
Lecture 2:
Disks and
Filesystems
High Performance Computers

Outline

• Disk Hardware
• Spinning Disks, Solid State Drives

• Partitioning
• Viewing, Modifying, Creating, Geometry, SSDs

• Filesystems
• Filesystem Types, Creating, Mounting, UUIDs, Caching, fstab, repairing

• Swap Space
• LVMs
• Internals
• Inodes, blocks

Spinning Disk
Hardware

CHS Addressing (Cylinder, Head, Sector)

Maps to Logical Block Addresses (LBA)

5400, 7200, 10K, 15K RPM

Head is 2-3 nm above the spinning disk
(1/30k the width of a human skin cell)

The relative motion of the head over
Platter is 115 km/h at the outside and
30 km/h towards the center.

The HDD head can polarize the iron atoms
covering the HDD platter to store 0s and 1s.

It can also detect the polarization to read data.

The area that stores the bit value is about 50 nm
wide.

A disk crash can literally mean that the head
crashed into the platter causing damage.

These regions can be rewritten an unlimited number of times.

Hard Disk Drive

HOST accesses SSD through LBA (Logical Block Address). Each LBA represents a Sector (generally 512B in
size) and the operating system generally accesses SSD in 4K

Faster
(Recall NVME (25GB/s) vs SCSI
(6GB/s))

Data sectors can only be rewritten a
limited number of times (a few 10Ks).

Write Amplification Factor (WAF)
makes the rewrite limit worse. The
problem is that data is written at
a more granular level (pages)
than erasure happens (blocks).

Basically, an SSD has to erase
more storage than it writes.

As the drive fills up data gets more
fragmented (is spread across more
areas of the drive) and erasing
data in all those different areas
gets more and more expensive
relative to the data written and the
rewrite limits are reached fast.

Current Samsung drives are good for about 300 TB of writing. That’s fine for a desktop but not for many HPC applications.

Solid State Drive

https://www.hugdiy.com/blog

Harddrive Filesystem Layout

• We can do raw
reads and writes to
disks through /dev/

• But are usually
much more
organized so we can
manage the data

Partitions: Master Boot Record• An older standard for
organizing disk storage
(sometimes called the
MSDOS partition
scheme).

• The MBR tells boot
loaders where to find
things like the operating
system.

• You can have multiple
operating systems on
different partitions.

• Partitions might also be
used to separate data.

• In homework 1 you
created separate
partitions for /boot and
/home

• This is often done to
make sure that even if
users fill up their
partition that doesn’t
affect vital areas the OS
want’s to use. Like /boot.

Partitions: Master Boot Record
• This is a hexadecimal

representation of the binary data
at the start of am MBR
partitioned disk.

• Useful because characters
become readable.

• You can display this data with

Log into your Roadrunner
cluster
sudo dd if=/dev/sda bs=1
count=1024 | hexdump -C
•

Also known as the magic number

Only 445
bytes
available
to contain
the boot
program (!)

How the Master Boot Code Works

1. System startup self-check - BIOS checks the system hardware and CMOS Settings.
2. Read the master boot record - detect bootable devices, BIOS reads the MBR sector into
memory.
3. Check whether the end flag of the MBR is 0000:7C00H equals 55AAH. When the boot
device meets the requirements, the BIOS transfers control to the MBR to start the operating
system.

The master boot code uses what's called CHS fields (Starting and Ending Cylinder, Head, and
Sector fields) from the partition table to locate the boot sector portion of the partition.

The MBR can refer to partitions on other drives.

You can create a single partition on a drive and use it without an MBR.

FreeBSD: Bootstrap Source Code:
https://svnweb.freebsd.org/base/stable/8/sys/boot/i386/boot0/boot0.S?revision=196045&view=markup

/*
* BOOT BLOCK STRUCTURE
*
* This code implements a Master Boot Record (MBR) for an Intel/PC disk.
* It is 512 bytes long and it is normally loaded by the BIOS (or another
* bootloader) at 0:0x7c00. This code depends on %cs:%ip being 0:0x7c00
*
* The initial chunk of instructions is used as a signature by external
* tools (e.g. boot0cfg) which can manipulate the block itself.
*
* The area at offset 0x1b2 contains a magic string ('Drive '), also
* used as a signature to detect the block, and some variables that can
* be updated by boot0cfg (and optionally written back to the disk).
* These variables control the operation of the bootloader itself,
* e.g. which partitions to enable, the timeout, the use of LBA
* (called 'packet') or CHS mode, whether to force a drive number,
* and whether to write back the user's selection back to disk.
*
* As in every Master Boot Record, the partition table is at 0x1be,
* made of four 16-byte entries each containing:
*
* OFF SIZE DESCRIPTION
* 0 1 status (0x80: bootable, 0: non bootable)
* 1 3 start sector CHS
* 8:head, 6:sector, 2:cyl bit 9..8, 8:cyl bit 7..0
* 4 1 partition type
* 5 3 end sector CHS
* 8 4 LBA of first sector
* 12 4 partition size in sectors
*
* and followed by the two bytes 0x55, 0xAA (MBR signature).
*/

*
* CONSTANTS
*
* NHRDRV is the address in segment 0 where the BIOS writes the
* total number of hard disks in the system.
* LOAD is the original load address and cannot be changed.
* ORIGIN is the relocation address. If you change it, you also need
* to change the value passed to the linker in the Makefile
* PRT_OFF is the location of the partition table (from the MBR

standard).
* B0_OFF is the location of the data area, known to boot0cfg so
* it cannot be changed. Computed as a negative offset from 0x200
* MAGIC is the signature of a boot block.
*/

.set NHRDRV,0x475 # Number of hard drives

.set ORIGIN,0x600 # Execution address

.set LOAD,0x7c00 # Load address

.set PRT_OFF,0x1be # Partition table

.set B0_OFF,(B0_BASE-0x200) # Offset of boot0 data

.set MAGIC,0xaa55 # Magic: bootable

.set KEY_ENTER,0x1c # Enter key scan code

.set KEY_F1,0x3b # F1 key scan code

.set KEY_1,0x02 # #1 key scan code

.set ASCII_BEL,'#' # ASCII code for <BEL>

.set ASCII_CR,0x0D # ASCII code for <CR>/

Bootstrap Loader Snippet

• Newer

• MBR Supports 4 primary
partitions (+ extended
partition area)

• GPT supports 128
partitions.

• Requires Unified Extensible
Firmware Interface (UEFI).

GUID Partition Table (GPT)
Global Unique ID (GUID)

Here the
bootstrap
loader gets
a whole
partition
(no more
512 bytes)

EFI
partition is
typically
100-500
MB

sudo dd if=/dev/sda bs=1 count=1024 | hexdump –C

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
000001c0 02 00 ee ff ff ff 01 00 00 00 ff 87 df e8 00 00 |................|
000001d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa |..............U.|
00000200 45 46 49 20 50 41 52 54 00 00 01 00 5c 00 00 00 |EFI PART....\...|
00000210 3b 51 e7 56 00 00 00 00 01 00 00 00 00 00 00 00 |;Q.V............|
00000220 ff 87 df e8 00 00 00 00 22 00 00 00 00 00 00 00 |........".......|
00000230 de 87 df e8 00 00 00 00 d0 cc 71 f7 27 f4 7c 44 |..........q.'.|D|
00000240 91 6c 14 53 7c 7c 43 2b 02 00 00 00 00 00 00 00 |.l.S||C+........|
00000250 80 00 00 00 80 00 00 00 a2 63 be d1 00 00 00 00 |.........c......|
00000260 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
1024+0 records in
1024+0 records out
1024 bytes (1.0 kB, 1.0 KiB) copied, 0.00254417 s, 402 kB/s
00000400

Is this a GPT or MBR partition layout?

Task 1 Task 2 Task n…
user space

kernel space

VIRTUAL FILE SYSTEM (VFS)

minix ext2 msdos proc

SCSI NVME

Buffer Cache

software
hardware

Linux Kernel

Partitions

• We can do raw
reads and writes to
disks through /dev/

• But are usually
much more
organized so we can
manage the data

Generalised Linux Filesystem

File Systems

• In general file systems are simple
• Abstraction for secondary storage

• Files
• Logical organization of files

• Directories
• Sharing of data between users/processes

• Permissions/ACLs

UNIX File System

• Implemented as part of original UNIX system
• Ritchie and Thompson, Bell Labs, 1969

• Designed for workgroup scenario
• Multiple users sharing a single system

• Still forms the basis of all UNIX based file systems

5 parts of a UNIX Disk

• Boot Block
• Contains boot loader

• Superblock
• The file systems “header”
• Specifies location of file system data structures

• inode area
• Contains descriptors (inodes) for each file on the disk
• All inodes are the same size
• Head of the inode free list is stored in superblock

• File contents area
• Fixed size blocks containing data
• Head of freelist stored in superblock

• Swap area
• Part of disk given to virtual memory system

Unix directory files
• A directory is a flat file of fixed size entries
• Each entry consists of an inode # and a file name

inode

File info

Direct blocks
Indirect blocks

Double
Indirect

Blocks

Contiguous Allocation

• Allocate each file to contiguous blocks on disk
• Meta-data includes first block and size of file
• OS allocates single chunk of free space

• Advantages
• Low overhead for meta-data
• Excellent sequential performance
• Simple to calculate random addresses

• Disadvantages
• Horrible external fragmentation (requires compaction)
• Usually must move entire file to resize it

Extent Based Allocation
• Allocate multiple contiguous regions (extents)
• Meta-data: Small array of extents (first block + size)

D D A A A D B B B B C C C D D

• Improves contiguous allocation
– File can grow over time
– External fragmentation reduced

• Advantages
– Limited overhead for meta-data
– Good performance with sequential accesses
– Simple to calculate random addresses

• Disadvantages
– External fragmentation can still be a problem
– Extents can be exhausted (fixed size array in meta-data)

Linked Allocation
• Allocate linked-list of fixed size blocks

• Meta-data: location of file’s first block
• Each block stores pointer to next block

D D A A A D B B B B C C C B B D B D

• Advantages
– No External fragmentation
– File size can be very dynamic

• Disadvantages
– Random access takes a long time
– Sequential accesses can be slow

• Can try to allocate contiguously to avoid this
– Very sensitive to corruption

File Allocation Table (FAT)

• Variation of Linked Allocation
• Linked list information stored in FAT table (on disk)
• Meta-data: Location of first block of file

• Comparison to Linked Allocation
• Same basic advantages and disadvantages
• Additional disadvantage:

• Two disk reads for 1 data block
• Optimization: Cache FAT table in memory

File-Allocation Table
Name Meta-Data Start Block

Directory Entry

632

NULL

317

File Allocation
Table

Name Meta-Data Start Block
Name Meta-Data Start Block
Name Meta-Data Start Block

Block 23

Block 317

Block 632

Data blocks
Foo.txt Meta-Data 23

Indexed Allocation

• Allocate fixed-size blocks for each file
• Meta-data: Fixed size array of block pointers

• Array allocated at file creation time

• Advantages
• No external fragmentation
• Files can be easily grown, with no limit
• Supports random access

• Disadvantages
• Large overhead for meta-data

• Unneeded pointers are still allocated

Multi-level Index Files
• Variation of Indexed Allocation
• Dynamically allocate hierarchy of pointers to blocks as

needed
• Meta-data: Small number of pointers allocated statically

• Allocate blocks of pointers as needed

• Comparison to Indexed Allocation
– Advantage: Less wasted space
– Disadvantage: Random reads require multiple disk reads

Free Space Management

• How do you remember which blocks are free
• Operations: Free block, allocate block

• Free List: Linked list of free blocks
• Advantages: Simple, constant time operations
• Disadvantage: Quickly loses locality

• Bitmap: Bitmap of all blocks indicating which are free
• Advantages: Can find sequence of consecutive blocks
• Disadvantage: Space overhead

So…

• With a boot block you can boot a machine
• Stores code for boot loader

• With a superblock you can access a file system
• Superblock always kept at a fixed location
• Specifies where you can find FS state information

• By convention root directory (‘/’) is stored in second inode
• Most current boot loaders read superblock to find kernel image

Inode format

• User and group IDs
• Protection bits
• Access times
• File Type

• Directory, normal file, symbolic link, etc
• Size

• Length in bytes
• Block list

• Location of data blocks in file contents area
• Link Count

• Number of directories (hard links) referencing this inode

Unix Inodes and Path Search

• Unix Inodes are not directories
• Inodes describe where on disk a file’s blocks are stored
• Directories are files

• Inodes describe where a directory’s blocks are stored

• Directory entries map file names to inodes
• To open “/foo”, use Master Block to find inode for “/”

• Open “/”, search for entry “foo”
• This entry specifies block number for inode of “foo”

• Read “foo”’s inode into memory
• Get first data block location from inode
• Read block into memory

[matthew@moonshine ~]$ df –i
[matthew@moonshine dev]$ df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
devtmpfs 8157993 909 8157084 1% /dev
tmpfs 8163114 1 8163113 1% /dev/shm
tmpfs 819200 1138 818062 1% /run
/dev/mapper/rl_dhcp52-root 36700160 153255 36546905 1% /
/dev/mapper/rl_dhcp52-home 434087936 774 434087162 1% /home
/dev/sda2 524288 30 524258 1% /boot
/dev/sda1 0 0 0 - /boot/efi
tmpfs 1632622 21 1632601 1% /run/user/1000

Inodes are a limited resource. End users usually know that the amount of storage
space is limited, but the number of inodes available is just as important.

Inodes in the table above gives the total number of available inodes. Iused is how
many have been used so far. If we run out no more files or directories can be created.

Each task opens its own files
struct task_struct

files

struct files_struct

next_fd

fd[]

struct file
struct_dentry

d_name

struct_dentry

d_name

Chapter 6 37
CS 1550, cs.pitt.edu (originaly modified

by Ethan L. Miller and Scott A. Brandt)

Naming files

• Important to be able to find files after they’re created
• Every file has at least one name
• Name can be

• Human-accessible: “foo.c”, “my photo”, “Go Panthers!”, “Go Banana Slugs!”
• Machine-usable: 4502, 33481

• Case may or may not matter
• Depends on the file system

• Name may include information about the file’s contents
• Certainly does for the user (the name should make it easy to figure out what’s in it!)
• Computer may use part of the name to determine the file type

Last login: Fri Feb 2 10:31:15 on ttys000
matthew@dhcp178 ~ % ssh matthew@129.24.245.16
matthew@129.24.245.16's password:
Last login: Mon Jan 29 10:11:40 2024 from
129.24.246.178
[matthew@moonshine ~]$

[matthew@moonshine ~]$ sudo parted -l
Model: DELL PERC H310 (scsi)
Disk /dev/sda: 1000GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:

Number Start End Size File system Name Flags
1 1049kB 630MB 629MB fat32 EFI System Partition boot, esp
2 630MB 1704MB 1074MB xfs
3 1704MB 1000GB 998GB lvm

Model: USB DISK 3.0 (scsi)
Disk /dev/sdb: 15.5GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Disk Flags:

Number Start End Size Type File system Flags
2 340kB 7604kB 7264kB primary esp

Last login: Fri Feb 2 10:31:21 on ttys001
matthew@dhcp178 ~ % ssh matthew@129.24.245.16
matthew@129.24.245.16's password:
Last login: Fri Feb 2 11:31:49 2024 from 129.24.246.178
[matthew@moonshine ~]$

Open another terminal to your server

[matthew@moonshine ~]$ sudo udevadm monitor --kernel
[sudo] password for matthew:
monitor will print the received events for:
KERNEL - the kernel uevent

[matthew@moonshine ~]$ lsblk
[matthew@moonshine ~]$ sudo umount /dev/sdb

[matthew@moonshine ~]$ cat /etc/fstab

/dev/mapper/rl_dhcp52-root / xfs defaults 0 0
UUID=a447244c-dab4-41a2-b908-8a931134c113
/boot xfs defaults 0 0
UUID=A57E-CA77 /boot/efi vfat umask=0077,shortname=winnt 0 2
/dev/mapper/rl_dhcp52-home /home xfs defaults 0 0
/dev/mapper/rl_dhcp52-swap none swap defaults 0 0

If your system runs out of memory (RAM) then the least recently used data is moved to the swap space on the HDD.

This keeps you from crashing – but reading and writing data from disk is about 1/100th the speed of RAM.

So, if lots of data gets moved to disk the system becomes so slow it is unusable. This is called disk thrashing.

[matthew@moonshine ~]$ sudo fdisk /dev/sdb
[sudo] password for matthew:

Welcome to fdisk (util-linux 2.37.4).
Changes will remain in memory only, until you decide to write
them.
Be careful before using the write command.

The device contains 'iso9660' signature and it will be
removed by a write command. See fdisk(8) man page and --wipe
option for more details.

Command (m for help): p

Disk /dev/sdb: 14.46 GiB, 15525216256 bytes, 30322688 sectors
Disk model: USB DISK 3.0
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x73b44ec8

Device Boot Start End Sectors Size Id Type
/dev/sdb1 * 0 3293407 3293408 1.6G 0 Empty
/dev/sdb2 664 14851 14188 6.9M ef EFI (FAT-
12/16/32)

Why do you think is says DOS and EFI?

Command (m for help): q Why do you think is says DOS and EFI?

[matthew@moonshine ~]$ sudo dd if=/dev/sdb
of=Rocky9.1_minimal.iso bs=4M status=progress

15509602816 bytes (16 GB, 14 GiB) copied, 415 s, 37.4 MB/s
30322688+0 records in
30322688+0 records out
15525216256 bytes (16 GB, 14 GiB) copied, 416.363 s, 37.3 MB/s

[matthew@moonshine ~]$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE
MOUNTPOINTS
sda 8:0 0 931G 0 disk
├─sda1 8:1 0 600M 0 part /boot/efi
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 929.4G 0 part
 ├─rl_dhcp52-root 253:0 0 70G 0 lvm /
 ├─rl_dhcp52-swap 253:1 0 31.5G 0 lvm [SWAP]
 └─rl_dhcp52-home 253:2 0 828G 0 lvm /home
sdb 8:16 1 14.5G 0 disk
├─sdb1 8:17 1 1.6G 0 part
└─sdb2 8:18 1 6.9M 0 part
sr0 11:0 1 1024M 0 rom

[matthew@moonshine ~]$ sudo fdisk /dev/sdb
[sudo] password for matthew:

Welcome to fdisk (util-linux 2.37.4).
Changes will remain in memory only, until you decide to write
them.
Be careful before using the write command.

The device contains 'iso9660' signature and it will be removed
by a write command. See fdisk(8) man page and --wipe option for
more details.

Command (m for help):

[matthew@moonshine ~]$ sudo fdisk /dev/sdb
[sudo] password for matthew:

Welcome to fdisk (util-linux 2.37.4).
Changes will remain in memory only, until you decide to write
them.
Be careful before using the write command.

The device contains 'iso9660' signature and it will be removed
by a write command. See fdisk(8) man page and --wipe option for
more details.

Command (m for help):

Command (m for help): p
Disk /dev/sdb: 14.46 GiB, 15525216256 bytes, 30322688 sectors
Disk model: USB DISK 3.0
Geometry: 255 heads, 63 sectors/track, 14806 cylinders
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x73b44ec8

Device Boot Start End Sectors Size Id Type
/dev/sdb1 * 0 3293407 3293408 1.6G 0 Empty
/dev/sdb2 664 14851 14188 6.9M ef EFI (FAT-
12/16/32)

Command (m for help):

The device contains 'iso9660' signature and it will be removed
by a write command. See fdisk(8) man page and --wipe option for
more details.

Command (m for help): d
Partition number (1,2, default 2): 1

Partition 1 has been deleted.

Command (m for help): p

Disk /dev/sdb: 14.46 GiB, 15525216256 bytes, 30322688 sectors
Disk model: USB DISK 3.0
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x73b44ec8

The partition table is gone so no partitions are displayed.

But Fdisk doesn’t actually ask the kernel to make changes until after you hit w to write
the changes.

Command (m for help): w

The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

The partition table is gone so no partitions are displayed.

But Fdisk doesn’t actually ask the kernel to make changes until after you hit w to write
the changes.

KERNEL[1122527.084021] remove /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb/sdb1 (block)

KERNEL[1122527.084060] remove /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb/sdb2 (block)

KERNEL[1122527.086394] change /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb (block)

KERNEL[1122527.093141] change /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb (block)

KERNEL[1122527.094259] change /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-
1.2/2-1.2:1.0/host0/target0:0:0/0:0:0:0/block/sdb (block)

When you use the “w” command fdisk makes function calls to
the kernel and the kernel makes the changes to the USB drive

Command (m for help): w

The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

The partition table is gone so no partitions are displayed.

But Fdisk doesn’t actually ask the kernel to make changes until after you hit w to write
the changes.

[matthew@moonshine ~]$ sudo fdisk /dev/sdb

Command (m for help): p
Disk /dev/sdb: 14.46 GiB, 15525216256 bytes, 30322688 sectors
Disk model: USB DISK 3.0
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x73b44ec8

Device Boot Start End Sectors Size Id Type
/dev/sdb2 664 14851 14188 6.9M ef EFI (FAT-12/16/32)

Command (m for help): d
Selected partition 2
Partition 2 has been deleted.
Command (m for help): w

[matthew@moonshine ~]$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 931G 0 disk
├─sda1 8:1 0 600M 0 part /boot/efi
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 929.4G 0 part
 ├─rl_dhcp52-root 253:0 0 70G 0 lvm /
 ├─rl_dhcp52-swap 253:1 0 31.5G 0 lvm [SWAP]
 └─rl_dhcp52-home 253:2 0 828G 0 lvm /home
sdb 8:16 1 14.5G 0 disk
sr0 11:0 1 1024M 0 rom

[matthew@localhost ~]$ sudo fdisk /dev/sdb
Welcome to fdisk (util-linux 2.37.4).
Changes will remain in memory only, until you decide to write
them.
Be careful before using the write command.
Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)

Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-30322687, default 2048):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-30322687,
default 30322687):
Created a new partition 1 of type 'Linux' and of size 14.5 GiB.

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

[matthew@localhost ~]$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 931G 0 disk
├─sda1 8:1 0 600M 0 part /boot/efi
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 929.4G 0 part
 ├─rl_dhcp52-root 253:0 0 70G 0 lvm /
 ├─rl_dhcp52-swap 253:1 0 31.5G 0 lvm [SWAP]
 └─rl_dhcp52-home 253:2 0 828G 0 lvm /home
sdb 8:16 1 14.5G 0 disk
└─sdb1 8:17 1 14.5G 0 part
sr0 11:0 1 1024M 0 rom

[matthew@moonshine ~]$ sudo mkfs.ext4 /dev/sdb1
mke2fs 1.46.5 (30-Dec-2021)
Creating filesystem with 3790080 4k blocks and 948416 inodes
Filesystem UUID: 6e7aaea1-7e15-41dd-8fd3-b9b5248e6636
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632,
2654208

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks):
done
Writing superblocks and filesystem accounting information: done

[matthew@moonshine ~]$ sudo mkfs.xfs /dev/sdb1
[matthew@moonshine ~]$ sudo mkfs.xfs -f /dev/sdb1
meta-data=/dev/sdb1 isize=512 agcount=4, agsize=947520 blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=1 finobt=1, sparse=1, rmapbt=0
 = reflink=1 bigtime=1 inobtcount=1

nrext64=0
data = bsize=4096 blocks=3790080, imaxpct=25
 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=16384, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

[matthew@moonshine ~]$ sudo mount /dev/sdb1 /mnt
[matthew@moonshine ~]$

Now we can mount the filesystem.

The mount command takes a block device (such
as a partition) and an existing directory file.

/mnt exists for this purpose but you can put any
directory as the argument.

matthew@moonshine mnt]$ sudo chown matthew: /mnt
[matthew@moonshine mnt]$ cd /mnt
[matthew@moonshine mnt]$ touch test.txt
[matthew@moonshine mnt]$ ls
test.txt
[matthew@moonshine mnt]$

By default only the root user can write to this
external usb mount.

We use chmod to make matthew the owner and
touch to create a new file.

[matthew@moonshine ~]$ sudo yum install iotop
[sudo] password for matthew:
Last metadata expiration check: 0:25:53 ago on Mon 05 Feb 2024 10:37:13 AM CST.
Dependencies resolved.
===
Package Architecture Version Repository Size
===
Installing:
iotop noarch 0.63-0.el9 baseos 62 k

Transaction Summary
===
Install 1 Package

Input/Output Monitoring is important for HPC

[matthew@moonshine ~]$ sudo dd if=Rocky9.1_minimal.iso
of=/dev/sdb bs=4M status=progress
[sudo] password for matthew:
12494831616 bytes (12 GB, 12 GiB) copied, 126 s, 99.1 MB/

Now let’s restore our ISO image to the USB drive:

[matthew@moonshine ~]$ sudo iotop
Total DISK READ : 0.00 B/s | Total DISK WRITE : 8.82 M/s
Actual DISK READ: 0.00 B/s | Actual DISK WRITE: 12.97 M/s
TID PRIO USER DISK READ DISK WR TID PRIO USER DISK READ DISK WRITE COMMAND

171200 be/4 root 0.00 B/s 8.82 M/s dd if=Rocky9.1_minimal.iso of=/dev/sdb bs=4M status=progress
 1 be/4 root 0.00 B/s 0.00 B/s systemd --switched-root --system --deserialize 31
 2 be/4 root 0.00 B/s 0.00 B/s [kthreadd]
 3 be/0 root 0.00 B/s 0.00 B/s [rcu_gp]
 4 be/0 root 0.00 B/s 0.00 B/s [rcu_par_gp]
 5 be/0 root 0.00 B/s 0.00 B/s [slub_flushwq]
 6 be/0 root 0.00 B/s 0.00 B/s [netns]
 8 be/0 root 0.00 B/s 0.00 B/s [kworker/0:0H-events_highpri]
 11 be/0 root 0.00 B/s 0.00 B/s [mm_percpu_wq]
 12 be/4 root 0.00 B/s 0.00 B/s [kworker/u64:1-mlx4]
 13 be/4 root 0.00 B/s 0.00 B/s [rcu_tasks_kthre]
 14 be/4 root 0.00 B/s 0.00 B/s [rcu_tasks_rude_]
 15 be/4 root 0.00 B/s 0.00 B/s [rcu_tasks_trace]
 16 be/4 root 0.00 B/s 0.00 B/s [ksoftirqd/0]
 17 be/4 root 0.00 B/s 0.00 B/s [pr/tty0]
 18 be/4 root 0.00 B/s 0.00 B/s [rcu_preempt]
 19 rt/4 root 0.00 B/s 0.00 B/s [migration/0]
 20 rt/4 root 0.00 B/s 0.00 B/s [idle_inject/0]

Input/Output Monitoring is important for HPC

[matthew@moonshine ~]$ sudo dd if=Rocky9.1_minimal.iso
of=/dev/sdb bs=4M status=progress
[sudo] password for matthew:
12494831616 bytes (12 GB, 12 GiB) copied, 126 s, 315 MB/s

Now let’s restore our ISO image to the USB drive:

Notice that the write speed is
faster than the read speed!
Compare it to the write speed
reported by iotop.

Does that make sense?

[matthew@moonshine ~]$ sudo dd if=Rocky9.1_minimal.iso
of=/dev/sdb bs=4M status=progress
[sudo] password for matthew:
12494831616 bytes (12 GB, 12 GiB) copied, 126 s, 315 MB/s

Now let’s restore our ISO image to the USB drive:

The write is actually going to
RAM. The kernel will write to
the USB disk when it gets
around to it.
Dangerous if you unplug the
USB now.

[matthew@moonshine ~]$ sudo dd if=Rocky9.1_minimal.iso
of=/dev/sdb bs=4M status=progress oflag=direct
[sudo] password for matthew:
12494831616 bytes (12 GB, 12 GiB) copied, 126 s, 11 MB/s

Now let’s restore our ISO image to the USB drive:

Iflag=direct in dd will tell the
kernel to bypass the RAM
cache.

