # ASCII code for <BEL>
ASCII CR,0x0D # ASCII code for <CR>/

GUID Partition Table (GPT)
Global Unique ID (GUID)

Newer

MBR Supports 4 primary
partitions (+ extended
partition area)

GPT supports 128
partitions.

Requires Unified Extensible
Firmware Interface (UEFI).

GUIL Froteclive MBS

Bytes Description
0-440 Unused by UEFI systems
440-443 Unused and set to Zero
444-445 Unused and set to Zero

MBR partition records that only have
446-509 one entry pointing to the EFI Partition
510-511 Set to AASS

The rest of the logical block, if any, is
512 reserved. Set to Zero

Of fset

16

32

48

64

80

96
112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384
400
416
432
448
464
480
496

0

GUIL Froteclive MoK

Description

Bytes
0-440

Unused by UEFI systems

440-443

Unused and set to Zero

444-445

Unused and set to Zero

446-509

MBR partition records that only have
one entry pointing to the EFI Partition

510-511

Set to AASS

512

The rest of the logical block, if any, is
reserved. Set to Zero

GUID protected MBR entry format

Purpose

Set to 0x00 to indicate a non-bootable
partition. If set to any value other than
the behavior of this flag on non-
UEFI systems is undefined. Must be
UFI

1-3

Set to 0x0002000, corresponding to
the LBA field

Partition type set to "EE" with indicates
the EFI

5-7

Set 1o the CHS address of the last
logical block on the disk. Set to
OxFFFFFF if it is not possible to
represent the value in this field

8-11

Set to 0x00000001 (i.e., the LBA of
the GPT Partition Header).

12-15

Set 1o the size of the disk minus one.
Set to OxFFFFFFFF if the size of the
disk is too large to be represented in
this field.

Of fset

16

32

48

64

80

96
112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384
400
416
432
448
464
480
496

0

00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

02
0o
0o
0o

1

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

0o
00
00
0o

2

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

EE
00
00
00

3

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

T
00
00
00

i

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

FF
00
00
00

5

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

FF
00
00
00

6

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

01
00
00
00

7

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

8

00
00
00
00

9

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00

10

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

11

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

12

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

0o
00
0o

13

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

14

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

15

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

FF 00 00

0o

00 00 00
00 00 00
00 55=ioir

GUIL Froteclive MoK

Bytes Description
0-440 Unused by UEFI systems Diteet

440-443 Unused and set to Zero .
444-445 Unused and set to Zero 32
MBR partition records that only have 48
446-509 one entry pointing to the EFI Partition gg
510-511 Set to AASS5 96
The rest of the logical block, if any, is 112
512 reserved. Set to Zero iij
GUID protected MBR entry format 160
Bytes Purpose 176
Here the Set to 0x00 to indicate a non-bootable 192
bootstrap partition. If set to any value other than ggi
loader gets TR Exptudevicn o ks Mg 1o A= 240
8 UEFI systems is undefined. Must be s
a whole 0 UFI 272
partition Set to 0x0002000, corresponding to 288
1-3 the Starting LBA field 304
(no more Partition type set 1o "EE* with indicates 0
512 bytes) 4 the EF| partition 8
Set 1o the CHS address of the last 352
logical block on the disk. Set to 368
EFI OxFFFFFF if it is not possible to 384
partition is 5-7 represent the value in this field :22
typically Setto 0x00000001 (i.e., the LBA of 13
8-11 the GPT Partition Header). 148
100-500 Set 10 the size of the disk minus one. M
MB Set to OxFFFFFFFF if the size of the 480
disk is too large to be represented in 496

12-15 this field.

0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

02
0o
0o
0o

1

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

0o
00
00
00

2

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

EE
00
00
00

3

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

4

00
00
00
00
00
00
00
0o
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

FF
00
00
00

5

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

FF
00
00
00

6

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

01
00
00
00

7

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

8

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

9

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

11

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00

12

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

0o
0o
0o

13

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

14

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

15

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

4 00 00

FF 00 00

00 00 00
00 00 00
00 55—tk

00000000
*

000001c0
000001d0
*

000001f0
00000200
00000210
00000220
00000230
00000240
00000250

00000260
*

00

02
00

00
45
3b
ff
de
91
80
00

00

00
00

00
46
51
87
87
6C
00
00

00

ee
00

00
49
e/
df
df
14
00
00

1024+0 records 1in
1024+0 records out

1024 bytes (1.0 kB, 1.0 KiB) copied, 0.00254417 s, 402 kB/s

00000400

00

ff
00

00
20
56

e8
53
00
00

00

ff
00

00
50
00
00
00
/cC
80
00

00

ff
00

00
41
00
00
00
/cC
00
00

00

01
00

00
52
00
00
00
43
00
00

00

00
00

00
54
00
00
00
2b
00
00

00

00
00

00
00
01
22
do
02
a2
00

00

00
00

00
00
00
00
CC
00
63
00

Is this a GPT or MBR partition layout?

00

ff
00

00
01
00
00
71
00
be
00

00

87
00

00
00
00
00
f7
00
dl
00

00

df
00

00
5¢C
00
00
27
00
00
00

00

e8
00

00
00
00
00
f4
00
00
00

00

00
00

55
00
00
00
/cC
00
00
00

00

00
00

dd
00
00
00
44
00
00
00

user space

kernel space

VIRTUAL FILE SYSTEM (VFS)

Buffer Cache

Linux Kernel

software

hardware

Partitions

UNIX File System Layout

Hard
- Hard Disk | Disk Partition 1 Partition 2 Partition 3
Record
* We can do raw

reads and writes to
disks through /dev/ drectories)

directories)

ta
” Boot | Super | Inode | Data Super |Inode | P2
Partition | g1ocks | Blocks| List (files and Blocks | List (files and

.............. Syclinder Group ""--~---....m,menzfgﬂﬁ......

e Butareusually @ oA~~~ e >
much more ol 2 3,7,9 Permissions etc.
organ ized so we can © dnum baigBlock Reference = iy
manage the data Directow‘i, ... A

oy 2 Kernel j 3|4 |s5|e|7]|8]59

Inum Filename

Generalised Linux Filesystem

 The superblock contains all of the information
about how the file system is configured, such
as block size, block address range, and mount
status.

* The i-nodes contain the file attributes and a
map indicating where the blocks of the file are
located on the disk. They are of 128 bytes.

e The data blocks are where file contents are
stored.

* i-node in position 2 of the table usually points
to the entry for the root directory file in the
file system.

File Systems

* In general file systems are simple
* Abstraction for secondary storage
* Files
* Logical organization of files
* Directories

 Sharing of data between users/processes
e Permissions/ACLs

UNIX File System

* Implemented as part of original UNIX system
* Ritchie and Thompson, Bell Labs, 1969

* Designed for workgroup scenario
* Multiple users sharing a single system

e Still forms the basis of all UNIX based file systems

5 parts of a UNIX Disk

Boot Block
e Contains boot loader

Superblock
* The file systems “header”
» Specifies location of file system data structures

inode area
* Contains descriptors (inodes) for each file on the disk
e All inodes are the same size
* Head of the inode free list is stored in superblock

File contents area
* Fixed size blocks containing data
* Head of freelist stored in superblock

Swap area
e Part of disk given to virtual memory system

Unix directory files

O
» A directory is a flat file of fixed size entries
e Each entry consists of an inode # and a file name
i-node number File name
152
18 ..
216 my_file Direct blocks
4 another_file S Indirect blocks
93 oh_my_god
144 a_directory
Double
inode Indirect

Blocks

Contiguous Allocation

 Allocate each file to contiguous blocks on disk
* Meta-data includes first block and size of file
e OS allocates single chunk of free space

* Advantages
* Low overhead for meta-data
* Excellent sequential performance
* Simple to calculate random addresses

* Disadvantages
* Horrible external fragmentation (requires compaction)
e Usually must move entire file to resize it

Extent Based Allocation

 Allocate multiple contiguous regions (extents)
* Meta-data: Small array of extents (first block + size)

b D A A A D

* Improves contiguous allocation
— File can grow over time
— External fragmentation reduced
 Advantages
— Limited overhead for meta-data
— Good performance with sequential accesses
— Simple to calculate random addresses
* Disadvantages
— External fragmentation can still be a problem
— Extents can be exhausted (fixed size array in meta-data)

Linked Allocation

e Allocate linked-list of fixed size blocks
* Meta-data: location of file’s first block
* Each block stores pointer to next block

* Advantages
— No External fragmentation
— File size can be very dynamic

* Disadvantages
— Random access takes a long time

— Sequential accesses can be slow
* Can try to allocate contiguously to avoid this

— Very sensitive to corruption

File Allocation Table (FAT)

e Variation of Linked Allocation
 Linked list information stored in FAT table (on disk)
* Meta-data: Location of first block of file

* Comparison to Linked Allocation
* Same basic advantages and disadvantages

* Additional disadvantage:
* Two disk reads for 1 data block

* Optimization: Cache FAT table in memory

File-Allocation Table

Directory Entry File Allocation

Name Meta-Data Start Block Table Data blocks
Foo.txt Meta-Data 23

Block 23
Meta-Data Start Block
Meta-Data Start Block
Meta-Data Start Block

Block 317

Block 632

Indexed Allocation

e Allocate fixed-size blocks for each file

* Meta-data: Fixed size array of block pointers
* Array allocated at file creation time

* Advantages
* No external fragmentation
* Files can be easily grown, with no limit
e Supports random access

* Disadvantages

* Large overhead for meta-data
* Unneeded pointers are still allocated

Multi-level Index Files

e Variation of Indexed Allocation

* Dynamically allocate hierarchy of pointers to blocks as
needed

* Meta-data: Small number of pointers allocated statically
» Allocate blocks of pointers as needed

 Comparison to Indexed Allocation

— Advantage: Less wasted space
— Disadvantage: Random reads require multiple disk reads

Free Space Manhagement

* How do you remember which blocks are free
* Operations: Free block, allocate block

* Free List: Linked list of free blocks
* Advantages: Simple, constant time operations
* Disadvantage: Quickly loses locality

e Bitmap: Bitmap of all blocks indicating which are free
* Advantages: Can find sequence of consecutive blocks
* Disadvantage: Space overhead

SO...

* With a boot block you can boot a machine
 Stores code for boot loader

* With a superblock you can access a file system
» Superblock always kept at a fixed location

* Specifies where you can find FS state information
* By convention root directory (‘/’) is stored in second inode
* Most current boot loaders read superblock to find kernel image

Inode format

e User and group IDs
* Protection bits
* Access times
* File Type
e Directory, normal file, symbolic link, etc
e Size
* Length in bytes

e Block list
e Location of data blocks in file contents area

* Link Count
 Number of directories (hard links) referencing this inode

Unix Inodes and Path Search

 Unix Inodes are not directories
* Inodes describe where on disk a file’s blocks are stored

* Directories are files
* Inodes describe where a directory’s blocks are stored

* Directory entries map file names to inodes

* To open “/foo”, use Master Block to find inode for “/”
* Open “/”, search for entry “foo”
* This entry specifies block number for inode of “foo”

* Read “foo”’s inode into memory
* Get first data block location from inode

)’

e Read block into memory

[matthew@moonshine ~1% df -i

matthew@moonshine dev]$ df -i

Filesystem Inodes
devtmpfs 8157993
tmpfs 8163114
tmpfs 819200

/dev/mapper/rl1_dhcp52-root 36700160
/dev/mapper/rl1_dhcp52-home 434087936

/dev/sda?2 524288
/dev/sdal 0]
tmpfs 1632622

IUsed
909

1

1138
153255
774

£10)

0]

21

IFree IUse%

3157084
3163113
318062
36546905
434087162
524258

0

1632601

1%
1%
1%
1%
1%
1%

1%

Mounted on
/dev

/dev/shm

/run

/

/home

/boot
/boot/ef1
/run/user/1000

Inodes are a limited resource. End users usually know that the amount of storage
space is limited, but the number of inodes available is just as important.

Inodes in the table above gives the total number of available inodes. lused is how
many have been used so far. If we run out no more files or directories can be created.

Fach task opens its own files

struct task_struct

struct files_struct

A 4

struct dentr

struct file

A 4

struct dentr

Naming files

Important to be able to find files after they’re created
Every file has at least one name

Name can be

* Human-accessible: “foo.c”, “my photo”, “Go Panthers
* Machine-usable: 4502, 33481

I” o |II
U] H

Go Banana Slugs

Case May or may not matter
* Depends on the file system

Name may include information about the file’s contents

* Certainly does for the user (the name should make it easy to figure out what’s in it!)
* Computer may use part of the name to determine the file type

37

Last login: Fri Feb 2 10:31:15 on ttys000
matthew@dhcpl78 ~ % ssh matthew@129.24.245.16
matthew@129.24.245.16"'s password:

Last login: Mon Jan 29 10:11:40 2024 from
129.24.246.178

[matthew@moonshine ~]%

(matthew@moonshine ~1$ SUAO parted -1

Model: DELL PERC H310 (scsi)

Disk /dev/sda: 1000GB

Sector size (logical/physical): 512B/512B
Partition Table: gpt

Disk Flags:
Number Start End Size File system Name Flags

1 1049kB 630MB 629MB fat32 EFI System Partition boot, esp
2 630MB 1704MB 1074MB xfs

3 1704MB 1000GB 998GB lvm

Model: USB DISK 3.0 (scsi)

Disk /dev/sdb: 15.5GB

Sector size (logical/physical): 512B/512B
Partition Table: msdos

Disk Flags:

Number Start End Size Type File system Flags
2 340kB 7604kB 7264kB primary esp

Last login: Fri Feb 2 10:31:21 on ttys001
matthew@dhcpl78 ~ % ssh matthew@129.24.245.16

matthew@129.24.245.16's password:
Last login: Fri Feb 2 11:31:49 2024 from 129.24.246.178

[matthew@moonshine ~]%

Open another terminal to your server

[matthew@moonshine ~]$ sudo udevadm monitor ——kernel
[sudo] password for matthew:

monitor will print the received events for:

KERNEL - the kernel uevent

‘matt
‘matt

new @ moons

new @ moons

nine ™~

nine ™~

S Isblk
S sudo umount /dev/sdb

[matthew@moonshine ~]1$ cat /etc/fstab

/dev/mapper/rl1_dhcp52-root / xfs defaults 0 0
UUID=a447244c-dab4-41a2-b908-8a931134c113

/boot xfs defaults © 0

UUID=A57E-CA77 /boot/efi vfat umask=007/7,shortname=winnt 0 2
/dev/mapper/rl1_dhcp52-home /home xfs defaults 0 0

/dev/mapper/rl1_dhcp52-swap none swap defaults 0 0

If your system runs out of memory (RAM) then the least recently used data is moved to the SWap Space on the HDD.

This keeps you from crashing — but reading and writing data from disk is about 1/100t" the speed of RAM.

So, if lots of data gets moved to disk the system becomes so slow it is unusable. This is called disk th rashing.

Amount of RAM in the Recommended swap Recommended swap space if allowing for

system space hibernation

2 times the amount of

<2GB 3 times the amount of RAM
RAM
Equal to the amount of .

>2GB-8GB 2 times the amount of RAM
RAM

>8GB-64GB At least 4 GB 1.5 times the amount of RAM

> 64 GB At least 4 GB Hibernation not recommended

[matthew@moonshine ~]% sudo fdisk /dev/sdb
[sudo] password for matthew:

Welcome to fdisk (util-1linux 2.37.4).

Changes will remain in memory only, until you decide to write
them.

Be careful before using the write command.

The device contains '1s09660' signature and it will be

removed by a write command. See fdisk(8) man page and --wipe
option for more details.

Command (m for help): p Why do you think is says DOS and EFI?

Disk /dev/sdb: 14.46 GiB, 15525216256 bytes, 30322688 sectors
Disk model: USB DISK 3.0

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0Ox73b44ec8

Device Boot Start End Sectors Size Id Type
/dev/sdbl * © 3293407 3293408 1.6G 0 Empty
/dev/sdb2 664 14851 14188 6.9M ef EFI (FAT-

12/16/32)

Command (m for help): ¢ Why do you think is says DOS and EFI?

[matthew@moonshine ~1$ sudo dd 1f=/dev/sdb
of=Rocky9.1 minimal.i1so bs=4M status=progress

15509602816 bytes (16 GB, 14 GiB) copied, 415 s, 37.4 MB/s
30322688+0 records 1in
30322688+0 records out

15525216256 bytes (16 GB, 14 GiB) copied, 416.363 s, 37.3 MB/s

[matthew@moonshine

NAME

MOUNTPOINTS

sda
—S(

S
e

al
al
a3

anc
anc

anc

n52-root
052-swap
n52-home

MAJ :

oo OO0 OO

(0]

253:
253:
253:
3:
3:
3:
11:

1sblk
MIN RM

el el el el CHOHNONONONONO)

SIZE RO

931G
60OM
1G

929.4G

70G

31.5G

328G

14 .5G

1.6G
6.9M

1024M

OB ONONONONONONONBONOMNG

TYPE

disk
Dart
Dart
Dart
Lvm
Lvm
Lvm
disk
part
part
rom

/boot/efi
/boot

/
[SWAP]
/home

[matthew@moonshine ~]% sudo fdisk /dev/sdb
[sudo] password for matthew:

Welcome to fdisk (util-1linux 2.37.4).

Changes will remain in memory only, until you decide to write
them.

Be careful before using the write command.

The device contains 'is09660' signature and it will be removed
by a write command. See fdisk(8) man page and --wipe option for
more details.

Command (m for help):

[matthew@moonshine ~]% sudo fdisk /dev/sdb
[sudo] password for matthew:

Welcome to fdisk (util-1linux 2.37.4).

Changes will remain in memory only, until you decide to write
them.

Be careful before using the write commg

1509660

Command (m for help):

Command (m for help): p

Disk /dev/sdb: 14.46 GiB, 15525216256 bytes, 30322688 sectors
Disk model: USB DISK 3.0

Geometry: 255 heads, 63 sectors/track, 14806 cylinders

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0Ox73b44ec8

Device Boot Start End Sectors Size Id Type
/dev/sdbl * © 3293407 3293408 1.6G 0O Empty
/dev/sdb2 664 14851 14188 6.9M ef EFI (FAT-
12/16/32)

Command (m for help):

The device contains 'i1s09660' signature and it will be removed

by a write command. See fdisk(8) man page and --wipe option for
more details.

Command (m for help): d
Partition number (1,2, default 2): 1

Partition 1 has been deleted.

Command (m for help): p

Disk /dev/sdb: 14.46 GiB, 15525216256 bytes, 30322688 sectors
Disk model: USB DISK 3.0

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0Ox73b44ec8

The partition table is gone so no partitions are displayed.

But Fdisk doesn’t actually ask the kernel to make changes until after you hit w to write
the changes.

Command (m for help): w

The partition table has been altered.
Calling 1octl() to re-read partition table.
Syncing disks.

The partition table is gone so no partitions are displayed.

But Fdisk doesn’t actually ask the kernel to make changes until after you hit w to write
the changes.

When you use the “w” command fdisk makes function calls to
the kernel and the kernel makes the changes to the USB drive

KERNEL [1122527.084021] remove /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb/sdbl (block)

KERNEL [1122527.084060] remove /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb/sdb2 (block)

KERNEL[1122527.086394] change /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb (block)

KERNEL[1122527.093141] change /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb (block)

KERNEL[1122527.094259] change /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb (block)

Command (m for help): w

The partition table has been altered.
Calling 1octl() to re-read partition table.
Syncing disks.

The partition table is gone so no partitions are displayed.

But Fdisk doesn’t actually ask the kernel to make changes until after you hit w to write
the changes.

[matthew@moonshine ~]% sudo fdisk /dev/sdb

Command (m for help): p

Disk /dev/sdb: 14.46 GiB, 15525216256 bytes, 30322688 sectors
Disk model: USB DISK 3.0

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: Ox73b44ec8

Device Boot Start End Sectors Size Id Type
/dev/sdb2 664 14851 14188 6.9M ef EFI (FAT-12/16/32)

Command (m for help): d
Selected partition 2
Partition 2 has been deleted.
Command (m for help): w

[matthew@moonshine

NAME

sda

—sdal

—sda2

L sda3

rl_dhcp52-root

—r1l_dhcp52-swap
L-r1 dhcp52-home

sdb

sro

~1%

MAJ :

oo OO
O

oo

O LR NP O WNNBRK

253
253
253

—
= 00

Lsblk

MIN RM

el N ONONONONONOMNO)

SIZE RO

931G
600OM
1G
929.4G
70G
31.5G
328G
14 .5G
1024M

OB ONONONONONONONO

TYPE
disk
part
part
part
lvm
lvm
lvm
disk
rom

MOUNTPOINTS

/boot/efi
/boot

/
[SWAP]
/home

[matthew@localhost ~]1% sudo fdisk /dev/sdb
Welcome to fdisk (util-1linux 2.37.4).
Changes will remain in memory only, until you decide to write
them.
Be careful before using the write command.
Command (m for help): n
Partition type
o) primary (O primary, 0 extended, 4 free)
e extended (container for logical partitions)
Select (default p): p

Partition number (1-4, default 1): 1
First sector (2048-30322687, default 2048):

Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-30322687,
default 30322687):

Created a new partition 1 of type 'Linux' and of size 14.5 GiB.

Command (m for help): w

The partition table has been altered.
Calling 1octl() to re-read partition table.
Syncing disks.

[matthew@localhost

NAME

sda

—sdal

—sda2

L sda3

rl_dhcp52-root

—r1l_dhcp52-swap
L-r1 dhcp52-home

sdb

L-sdb1l

sro

~1% 1lsblk
MAJ:MIN RM

oo
O

NJ
Ul
w
P RPN EFRP O WN R

N O
il el e O N O HNONONONONO)

|
|
O

SIZE RO

931G
600OM
1G
929.4G
70G
31.5G
328G
14 .5G
14 .5G
1024M

ONONONONONONONONONO

TYPE
disk
part
part
part
lvm
lvm
lvm
disk
part
rom

MOUNTPOINTS

/boot/efi
/boot

/
[SWAP]
/home

[matthew@moonshine ~]% sudo mkfs.ext4 /dev/sdbl

mke2fs 1.46.5 (30-Dec-2021)

Creating filesystem with 3790080 4k blocks and 948416 inodes
Filesystem UUID: 6e/aaeal-7el5-41dd-8fd3-b9b5248e6636
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632,
2654208

Allocating group tables: done
Writing inode tables: done
Creating journal (163384 blocks):
done

Writing superblocks and filesystem accounting information: done

matthew@moonshine ~]1% sudo mkfs.xfs /dev/sdbl
[matthew@moonshine ~]% sudo mkfs.xfs -f /dev/sdbl

meta-data=/dev/sdbl

nrext64=0

data =

naming =version 2
log =internal log

realtime =none

1isize=512
sectsz=512
crc=1
reflink=1

bsize=4096
sunit=0

bsize=4096
bsize=4096
sectsz=512
extsz=4096

agcount=4, agsize=947520 blks
attr=2, projid32bit=1
finobt=1, sparse=1, rmapbt=0
bigtime=1 inobtcount=1

blocks=3790080, imaxpct=25
swidth=0 blks

ascii-ci=0, ftype=1
blocks=16384, version=2
sunit=0 blks, lazy-count=1
blocks=0, rtextents=0

matthew@moonshine ~]1% sudo mount /dev/sdbl /mnt
[matthew@moonshine ~1%

Now we can mount the filesystem.

The mount command takes a block device (such
as a partition) and an existing directory file.

/mnt exists for this purpose but you can put any
directory as the argument.

matthew@moonshine mnt]$ sudo chown matthew: /mnt
‘matthew@moonshine mnt]$ cd /mnt
‘matthew@moonshine mnt]$ touch test.txt
‘matthew@moonshine mnt]$ 1s

test. txt

[matthew@moonshine mnt]$

By default only the root user can write to this
external usb mount.

We use chmod to make matthew the owner and
touch to create a new file.

Input/Output Monitoring is important for HPC

[matthew@moonshine ~]$ sudo yum install 1otop

[sudo] password for matthew:

Last metadata expiration check: 0:25:53 ago on Mon 05 Feb 2024 10:37:13 AM CST.
Dependencies resolved.

Package Architecture Version Repository Size
Installing:
iotop noarch 0.63-0.el9 baseos 62 k

Transaction Summary

Install 1 Package

Now let’s restore our ISO image to the USB drive:

[matthew@moonshine ~]$% sudo dd if=Rocky9.1 minimal.iso
of=/dev/sdb bs=4M status=progress

[sudo] password for matthew:

12494831616 bytes (12 GB, 12 GiB) copied, 126 s, 99.1 MB/

Input/Output Monitoring is important for HPC

[matthew@moonshine ~]1$ sudo 1otop

Total DISK READ : 0.00 B/s | Total DISK WRITE : 8.82 M/s
Actual DISK READ: 0.00 B/s | Actual DISK WRITE: 12.97 M/s
TID PRIO USER DISK READ DISK WR TID PRIO USER DISK READ DISK WRITE COMMAND
171200 be/4 root 0.00 B/s 8.82 M/s dd if=Rocky9.1 minimal.iso of=/dev/sdb bs=4M status=progress
1 be/4 root 0.00 B/s 0.00 B/s systemd ——switched-root —--system —-deserialize 31
2 be/4 root 0.00 B/s 0.00 B/s [kthreadd]
3 be/0 root 0.00 B/s 0.00 B/s [rcu_gp]
4 be/0 root 0.00 B/s 0.00 B/s [rcu_par_gpl
5 be/0 root 0.00 B/s 0.00 B/s [slub_flushwql
6 be/0 root 0.00 B/s 0.00 B/s [netns]
8 be/0 root 0.00 B/s 0.00 B/s [kworker/0:@H-events_highpril
11 be/0@ root 0.00 B/s 0.00 B/s [mm_percpu_wq]
12 be/4 root 0.00 B/s 0.00 B/s [kworker/u64:1-mlx4]
13 be/4 root 0.00 B/s 0.00 B/s [rcu_tasks_kthre]
14 be/4 root 0.00 B/s 0.00 B/s [rcu_tasks_rude_]
15 be/4 root 0.00 B/s 0.00 B/s [rcu_tasks_trace]
16 be/4 root 0.00 B/s 0.00 B/s [ksoftirqd/0]
17 be/4 root 0.00 B/s 0.00 B/s [pr/ttyo]
18 be/4 root 0.00 B/s 0.00 B/s [rcu_preempt]
19 rt/4 root 0.00 B/s 0.00 B/s [migration/0]
20 rt/4 root 0.00 B/s 0.00 B/s [idle_inject/0]

Now let’s restore our ISO image to the USB drive:

[matthew@moonshine ~]$% sudo dd if=Rocky9.1 minimal.iso
of=/dev/sdb bs=4M status=progress

[sudo] password for matthew:

12494831616 bytes (12 GB, 12 GiB) copied, 126 s, 315 MB/s

Now let’s restore our ISO image to the USB drive:

[matthew@moonshine ~]$% sudo dd if=Rocky9.1 minimal.iso
of=/dev/sdb bs=4M status=progress

[sudo] password for matthew:

12494831616 bytes (12 GB, 12 GiB) copied, 126 s, 315 MB/s

Now let’s restore our ISO image to the USB drive:

[matthew@moonshine ~]$% sudo dd if=Rocky9.1 minimal.iso
of=/dev/sdb bs=4M status=progress oflag=direct

[sudo] password for matthew:

12494831616 bytes (12 GB, 12 GiB) copied, 126 s, 11 MB/s

